1
|
Mohammadi Z, Alijanianzadeh M, Khalilzadeh R, Khodadadi S. Process Development for the Production and Purification of PEGylated
RhG-CSF Expressed in Escherichia coli. Protein Pept Lett 2022; 29:293-305. [DOI: 10.2174/0929866529666220126100559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 11/22/2022]
Abstract
Background and objective:
Recombinant human granulocyte-colony stimulating factor (rhG-CSF) and its PEGylated form (PEG-GCSF) are used in the cancer therapy. Thus the development of a more cost-effectively method for expressing rhG-CSF and the PEGylation optimization of rhG-CSF by reaction engineering and subsequent the purification strategy is necessary.
Methods:
RhG-CSF expression in Escherichia coli BL21 (DE3) was carried out by auto-induction batch fermentation and improved for maximizing rhG-CSF productivity. After that, purified rhG-CSF was PEGylated using methoxy polyethylene glycol propionaldehydes (mPEG20-ALD). The various conditions effect of extraction and purification of rhG-CSF and PEG-GCSF were assayed.
Results:
The assessment results revealed that auto-induction batch cultivation strategy had maximum productivity and rhG-CSF purity was more than 99%. The obtained Data of rhG-CSF PEGylation displayed that the optimized conditions of rhG-CSF PEGylation and purification enhanced hemogenisity PEG-GCSF and managed reaction toward optimal yield of PEG-GCSF (70%) and purity of 99.9%. Findings from FTIR, CD, and fluorescence spectroscopy and bioassay revealed that PEGylation was executed exactly in the rhG-CSF N-terminus, and products maintained their conformation properties.
Conclusion:
Overall, the developed approach expanded strategies for high yield rhG-CSF by simplified auto-induction batch fermentation system and rhG-CSF PEGylation, which are simple and time-saving, economical and high efficiency.
Collapse
Affiliation(s)
- Zeinab Mohammadi
- Department of Bioscience and Biotechnology, Malek-Ashtar University of Technology, Tehran, Iran
| | - Mahdi Alijanianzadeh
- Department of Bioscience and Biotechnology, Malek-Ashtar University of Technology, Tehran, Iran
- Department of
Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Rassoul Khalilzadeh
- Department of Bioscience and Biotechnology, Malek-Ashtar University of Technology, Tehran, Iran
| | - Sirus Khodadadi
- Department of Bioscience and Biotechnology, Malek-Ashtar University of Technology, Tehran, Iran
| |
Collapse
|
2
|
Li H, Huo J, Sun D, Guo Y, Jiang L, Zhang H, Shi X, Zhao Z, Zhou J, Hu C, Zhang C. Determination of PEGylation homogeneity of polyethylene glycol-modified canine uricase. Electrophoresis 2020; 42:693-699. [PMID: 33247595 DOI: 10.1002/elps.202000268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/13/2020] [Accepted: 11/17/2020] [Indexed: 12/17/2022]
Abstract
Polyethylene glycol-modified canine uricase (PEG-UHC) was prepared by modifying the ε-amino group of lysine residues on the canine uricase (UHC) protein to near-saturation with 5 kDa monomethoxyl-polyethylene glycol succinimide (mPEG-SPA-5k). In order to accurately determine the PEGylation uniformity of PEG-UHC, CZE, 3-8% gradient gel SDS-PAGE, and imaging CIEF (iCIEF) analyses were compared. CZE could not effectively separate PEG-UHC proteins with different degrees of modification, 3-8% gradient gel SDS-PAGE could separate PEG-UHC into seven gel bands; however, most of the gel bands were smeared or blurred, and the separation of PEG-UHC samples by iCIEF was significantly better than that by 3-8% gradient gel SDS-PAGE. Under denatured conditions, iCIEF separated 12 pI peaks, and could also accurately quantify the relative monomer PEG-UHC content. More than 85% of the total monomeric PEG-UHC was conjugated with 7-12 PEG molecules; of this 85%, approximately 40% was conjugated with 9-10 PEG molecules. These results demonstrated that iCIEF exhibits good potential for determining the PEGylation homogeneity of PEGylated protein drugs.
Collapse
Affiliation(s)
- Haigang Li
- College of Pharmacy, Linyi University, Linyi, Shandong, 276000, P.R. China
| | - JingJing Huo
- College of Pharmacy, Linyi University, Linyi, Shandong, 276000, P.R. China
| | - Dan Sun
- Rizhao Institute of Scientific and Technological Information, Shandong, P.R. China
| | - Yong Guo
- College of Pharmacy, Linyi University, Linyi, Shandong, 276000, P.R. China
| | - Liang Jiang
- Renrui Biotechnology Inc., Shandong, P.R. China
| | - Haijuan Zhang
- College of Pharmacy, Linyi University, Linyi, Shandong, 276000, P.R. China
| | - Xiaowei Shi
- College of Pharmacy, Linyi University, Linyi, Shandong, 276000, P.R. China
| | - Zhilong Zhao
- College of Pharmacy, Linyi University, Linyi, Shandong, 276000, P.R. China
| | - Jinchuan Zhou
- College of Pharmacy, Linyi University, Linyi, Shandong, 276000, P.R. China
| | - Chunlan Hu
- Fagen Biomedical Inc., Chongqing, P.R. China
| | - Chun Zhang
- College of Pharmacy, Linyi University, Linyi, Shandong, 276000, P.R. China.,Renrui Biotechnology Inc., Shandong, P.R. China
| |
Collapse
|
3
|
Bhambure R, Angelo JM, Gillespie CM, Phillips M, Graalfs H, Lenhoff AM. Ionic strength-dependent changes in tentacular ion exchangers with variable ligand density. II. Functional properties. J Chromatogr A 2017; 1506:55-64. [DOI: 10.1016/j.chroma.2017.05.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/05/2017] [Accepted: 05/07/2017] [Indexed: 11/28/2022]
|
4
|
Ruanjaikaen K, Zydney AL. Purification of singly PEGylated α-lactalbumin using charged ultrafiltration membranes. Biotechnol Bioeng 2010; 108:822-9. [PMID: 21404256 DOI: 10.1002/bit.22991] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 10/09/2010] [Accepted: 10/15/2010] [Indexed: 11/12/2022]
Abstract
One of the challenges in producing a PEGylated therapeutic protein is that the PEGylation reaction typically generates a mixture of both singly and multiply PEGylated species. The objective of this study was to examine the feasibility of using ultrafiltration for the purification of a singly PEGylated protein from the multiply PEGylated conjugates. Data were obtained with α-lactalbumin that was PEGylated with a 20 kDa activated PEG, with the ultrafiltration performed over a range of pH and ionic strength using both unmodified and negatively charged composite regenerated cellulose membranes. Purification of the singly PEGylated α-lactalbumin from the multiply PEGylated species was accomplished using a diafiltration process with a negatively charged membrane at pH 5 and an ionic strength of 0.4 mM, conditions that maximized the electrostatic exclusion of the multiply PEGylated species from the charged membrane. The diafiltration process provided more than 97% yield with greater than 20-fold purification between the singly and doubly PEGylated proteins and nearly complete removal of the more heavily PEGylated species. The singly PEGylated α-lactalbumin was recovered as a dilute filtrate solution, although this dilution could be eliminated using a cascade filtration or the final product could be re-concentrated in a second ultrafiltration as part of the final formulation. These results demonstrate the feasibility of using ultrafiltration for the purification of singly PEGylated protein therapeutics.
Collapse
Affiliation(s)
- Krisada Ruanjaikaen
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
5
|
Abstract
N-terminus-specific PEGylation was used to produce mono-PEGylated lysozyme. However, some di- and tri-PEGylated proteins were also produced due to side chain reaction. The reaction products were characterized by chromatographic and electrophoretic methods. Commercial cation exchange membrane Sartobind S was used for chromatographic purification of PEGylated lysozyme, the basis of separation being the shielding of protein charge by PEG. Using the membrane chromatographic method, lysozyme and mono-, di-, and tri-PEGylated lysozyme could be resolved into separate peaks. Increasing the superficial velocity during chromatographic separation from 24 cm/h to 240 cm/h increased both protein binding capacity and resolution due to enhancement of protein mass transfer coefficient.
Collapse
Affiliation(s)
- Deqiang Yu
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
6
|
|
7
|
Affiliation(s)
- Simona Jevsevar
- Lek Pharmaceuticals d.d., a Sandoz Company, Biopharmaceuticals, Ljubljana, Slovenia.
| | | | | |
Collapse
|
8
|
Bioreactors and bioseparation. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2010; 122:105-50. [PMID: 20396995 DOI: 10.1007/10_2010_70] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Along with the rapid development of life science, great attention has been increasingly given to the biotechnological products of cell cultivation technology. In the course of industrialization, bioreactor and bioproduct separation techniques are the two essential technical platforms. In this chapter, the current situation and development prospects of bioreactor techniques in China are systematically discussed, starting with the elucidation of bioreactor processes and the principle of process optimization. Separation technology for biological products is also briefly introduced.At present, a series of bioreactors made by Chinese enterprises have been widely used for laboratory microbial cultivation, process optimization studies, and large-scale production. In the course of bioprocess optimization studies, the complicated bioprocesses in a bioreactor could be resolved into different reaction processes on three scales, namely genetic, cellular, and bioreactor scales. The structural varieties and nonlinear features of various scales of bioprocess systems was discussed through considering the mutual effects of different scale events, namely material flux, energy flux, and information flux, and the optimization approach for bioprocesses was proposed by taking the analysis of metabolic flux and multiscale consideration as a core strategy.In order to realize such an optimization approach, a bioreactor system based on association analysis of multiscale parameters was elaborated, and process optimization of many biological products were materialized, which resulted in great improvement in production efficiency. In designing and manufacturing large-scale bioreactors, the principle of scaling up a process incorporated with flow field study and physiological features in a bioreactor was suggested according to the criterion for the scale-up of cellular physiological and metabolic traits. The flow field features of a bioreactor were investigated through computational fluid dynamics (CFD), and the design of a bioreactor configuration was carried out depending on multiscale studies of parameters correlation in a bioprocess. With respect to the development trend of bioreactor studies in China, the significance of the development of microbioreactors for high throughput strain screening and large-scale bioreactors for animal cell cultivation were put forward. Finally, the importance of studies of systems biology for bioprocesses based on bioinformation processing was raised, and the necessity of establishing a bioprocess information database and local area network (LAN) were emphasized as well.Bioseparation engineering plays a key role in biotechnology production. At present, many difficulties need to be resolved in the area. Scientists of China have made considerable progress in bioseparation engineering. This progress includes chromatography media, recycling aqueous two-phase systems (ATPS), affinity precipitation, molecular imprinting, renaturation and modification of proteins, protein fractionation using ultrafiltration (UF), ion liquid separation of bioproducts, reverse micellar extraction, etc. The preparation of bioseparation materials, as well as part of bioseparation process research development in the past 5 years, are introduced here.
Collapse
|
9
|
Zhai Y, Zhao Y, Lei J, Su Z, Ma G. Enhanced circulation half-life of site-specific PEGylated rhG-CSF: optimization of PEG molecular weight. J Biotechnol 2009; 142:259-66. [PMID: 19497340 DOI: 10.1016/j.jbiotec.2009.05.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 05/20/2009] [Accepted: 05/26/2009] [Indexed: 01/22/2023]
Abstract
Recombinant human granulocyte colony stimulating factor (rhG-CSF) and its PEGylated product "mono-PEG20-GCSF" have already been widely used for treatment of all kinds of neutropenia. However, the high required dosage of mono-PEG20-GCSF made it relatively expensive in clinical use. We postulated that an N-terminal site-specific PEGylated rhG-CSF with higher PEG Mw (PEG30 kDa) might be able to achieve longer circulation half-life while retaining its bioactivity, allowing the reduction of dosage for clinical use. rhG-CSF was PEGylated at the N-terminus by 5 kDa, 10 kDa, 20 kDa and 30 kDa methoxy-poly(ethylene glycol)-propionaldehyde (mPEG-ALD), and the four PEGylates were compared with respect to reaction, separation, characterization and also in vivo/in vitro activity, results showed that the mPEG-ALD of higher Mw demonstrated better N-terminal site-specific selectivity, separation purity and yield. The production cost and in vitro activity of mono-PEG30-GCSF and mono-PEG20-GCSF were almost the same, while mono-PEG30-GCSF showed longer in vivo circulation half-life and 60% higher drug bioavailability than mono-PEG20-GCSF. Consequently, mono-PEG30-GCSF shall be administered at a lower dosage than mono-PEG20-GCSF while retaining the same therapeutic efficacy.
Collapse
Affiliation(s)
- Yanqin Zhai
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | | | | | | | | |
Collapse
|
10
|
Liquid chromatography of recombinant proteins and protein drugs. J Chromatogr B Analyt Technol Biomed Life Sci 2008; 866:133-53. [DOI: 10.1016/j.jchromb.2008.01.041] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 12/17/2007] [Accepted: 01/18/2008] [Indexed: 01/12/2023]
|
11
|
Zheng C, Zheng CY, Ma G, Su Z. Native PAGE eliminates the problem of PEG–SDS interaction in SDS-PAGE and provides an alternative to HPLC in characterization of protein PEGylation. Electrophoresis 2007; 28:2801-7. [PMID: 17702059 DOI: 10.1002/elps.200600807] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
PEGylation of proteins has become an increasingly important technology in recent years. However, determination and characterization of the PEGylation products are problematic especially for the reaction mixture containing various modified proteins, unreacted PEG, and unmodified protein. A comparative study was carried out with two HPLC methods and two electrophoresis methods for characterization of the reaction mixture in PEGylation of HSA with PEG 5000, 10000, and 20000. RP-HPLC fails to give the correct information about the reaction of PEG 20000. Size-exclusion HPLC (SE-HPLC) produced very poor resolution on the PEG 5000 reaction. SDS-PAGE can run multiple samples of all PEGylation but the bands were smeared or broadened probably due to the interaction between PEG and SDS. On the other hand, native PAGE eliminates the problem of PEG-SDS interaction and provides better resolutions for all samples. Various PEGylated products and unmodified protein migrate differentially in native PAGE under nondenatured conditions. The results demonstrated that native PAGE could be a good alternative to HPLC and SDS-PAGE for the analysis of PEG-protein conjugates especially for characterization of the PEGylation mixture.
Collapse
Affiliation(s)
- Chunyang Zheng
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, PR China
| | | | | | | |
Collapse
|
12
|
Pabst TM, Buckley JJ, Ramasubramanyan N, Hunter AK. Comparison of strong anion-exchangers for the purification of a PEGylated protein. J Chromatogr A 2007; 1147:172-82. [PMID: 17346720 DOI: 10.1016/j.chroma.2007.02.051] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 02/12/2007] [Accepted: 02/15/2007] [Indexed: 11/20/2022]
Abstract
We have studied the effect of protein PEGylation on ion-exchange adsorption using bovine serum albumin as a model system. The free sulfhydryl group of BSA, located on cysteine 34, was PEGylated using the maleimido-PEG chemistry. Several different BSA preparations were screened for extent of reaction using a 30 kDa PEG reagent. The highest yielding BSA preparation was PEGylated using linear 12 kDa and 30 kDa PEG reagents at the 1 liter scale. The PEGylated reaction mixture was purified by anion-exchange gradient elution chromatography to remove native protein and aggregates. Purity following anion-exchange chromatography was >90% as determined by analytical size exclusion chromatography. The elution salt concentration decreased with increasing PEG chain length. Breakthrough studies on six commercially available anion-exchange stationary phases with purified PEG-BSA conjugates confirm a very large decrease in dynamic binding capacity compared to the native protein. The decrease in dynamic binding capacity is likely due to modulation of electrostatic interactions caused by the neutral PEG chain and increased mass transfer resistance associated with the large size of the molecule. Of the stationary phases evaluated, the open porous structure of the agarose based ion-exchangers resulted in the highest dynamic binding capacities for the PEG-BSA conjugates. Frontal analysis experiments demonstrate use of this technique for purification of PEGylated proteins. A stationary phase that tended to exclude the large PEG-BSA conjugate was very efficient in removing native protein from a crude reaction mixture by frontal analysis.
Collapse
Affiliation(s)
- Timothy M Pabst
- Pfizer Inc., Global Biologics, 700 Chesterfield Village Parkway, Chesterfield, MO 63017, USA
| | | | | | | |
Collapse
|
13
|
Guo Y, Sun Y, Gu J, Xu Y. Capillary electrophoresis analysis of poly(ethylene glycol) and ligand-modified polylysine gene delivery vectors. Anal Biochem 2007; 363:204-9. [PMID: 17328860 DOI: 10.1016/j.ab.2007.01.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 01/17/2007] [Accepted: 01/17/2007] [Indexed: 11/24/2022]
Abstract
Cationic polymers including polylysine (PLL) and polyethylenimine are being widely tested as gene delivery vectors in various gene therapy applications. In many cases, the polymers were further modified by hydrophilic polymer grafting or ligand conjugation, which had been shown to greatly affect the vector stability, delivery efficiency and specificity. The characterization of modified polycation is particularly critical for quality control and vector development. Here several different separation modes using capillary electrophoresis for the analytical characterization of the modified polymers are described. PLL molecules were grafted with poly(ethylene glycol) (PEG) chain or conjugated with epidermal growth factor and analyzed under various analytical conditions. Poly(N,N'-dimethylacrylamide)-coated capillary was used to analyze the modified PLL to reduce the interaction between the samples and the capillary wall. PLLs containing different numbers of conjugated ligands were well separated with the coating method but, for PLL-g-PEG, the separation was poor under the same conditions. A method using low buffer pH and hydroxypropylmethyl cellulose additive was developed. These methods are useful to characterize various polycations and important for the quality control and application of potential gene delivery vectors.
Collapse
Affiliation(s)
- Yan Guo
- School of Life Science and Biotechnology, Shanghai Jiao-Tong University, Shanghai 200240, PR China
| | | | | | | |
Collapse
|