1
|
Grāve K, Bennett MD, Högbom M. High-throughput strategy for identification of Mycobacterium tuberculosis membrane protein expression conditions using folding reporter GFP. Protein Expr Purif 2022; 198:106132. [PMID: 35750296 DOI: 10.1016/j.pep.2022.106132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 10/18/2022]
Abstract
Mycobacterium tuberculosis membrane protein biochemistry and structural biology studies are often hampered by challenges in protein expression and selection for well-expressing protein candidates, suitable for further investigation. Here we present a folding reporter GFP (frGFP) assay, adapted for M. tuberculosis membrane protein screening in Escherichia coli Rosetta 2 (DE3) and Mycobacterium smegmatis mc [2]4517. This method allows protein expression condition screening for multiple protein targets simultaneously by monitoring frGFP fluorescence in growing cells. We discuss the impact of common protein expression conditions on 42 essential M. tuberculosis H37Rv helical transmembrane proteins and establish the grounds for their further analysis. We have found that the basal expression of the lac operon in the T7-promoter expression system generally leads to high recombinant protein yield in M. smegmatis, and we suggest that a screening condition without the inducer is included in routine protein expression tests. In addition to the general observations, we describe conditions allowing high-level expression of more than 25 essential M. tuberculosis membrane proteins, containing 2 to 13 transmembrane helices. We hope that these findings will stimulate M. tuberculosis membrane protein research and aid the efforts in drug development against tuberculosis.
Collapse
Affiliation(s)
- Kristīne Grāve
- Department of Biochemistry and Biophysics, Stockholm University. Svante Arrhenius väg 16C, SE-10691, Stockholm, Sweden
| | - Matthew D Bennett
- Department of Biochemistry and Biophysics, Stockholm University. Svante Arrhenius väg 16C, SE-10691, Stockholm, Sweden
| | - Martin Högbom
- Department of Biochemistry and Biophysics, Stockholm University. Svante Arrhenius väg 16C, SE-10691, Stockholm, Sweden.
| |
Collapse
|
2
|
Stargardt P, Striedner G, Mairhofer J. Tunable expression rate control of a growth-decoupled T7 expression system by L-arabinose only. Microb Cell Fact 2021; 20:27. [PMID: 33522916 PMCID: PMC7852362 DOI: 10.1186/s12934-021-01512-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Precise regulation of gene expression is of utmost importance for the production of complex membrane proteins (MP), enzymes or other proteins toxic to the host cell. In this article we show that genes under control of a normally Isopropyl β-D-1-thiogalactopyranoside (IPTG)-inducible PT7-lacO promoter can be induced solely with L-arabinose in a newly constructed Escherichia coli expression host BL21-AI<gp2>, a strain based on the recently published approach of bacteriophage inspired growth-decoupled recombinant protein production. RESULTS Here, we show that BL21-AI<gp2> is able to precisely regulate protein production rates on a cellular level in an L-arabinose concentration-dependent manner and simultaneously allows for reallocation of metabolic resources due to L-arabinose induced growth decoupling by the phage derived inhibitor peptide Gp2. We have successfully characterized the system under relevant fed-batch like conditions in microscale cultivation (800 µL) and generated data proofing a relevant increase in specific yields for 6 different Escherichia coli derived MP-GFP fusion proteins by using online-GFP signals, FACS analysis, SDS-PAGE and western blotting. CONCLUSIONS In all cases tested, BL21-AI<gp2> outperformed the parental strain BL21-AI, operated in growth-associated production mode. Specific MP-GFP fusion proteins yields have been improved up to 2.7-fold. Therefore, this approach allows for fine tuning of MP production or expression of multi-enzyme pathways where e.g. particular stoichiometries have to be met to optimize product flux.
Collapse
Affiliation(s)
| | - Gerald Striedner
- Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria
| | | |
Collapse
|
3
|
Hedhammar M, Nilvebrant J, Hober S. Z basic: A Purification Tag for Selective Ion-Exchange Recovery. Methods Mol Biol 2021; 2178:149-158. [PMID: 33128749 DOI: 10.1007/978-1-0716-0775-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A positively charged protein domain, denoted Zbasic, can be used as a general purification tag for purification of recombinantly produced target proteins by cation-exchange chromatography. The Zbasic domain is constructed from the Protein A-derived Z-domain, and engineered to be highly charged, which allows selective capture on a cation exchanger at physiological pH values. Moreover, Zbasic is selective also under denaturing conditions and can be used for purification of proteins solubilized from inclusion bodies. Zbasic can then be used as a flexible linker to the cation-exchanger resin, and thereby allows solid-phase refolding of the target protein.Herein, protocols for purification of soluble Zbasic-tagged fusion proteins , as well as for integrated purification and solid-phase refolding of insoluble fusion proteins , are described. In addition, a procedure for enzymatic tag removal and recovery of native target protein is outlined.
Collapse
Affiliation(s)
- My Hedhammar
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
| | - Johan Nilvebrant
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
| | - Sophia Hober
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden.
| |
Collapse
|
4
|
Induction of T7 Promoter at Higher Temperatures May Be Counterproductive. Indian J Clin Biochem 2019; 34:357-360. [PMID: 31391729 DOI: 10.1007/s12291-019-0813-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/08/2019] [Indexed: 10/27/2022]
Abstract
Bacterial expression of recombinant proteins is the most popular and convenient method for obtaining large quantities of pure protein. The induction of T7 promoter with isopropyl-β-d-thiogalactopyranoside (IPTG) is widely used for expression of large quantities of proteins in Escherichia coli. It has been reported that basic T7 promoter is leaky and expresses cloned genes without induction. The effect of T7 promoter induction on expression of proteins at different temperature using flow cytometry has not yet been investigated. Green fluorescent protein (GFP) as a non-peptide tag can be used for protein solubility screening and for high-throughput optimization of expression conditions using flow cytometry. Therefore, flow cytometry was used to study the effect of induction on the expression of T7 promoter driven emerald GFP (emGFP) at various temperatures. We noticed that percentage of emGFP positive cells decreased instead of increasing upon induction at higher temperatures. Western blot analysis confirmed that the amount of total and soluble emGFP decreased in induced cells compared uninduced cells at higher temperatures. Our results indicate that induction of basic T7 promoter at higher temperature may not necessarily increase protein expression. While using a basic T7 promoter it is highly recommended to analyze the effect of induction on protein expression at various temperatures.
Collapse
|
5
|
Namdev P, Lyngdoh DL, Dar HY, Chaurasiya SK, Srivastava R, Tripathi T, Anupam R. Intrinsically Disordered Human T Lymphotropic Virus Type 1 p30 Protein: Experimental and Computational Evidence. AIDS Res Hum Retroviruses 2019; 35:477-487. [PMID: 30618266 DOI: 10.1089/aid.2018.0196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Human T lymphotropic virus type 1 (HTLV-1) causes adult T cell leukemia and lymphoma and other neuroinflammatory diseases. The pX region of HTLV-1 genome encodes an accessory protein p30 that is required for viral persistence and spread in the host. p30 regulates viral gene expression at the transcription level by competing with Tax for p300 binding and at posttranscriptional level by nuclear retention of tax/rex messenger RNA (mRNA). In addition, p30 modulates the host cellular environment by binding to various host proteins such as ATM, REGγ, and PRMT5. However, the low expression levels of p30 has been a major hurdle in studying its structure-function relationship in the context of HTLV-1 pathobiology, which is most likely due to its intrinsically disordered nature. To investigate the unstable nature of p30, flow cytometric analysis of p30-GFP fusion protein expressed in Escherichia coli was conducted and bioinformatics analysis of p30 was performed. The bacterial cells were green fluorescent protein (GFP) positive, indicating that p30-GFP was in the soluble fraction. Induction, particularly at higher temperature, reduced the expression of p30-GFP. Moreover, p30-GFP was detected exclusively in insoluble fraction upon cell lysis, suggesting its unstable and disordered nature. The bioinformatics analysis of p30 protein sequence and amino acid content revealed that p30 has highly disordered regions from amino acids 75-155 and 197-241. Furthermore, p30 has regions for macromolecular interactions that could stabilize it and these regions coincide with the unstable regions. Collectively, the study indicates that HTLV-1 p30 is an intrinsically disordered protein.
Collapse
Affiliation(s)
- Priyanka Namdev
- Department of Biotechnology, Dr. Harisingh Gour University, Sagar, India
| | - Denzelle Lee Lyngdoh
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North Eastern Hill University, Shillong, India
| | - Hamid Y. Dar
- Department of Zoology, Dr. Harisingh Gour University, Sagar, India
| | - Shivendra K. Chaurasiya
- Host-Pathogen Interaction and Signal Transduction Laboratory, Department of Microbiology, Dr. Harisingh Gour University, Sagar, India
| | | | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North Eastern Hill University, Shillong, India
| | - Rajaneesh Anupam
- Department of Biotechnology, Dr. Harisingh Gour University, Sagar, India
| |
Collapse
|
6
|
Ude C, Ben-Dov N, Jochums A, Li Z, Segal E, Scheper T, Beutel S. Online analysis of protein inclusion bodies produced in E. coli by monitoring alterations in scattered and reflected light. Appl Microbiol Biotechnol 2016; 100:4147-59. [PMID: 26940052 DOI: 10.1007/s00253-016-7403-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/15/2016] [Accepted: 02/17/2016] [Indexed: 12/29/2022]
Abstract
The online monitoring of recombinant protein aggregate inclusion bodies during microbial cultivation is an immense challenge. Measurement of scattered and reflected light offers a versatile and non-invasive measurement technique. Therefore, we investigated two methods to detect the formation of inclusion bodies and monitor their production: (1) online 180° scattered light measurement (λ = 625 nm) using a sensor platform during cultivation in shake flask and (2) online measurement of the light reflective interference using a porous Si-based optical biosensor (SiPA). It could be shown that 180° scattered light measurement allows monitoring of alterations in the optical properties of Escherichia coli BL21 cells, associated with the formation of inclusion bodies during cultivation. A reproducible linear correlation between the inclusion body concentration of the non-fluorescent protein human leukemia inhibitory factor (hLIF) carrying a thioredoxin tag and the shift ("Δamp") in scattered light signal intensity was observed. This was also observed for the glutathione-S-transferase-tagged green fluorescent protein (GFP-GST). Continuous online monitoring of reflective interference spectra reveals a significant increase in the bacterium refractive index during hLIF production in comparison to a non-induced reference that coincide with the formation of inclusion bodies. These online monitoring techniques could be applied for fast and cost-effective screening of different protein expression systems.
Collapse
Affiliation(s)
- Christian Ude
- Institut für Technische Chemie, Gottfried Wilhelm Leibniz Universität Hannover, Callinstraße 5, 30167, Hannover, Germany
| | - Nadav Ben-Dov
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - André Jochums
- Institut für Technische Chemie, Gottfried Wilhelm Leibniz Universität Hannover, Callinstraße 5, 30167, Hannover, Germany
| | - Zhaopeng Li
- Institut für Technische Chemie, Gottfried Wilhelm Leibniz Universität Hannover, Callinstraße 5, 30167, Hannover, Germany
| | - Ester Segal
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Thomas Scheper
- Institut für Technische Chemie, Gottfried Wilhelm Leibniz Universität Hannover, Callinstraße 5, 30167, Hannover, Germany
| | - Sascha Beutel
- Institut für Technische Chemie, Gottfried Wilhelm Leibniz Universität Hannover, Callinstraße 5, 30167, Hannover, Germany.
| |
Collapse
|
7
|
Minireactor-based high-throughput temperature profiling for the optimization of microbial and enzymatic processes. J Biol Eng 2014; 8:22. [PMID: 25126113 PMCID: PMC4128537 DOI: 10.1186/1754-1611-8-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 07/28/2014] [Indexed: 01/29/2023] Open
Abstract
Background Bioprocesses depend on a number of different operating parameters and temperature is one of the most important ones. Unfortunately, systems for rapid determination of temperature dependent reaction kinetics are rare. Obviously, there is a need for a high-throughput screening procedure of temperature dependent process behavior. Even though, well equipped micro-bioreactors are a promising approach sufficient temperature control is quite challenging and rather complex. Results In this work a unique system is presented combining an optical on-line monitoring device with a customized temperature control unit for 96 well microtiter plates. By exposing microtiter plates to specific temperature profiles, high-throughput temperature optimization for microbial and enzymatic systems in a micro-scale of 200 μL is realized. For single well resolved temperature measurement fluorescence thermometry was used, combining the fluorescent dyes Rhodamin B and Rhodamin 110. The real time monitoring of the microbial and enzymatic reactions provides extensive data output. To evaluate this novel system the temperature optima for Escherichia coli and Kluyveromyces lactis regarding growth and recombinant protein production were determined. Furthermore, the commercial cellulase mixture Celluclast as a representative for enzymes was investigated applying a fluorescent activity assay. Conclusion Microtiter plate-based high-throughput temperature profiling is a convenient tool for characterizing temperature dependent reaction processes. It allows the evaluation of numerous conditions, e.g. microorganisms, enzymes, media, and others, in a short time. The simple temperature control combined with a commercial on-line monitoring device makes it a user friendly system.
Collapse
|
8
|
Hedhammar M, Nilvebrant J, Hober S. Zbasic: a purification tag for selective ion-exchange recovery. Methods Mol Biol 2014; 1129:197-204. [PMID: 24648078 DOI: 10.1007/978-1-62703-977-2_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A positively charged protein domain, denoted Zbasic, can be used as a general purification tag for purification of recombinantly produced target proteins by cation-exchange chromatography. The Zbasic domain is constructed from the Protein A-derived domain and engineered to be highly charged, which allows selective capture on a cation exchanger at physiological pH values. Moreover, Zbasic is selective also under denaturing conditions and can be used for purification of proteins solubilized from inclusion bodies. Zbasic can then be used as a flexible linker to the cation-exchange resin and thereby allow solid-phase refolding of the target protein.Herein, protocols for purification of soluble Zbasic-tagged fusion proteins, as well as for integrated purification and solid-phase refolding of insoluble fusion proteins, are described. In addition, a procedure for enzymatic tag removal and recovery of native target protein is outlined.
Collapse
Affiliation(s)
- My Hedhammar
- Department of Anatomy, Physiology and Biochemistry, Uppsala Biomedical Centre, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | |
Collapse
|
9
|
Photobleaching with phloxine B sensitizer to reduce food matrix interference for detection of Escherichia coli serotype O157:H7 in fresh spinach by flow cytometry. Food Microbiol 2013; 36:416-25. [PMID: 24010624 DOI: 10.1016/j.fm.2013.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/09/2013] [Accepted: 07/17/2013] [Indexed: 02/05/2023]
Abstract
A flow cytometric method (RAPID-B™) with detection sensitivity of one viable cell of Escherichia coli serotype O157:H7 in fresh spinach (Spinacia oleracea) was developed and evaluated. The major impediment to achieving this performance was mistaking autofluorescing spinach particles for tagged target cells. Following a 5 h non-selective enrichment, artificially inoculated samples were photobleached, using phloxine B as a photosensitizer. Samples were centrifuged at high speed to concentrate target cells, then gradient centrifuged to separate them from matrix debris. In external laboratory experiments, RAPID-B and the reference method both correctly detected E. coli O157:H7 at inoculations of ca. 15 cells. In a follow-up study, after 4 cell inoculations of positives and 6 h enrichment, RAPID-B correctly identified 92% of 25 samples. The RAPID-B method limit of detection (LOD) was one cell in 25 g. It proved superior to the reference method (which incorporated real time-PCR, selective enrichment, and culture plating elements) in accuracy and speed.
Collapse
|
10
|
Zhao Y, He W, Liu WF, Liu CC, Feng LK, Sun L, Yan YB, Hang HY. Two distinct states of Escherichia coli cells that overexpress recombinant heterogeneous β-galactosidase. J Biol Chem 2012; 287:9259-68. [PMID: 22303013 DOI: 10.1074/jbc.m111.327668] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism by which inclusion bodies form is still not well understood, partly because the dynamic processes of the inclusion body formation and its solubilization have hardly been investigated at an individual cell level, and so the important detailed information has not been acquired for the mechanism. In this study, we investigated the in vivo folding and aggregation of Aspergillus phoenicis β-D-galactosidase fused to a red fluorescence protein in individual Escherichia coli cells. The folding status and expression level of the recombinant β-D-galactosidase at an individual cell level was analyzed by flow cytometry in combination with transmission electron microscopy and Western blotting. We found that individual E. coli cells fell into two distinct states, one containing only inclusion bodies accompanied with low galactosidase activity and the other containing the recombinant soluble galactosidase accompanied with high galactosidase activity. The majority of the E. coli cells in the later state possessed no inclusion bodies. The two states of the cells were shifted to a cell state with high enzyme activity by culturing the cells in isopropyl 1-thio-β-D-galactopyranoside-free medium after an initial protein expression induction in isopropyl 1-thio-β-D-galactopyranoside-containing medium. This shift of the cell population status took place without the level change of the β-D-galactosidase protein in individual cells, indicating that the factor(s) besides the crowdedness of the recombinant protein play a major role in the cell state transition. These results shed new light on the mechanism of inclusion body formation and will facilitate the development of new strategies in improving recombinant protein quality.
Collapse
Affiliation(s)
- Yun Zhao
- Key Laboratory of Protein and Peptide Pharmaceuticals, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Nilvebrant J, Alm T, Hober S. Orthogonal protein purification facilitated by a small bispecific affinity tag. J Vis Exp 2012:3370. [PMID: 22297419 PMCID: PMC3462565 DOI: 10.3791/3370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Due to the high costs associated with purification of recombinant proteins the protocols need to be rationalized. For high-throughput efforts there is a demand for general methods that do not require target protein specific optimization1 . To achieve this, purification tags that genetically can be fused to the gene of interest are commonly used2 . The most widely used affinity handle is the hexa-histidine tag, which is suitable for purification under both native and denaturing conditions3 . The metabolic burden for producing the tag is low, but it does not provide as high specificity as competing affinity chromatography based strategies1,2. Here, a bispecific purification tag with two different binding sites on a 46 amino acid, small protein domain has been developed. The albumin-binding domain is derived from Streptococcal protein G and has a strong inherent affinity to human serum albumin (HSA). Eleven surface-exposed amino acids, not involved in albumin-binding4 , were genetically randomized to produce a combinatorial library. The protein library with the novel randomly arranged binding surface (Figure 1) was expressed on phage particles to facilitate selection of binders by phage display technology. Through several rounds of biopanning against a dimeric Z-domain derived from Staphylococcal protein A5, a small, bispecific molecule with affinity for both HSA and the novel target was identified6 . The novel protein domain, referred to as ABDz1, was evaluated as a purification tag for a selection of target proteins with different molecular weight, solubility and isoelectric point. Three target proteins were expressed in Escherishia coli with the novel tag fused to their N-termini and thereafter affinity purified. Initial purification on either a column with immobilized HSA or Z-domain resulted in relatively pure products. Two-step affinity purification with the bispecific tag resulted in substantial improvement of protein purity. Chromatographic media with the Z-domain immobilized, for example MabSelect SuRe, are readily available for purification of antibodies and HSA can easily be chemically coupled to media to provide the second matrix. This method is especially advantageous when there is a high demand on purity of the recovered target protein. The bifunctionality of the tag allows two different chromatographic steps to be used while the metabolic burden on the expression host is limited due to the small size of the tag. It provides a competitive alternative to so called combinatorial tagging where multiple tags are used in combination1,7.
Collapse
Affiliation(s)
- Johan Nilvebrant
- School of Biotechnology, Department of Proteomics, Royal Institute of Technology
| | | | | |
Collapse
|
12
|
Alfasi S, Sevastsyanovich Y, Zaffaroni L, Griffiths L, Hall R, Cole J. Use of GFP fusions for the isolation of Escherichia coli strains for improved production of different target recombinant proteins. J Biotechnol 2011; 156:11-21. [DOI: 10.1016/j.jbiotec.2011.08.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 06/03/2011] [Accepted: 08/08/2011] [Indexed: 11/28/2022]
|
13
|
Tegel H, Ottosson J, Hober S. Enhancing the protein production levels in Escherichia coli with a strong promoter. FEBS J 2011; 278:729-39. [PMID: 21205203 DOI: 10.1111/j.1742-4658.2010.07991.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In biotechnology, the use of Escherichia coli for recombinant protein production has a long tradition, although the optimal production conditions for certain proteins are still not evident. The most favorable conditions for protein production vary with the gene product. Temperature and induction conditions represent parameters that affect total protein production, as well as the amount of soluble protein. Furthermore, the choice of promoter and bacterial strain will have large effects on the production of the target protein. In the present study, the effects of three different promoters (T7, trc and lacUV5) on E. coli production of target proteins with different characteristics are presented. The total amount of target protein as well as the amount of soluble protein were analyzed, demonstrating the benefits of using a strong promoter such as T7. To understand the underlying causes, transcription levels have been correlated with the total amount of target protein and protein solubility in vitro has been correlated with the amount of soluble protein that is produced. In addition, the effects of two different E. coli strains, BL21(DE3) and Rosetta(DE3), on the expression pattern were analyzed. It is concluded that the regulation of protein production is a combination of the transcription and translation efficiencies. Other important parameters include the nucleotide-sequence itself and the solubility of the target protein.
Collapse
Affiliation(s)
- Hanna Tegel
- School of Biotechnology, Department of Proteomics, Royal Institute of Technology, AlbaNova University Center, Stockholm, Sweden
| | | | | |
Collapse
|
14
|
Müller S, Nebe-von-Caron G. Functional single-cell analyses: flow cytometry and cell sorting of microbial populations and communities. FEMS Microbiol Rev 2010; 34:554-87. [DOI: 10.1111/j.1574-6976.2010.00214.x] [Citation(s) in RCA: 266] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
15
|
Lozano MM, Starkel CD, Longo ML. Vesicles tethered to microbubbles by hybridized DNA oligonucleotides: flow cytometry analysis of this new drug delivery vehicle design. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:8517-8524. [PMID: 20229988 PMCID: PMC2876220 DOI: 10.1021/la9044946] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Hybridization of complementary lipid-linked DNA oligonucleotides was used to tether small unilamellar vesicles (SUVs) to the lipid monolayer shells of air-microbubbles, a new attachment design for a drug delivery vehicle to be used in tandem with ultrasound imaging. Flow cytometry was used, and a novel analysis was developed, based upon light scattering and fluorescence intensity, to quantify the fraction of microbubbles of chosen size-ranges with oligonucleotide-tethered fluorescently labeled SUVs. Fluorescence microscopy was used to verify that our methodology results in successful high-density SUV tethering to a similar fraction of the microbubbles when compared to the flow cytometry statistics. The fraction of successful tetherings increased with the concentration of the complementary lipid-linked oligonucleotide as expected and decreased with the time that microbubbles were incubated with SUVs, which was not expected. Also unexpected, a large fraction of microbubbles had only background fluorescence levels while a much smaller fraction (at most one-eighth, for the shortest incubation and highest concentration of lipid-linked oligonucleotide) had oligonucleotide-tethered fluorescently labeled SUVs and, according to our fluorescence microscopy, that small fraction was densely covered with SUVs. Ejection of the lipid-linked oligonucleotide during high surface pressure compression of the monolayer shells of actively shrinking microbubbles subjected to the Laplace overpressure is speculated as a qualitative explanation for the statistics.
Collapse
|
16
|
Alm T, Yderland L, Nilvebrant J, Halldin A, Hober S. A small bispecific protein selected for orthogonal affinity purification. Biotechnol J 2010; 5:605-17. [DOI: 10.1002/biot.201000041] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Díaz M, Herrero M, García LA, Quirós C. Application of flow cytometry to industrial microbial bioprocesses. Biochem Eng J 2010. [DOI: 10.1016/j.bej.2009.07.013] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Nordlund G, Lönneborg R, Brzezinski P. Formation of supported lipid bilayers on silica particles studied using flow cytometry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:4601-4606. [PMID: 19265407 DOI: 10.1021/la8036296] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Silica colloidal particles with functionalized surfaces are used, for example, in studies of membrane proteins or for drug delivery, where novel applications are based on the use of particles covered by lipid membrane bilayers. The mechanism by which such supported lipid bilayers are formed on spherical support is not fully understood. Here, we present results from studies of this process using a new method based on flow cytometry. The approach enabled us to detect particle populations coated and uncoated with lipids in the same sample according to the vesicle:particle surface area ratio. The data suggest that DOPC lipid vesicles efficiently break upon interaction with the silica colloidal particle surface; only a small fraction of the adsorbed vesicles remain unbroken. Furthermore, the data support earlier observations showing that formation of the lipid bilayer at the surface is a cooperative process, where bilayer formation is catalyzed by previously bound membrane fragments.
Collapse
Affiliation(s)
- Gustav Nordlund
- Department of Biochemistry and Biophysics, Centre for Biomembrane Research, Stockholm University, SE-10691 Stockholm, Sweden
| | | | | |
Collapse
|
19
|
Dyson MR, Perera RL, Shadbolt SP, Biderman L, Bromek K, Murzina NV, McCafferty J. Identification of soluble protein fragments by gene fragmentation and genetic selection. Nucleic Acids Res 2008; 36:e51. [PMID: 18420658 PMCID: PMC2396403 DOI: 10.1093/nar/gkn151] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We describe a new method, which identifies protein fragments for soluble expression in Escherichia coli from a randomly fragmented gene library. Inhibition of E. coli dihydrofolate reductase (DHFR) by trimethoprim (TMP) prevents growth, but this can be relieved by murine DHFR (mDHFR). Bacterial strains expressing mDHFR fusions with the soluble proteins green fluroscent protein (GFP) or EphB2 (SAM domain) displayed markedly increased growth rates with TMP compared to strains expressing insoluble EphB2 (TK domain) or ketosteroid isomerase (KSI). Therefore, mDHFR is affected by the solubility of fusion partners and can act as a reporter of soluble protein expression. Random fragment libraries of the transcription factor Fli1 were generated by deoxyuridine incorporation and endonuclease V cleavage. The fragments were cloned upstream of mDHFR and TMP resistant clones expressing soluble protein were identified. These were found to cluster around the DNA binding ETS domain. A selected Fli1 fragment was expressed independently of mDHFR and was judged to be correctly folded by various biophysical methods including NMR. Soluble fragments of the cell-surface receptor Pecam1 were also identified. This genetic selection method was shown to generate expression clones useful for both structural studies and antibody generation and does not require a priori knowledge of domain architecture.
Collapse
Affiliation(s)
- Michael R Dyson
- Department of Biochemistry, University of Cambridge, Downing Site, Cambridge CB2 1QW, UK.
| | | | | | | | | | | | | |
Collapse
|
20
|
Tegel H, Hedhammar M, Uhlén M, Ottosson J, Hober S. Flow cytometry-based analysis of promoter effects on solubility of recombinantly expressed proteins. J Biotechnol 2007. [DOI: 10.1016/j.jbiotec.2007.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Hedhammar M, Hober S. Zbasic—A novel purification tag for efficient protein recovery. J Chromatogr A 2007; 1161:22-8. [PMID: 17570380 DOI: 10.1016/j.chroma.2007.05.091] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 05/29/2007] [Accepted: 05/30/2007] [Indexed: 11/20/2022]
Abstract
A positively charged protein domain, Z(basic), can be used as a general purification tag to achieve efficient recovery of recombinantly produced target proteins using cation-exchange chromatography. To construct a protein domain usable for ion-exchange chromatography, the surface of protein Z was engineered to be highly charged, which allowed for selective capture of target proteins on a cation-exchanger at physiological pH values. Interestingly, the novel domain, denoted Z(basic), was shown to be selective also under denaturing conditions and could preferably be used for purification of proteins solubilised from inclusion bodies. Moreover, a flexible process for solid-phase refolding was developed, using Z(basic) as a reversible linker to the cation-exchanger resin. This procedure has the inherited advantage of combining purification and refolding into a single step and still enabling elution of a concentrated product in a suitable buffer. This article summarizes development and use of the Z(basic) tag in small and pilot-plant-scale downstream processing.
Collapse
Affiliation(s)
- My Hedhammar
- Department of Biotechnology, Royal Institute of Technology, Albanova University Center, Stockholm, Sweden.
| | | |
Collapse
|
22
|
Alm T, Steen J, Ottosson J, Hober S. High-throughput protein purification under denaturating conditions by the use of cation exchange chromatography. Biotechnol J 2007; 2:709-16. [PMID: 17492715 DOI: 10.1002/biot.200700060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A high-throughput protein purification strategy using the polycationic Z(basic) tag has been developed. In order for the strategy to be useful both for soluble and less soluble proteins, a denaturating agent, urea, was used in all purification steps. First, four target proteins were genetically fused to the purification tag, Z(basic). These protein constructs were purified by cation exchange chromatography and eluted using a salt gradient. From the data achieved, a purification strategy was planned including stepwise elution to enable parallel protein purification using a laboratory robot. A protocol that includes all steps, equilibration of the chromatography resin, load of sample, wash, and elution, all without any manual handling steps, was handled by the laboratory robot. The program allows automated purification giving milligram amounts of pure recombinant protein of up to 60 cell lysates. In this study 22 different protein constructs, with different characteristics regarding pI and solubility, were successfully purified by the laboratory robot. The data show that Z(basic) can be used as a general purification tag also under denaturating conditions. Moreover, the strategy enables purification of proteins with different pI and solubility using ion exchange chromatography (IEXC). The procedure is highly reproducible and allows for high protein yield and purity and is therefore a good complement to the commonly used His(6)-tag.
Collapse
Affiliation(s)
- Tove Alm
- School of Biotechnology, Department of Proteomics, Royal Institute of Technology, AlbaNova University Center, Stockholm, Sweden
| | | | | | | |
Collapse
|
23
|
Mulder J, Wernérus H, Shi TJ, Pontén F, Hober S, Uhlén M, Hökfelt T. Systematically generated antibodies against human gene products: High throughput screening on sections from the rat nervous system. Neuroscience 2007; 146:1689-703. [PMID: 17478047 DOI: 10.1016/j.neuroscience.2007.02.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 02/14/2007] [Accepted: 02/20/2007] [Indexed: 10/23/2022]
Abstract
Completion of the Human Genome Project and recent developments in proteomics make it possible to systematically generate affinity reagents to a large portion of the proteome. Recently an antibody-based human protein atlas covering many organs including four areas of the brain has been released (www.proteinatlas.org). Due to the heterogeneity, size, and availability of tissue a more thorough analysis of the human brain is associated with considerable difficulties. Here we applied 120 antibodies raised against 112 human gene products to the smaller rat brain, a rodent animal model, where a single section represents a 'superarray' including many brain areas, and consequently allowing analysis of a huge number of cell types and their neurochemicals. Immunoreactive structures were seen in the investigated brain tissue after incubation with 56 antibodies (46.6%), of which 25 (20.8%) showed a clearly discrete staining pattern that was limited to certain areas, or subsets of brain cells. Bioinformatics, pre-adsorption tests and Western blot analysis were applied to identify non-specific antibodies. Eleven antibodies, including such raised against four 'ambiguous' proteins, passed all validation criteria, and the expression pattern and subcellular distribution of these proteins were studied in detail. To further explore the potential of the systematically generated antibodies, all 11 antibodies that passed validation were used to analyze the spinal cord and lumbar dorsal root ganglia after unilateral transection of the sciatic nerve. Discrete staining patterns were observed for four of the proteins, and injury-induced regulation was found for one of them. In conclusion, the study presented here suggests that a significant portion (10%) of the antibodies generated to a human protein can be used to analyze orthologues present in the rodent brain and to produce a protein-based atlas of the rodent brain. It is hoped that this type of antibody-based, high throughput screening of brain tissue from various rodent disease models will provide new information on the brain chemical neuroanatomy and insights in processes underlying neurological pathologies.
Collapse
Affiliation(s)
- J Mulder
- Department of Neuroscience, Karolinska Institutet, Retzius v. 8, S171 77 Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
24
|
Bandmann N, Nygren PÅ. Combinatorial expression vector engineering for tuning of recombinant protein production in Escherichia coli. Nucleic Acids Res 2007; 35:e32. [PMID: 17264122 PMCID: PMC1865067 DOI: 10.1093/nar/gkl1171] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The complex and integrated nature of both genetic and protein level factors influencing recombinant protein production in Escherichia coli makes it difficult to predict the optimal expression strategy for a given protein. Here, two combinatorial library strategies were evaluated for their capability of tuning recombinant protein production in the cytoplasm of E. coli. Large expression vector libraries were constructed through either conservative (ExLib1) or free (ExLib2) randomization of a seven-amino-acid window strategically located between a degenerated start codon and a sequence encoding a fluorescently tagged target protein. Flow cytometric sorting and analyses of libraries, subpopulations or individual clones were followed by SDS-PAGE, western blotting, mass spectrometry and DNA sequencing analyses. For ExLib1, intracellular accumulation of soluble protein was shown to be affected by codon specific effects at some positions of the common N-terminal extension. Interestingly, for ExLib2 where the same sequence window was randomized via seven consecutive NN(G/T) tri-nucleotide repeats, high product levels (up to 24-fold higher than a reference clone) were associated with a preferential appearance of novel SD-like sequences. Possible mechanisms behind the observed effects are discussed.
Collapse
Affiliation(s)
| | - Per-Åke Nygren
- *To whom correspondence should be addressed. +46 8 55378328+46 8 55378481
| |
Collapse
|
25
|
O'Connell HA, Niu C, Gilbert ES. Enhanced high copy number plasmid maintenance and heterologous protein production in anEscherichia coli biofilm. Biotechnol Bioeng 2007; 97:439-46. [PMID: 17058286 DOI: 10.1002/bit.21240] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Escherichia coli has been widely used for heterologous protein production (HPP). To determine whether a biofilm environment could benefit E. coli HPP using high copy number plasmids, we compared plasmid maintenance and HPP by E. coli ATCC 33456 containing plasmid pEGFP (a pUC family vector) cultivated in biofilms and in suspended culture. Cells were grown with or without antibiotic selective pressure in flow cells or chemostats for up to 6 days. In biofilms, antibiotic selective pressure increased the plasmid copy number (PCN), but by 144 h, biofilms grown in antibiotic-free media had comparable plasmid concentrations. In the chemostat, the PCN declined steadily, although 100 ppm ampicillin in the medium slowed the rate of plasmid loss. Production of green fluorescent protein (GFP), a representative heterologous protein, was quantified by flow cytometry. In biofilms, at ampicillin concentrations >or=33 ppm, strongly fluorescent cells comprised more than half of the population by 48 h. In the chemostat, more than 50% of the population was non-fluorescent by 48 h in media containing 100 ppm ampicillin, and strongly fluorescent cells were <10% of the population. Biofilm structure was determined by confocal microscopy. Maximum biofilm thickness ranged from 30 to 45 microns, with no significant changes in biofilm structure after 48 h. Plasmid multimer percentages were similar to inocula for cells cultivated in either biofilms or the chemostat. The results indicate that the biofilm environment enhanced both plasmid maintenance and cellular GFP concentrations, and that low levels of antibiotic increased the beneficial effect.
Collapse
Affiliation(s)
- Heather A O'Connell
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | |
Collapse
|
26
|
Kasili PM, Vo-Dinh T. Hyperspectral imaging system using acousto-optic tunable filter for flow cytometry applications. Cytometry A 2006; 69:835-41. [PMID: 16969807 DOI: 10.1002/cyto.a.20307] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A major advantage of flow cytometry is its flexible and open instrument configuration, which is highly suitable for systems integration. This flexibility permits the coupling of auxiliary instrumentation that may offer the measurement of parameters other than those typically measured by this multiparameter measurement technique. On the basis of this advantage, we explore the principle and application of hyperspectral imaging (HSI), which has the potential to be a useful add-on feature to flow cytometry applications. Application of HSI to flow cytometry involves the acquisition of spatial information and rendering it in spectral form. In this work, we describe the development and application of an HSI system which provides both spectral and spatial information. Spectral information was generated by obtaining an entire spectrum of a single sample site within a wavelength region of interest, while spatial information was generated by recording a two-dimensional (2D) image of an area of the sample of interest at one specific wavelength. HSI is a promising additional feature to flow cytometry since it can provide both spatial (image format) and spectral information in addition to the multiparameter information already available from flow cytometry measurements.
Collapse
Affiliation(s)
- Paul M Kasili
- Advanced Biomedical Science and Technology Group, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | | |
Collapse
|
27
|
Hedhammar M, Alm T, Gräslund T, Hober S. Single-step recovery and solid-phase refolding of inclusion body proteins using a polycationic purification tag. Biotechnol J 2006; 1:187-96. [PMID: 16892247 DOI: 10.1002/biot.200500023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A strategy for purification of inclusion body-forming proteins is described, in which the positively charged domain Z(basic) is used as a fusion partner for capture of denatured proteins on a cation exchange column. It is shown that the purification tag is selective under denaturing conditions. Furthermore, the new strategy for purification of proteins from inclusion bodies is compared with the commonly used method for purification of His(6)-tagged inclusion body proteins. Finally, the simple and effective means of target protein capture provided by the Z(basic) tag is further successfully explored for solid-phase refolding. This procedure has the inherited advantage of combining purification and refolding in one step and offers the advantage of eluting the concentrated product in a suitable buffer.
Collapse
Affiliation(s)
- My Hedhammar
- Department of Biotechnology, Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|