1
|
Li Z, Tian SY. A new alkaline pectin lyase with novel thermal and pH stability from Bacilus velezensis. Protein Expr Purif 2024; 224:106564. [PMID: 39111349 DOI: 10.1016/j.pep.2024.106564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/30/2024] [Accepted: 08/04/2024] [Indexed: 08/18/2024]
Abstract
Pectin lyases are important in various industries, including tobacco leaves processing. In this paper, a novel pectin lyase Pel04 from Bacillus velezensis was characterized. Pel04 molecular weight (Mw) and isoelectric point (pI) of the protein sequence after removing the signal peptide are 43.0 kDa. The optimal temperature and pH of Pel04 is 50 °C and 9.0, respectively. Pel04 was stable in the range of 30-50 °C, and pH 9.5-11. Ca2+ can significantly stimulate the enzyme activity, while Cu2+, Co2+, Fe3+, and Mn2+ have inhibitory effects on Pel04. By Pel04 treatment, the overall content of acids, alcohols, esters and other aromas in tobacco leaves increased, while the contents of phenolic and heterocyclic substances decreased. Pel04 has important potential for industrial application particularly in improving quality of tobacco leaves.
Collapse
Affiliation(s)
- Ze Li
- College of Ecological and Environmental Protection, Linyi Vocational University of Science and Technology, Linyi, China.
| | - Su-Yan Tian
- College of Ecological and Environmental Protection, Linyi Vocational University of Science and Technology, Linyi, China.
| |
Collapse
|
2
|
Shoily SS, Fatema K, Dina RB, Biswas A, Haque P, Rahman MM, Uddin MZ, Sajib AA. The pectinolytic activity of Burkholderia cepacia and its application in the bioscouring of cotton knit fabric. J Genet Eng Biotechnol 2023; 21:136. [PMID: 37994985 PMCID: PMC10667187 DOI: 10.1186/s43141-023-00596-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 11/09/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND Enzymatic catalysis in different industrial applications is often preferred over chemical methods due to various advantages, such as higher specificity, greater efficiency, and less environmental footprint. Pectinases are a group of enzymes that catalyze the degradation of pectic compounds, the key components of plant middle lamella and the primary cell wall. Pectinases have found applications in multiple industrial processes, including cotton bioscouring, fruit juice extraction and its clarification, plant fiber degumming, paper making, plant biomass liquefaction, and saccharification, among others. The purpose of this study was to taxonomically characterize a bacterial species exhibiting pectinolytic activities and assess its pectinolytic activity qualitatively and quantitatively, as well as test its bioscouring potential. RESULTS Here, we report that Burkholderia cepacia, a previously unknown species with pectinolytic activity, exerts such activity comparable to commercially used pectinase enzymes in the textile industry, but requires less temperature for activity. CONCLUSION Quantitative evaluation of enzyme activity indicates the potential of the bacterial species for use in the bioscouring of cotton knit fabric.
Collapse
Affiliation(s)
- Sabrina Samad Shoily
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Kaniz Fatema
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Rasheda Begum Dina
- Department of Wet Process Engineering, Bangladesh University of Textiles, Dhaka, Bangladesh
- Department of Applied Chemistry and Chemical Engineering, University of Dhaka, Dhaka, Bangladesh
| | - Anik Biswas
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Papia Haque
- Department of Applied Chemistry and Chemical Engineering, University of Dhaka, Dhaka, Bangladesh
| | - Mohammed Mizanur Rahman
- Department of Applied Chemistry and Chemical Engineering, University of Dhaka, Dhaka, Bangladesh
- Institute of Leather Engineering and Technology, Dhaka, Bangladesh
| | - Md Zulhash Uddin
- Department of Wet Process Engineering, Bangladesh University of Textiles, Dhaka, Bangladesh
| | - Abu Ashfaqur Sajib
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh.
| |
Collapse
|
3
|
Fang K, Ma J, Wang X, Xu Z, Zhang Z, Li P, Wang R, Wang J, Sun C, Dong Z. Flow-cytometric cell sorting coupled with UV mutagenesis for improving pectin lyase expression. Front Bioeng Biotechnol 2023; 11:1251342. [PMID: 37720319 PMCID: PMC10502208 DOI: 10.3389/fbioe.2023.1251342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/23/2023] [Indexed: 09/19/2023] Open
Abstract
Introduction: Alkaline pectin lyase is an important enzyme with a wide range of applications in industrial production, It has been widely used in many important fields such as fruit juice processing and extraction, the dyeing and processing of cotton and linen textiles, degumming plant fibers, environmental industrial wastewater treatment, and pulp and paper production. PGLA-rep4 was previously generated as a modified alkaline pectin lyase with high specific activity at pH 11.0°C and 70°C. However, the pre-constructed high-activity pectin lyase expression strains are still difficult to apply in industrial production due to their limited enzymatic activity. We hope to solve these problems by combining modern breeding techniques with high-throughput equipment to rapidly screen alkaline pectin lyase with higher enzymatic activity and lower cost. Methods: We fused the genes encoding PGLA-rep4 and fluorescent protein egfp using a flexible linker peptide and ligated them into a temperature-sensitive plasmid, pKD46. The constructed screening plasmid pKD46-PGLA-rep4-egfp was then transformed into an expression host and screened via flow-cytometric cell sorting coupled with UV mutagenesis. Results: Following mutagenesis, primary screening, and secondary screening, the high-expression strain, named Escherichia coli BL21/1G3, was obtained. The screening plasmid pKD46-PGLA-rep4-egfp was eliminated, and the original expression plasmid pET28a-PGLA-rep4 was then retransformed into the mutant strains. After induction and fermentation, pectin lyase activity in E. coli BL21/1G3 was significantly increased (1.37-fold relative to that in the parental E. coli BL21/PGLA-rep4 strain, p < 0.001), and the highest activity was 230, 240 U/mL at 144 h. Genome sequencing revealed that genes encoding ribonuclease E (RNase E) and diadenosine tetraphosphatase (ApaH) of E. coli BL21/1G3 were mutated compared to the sequence in the original E. coli BL21 (DE3) strain, which could be associated with increased enzyme expression. Discussion: Our work provides an effective method for the construction of strains expressing pectin lyase at high levels.
Collapse
Affiliation(s)
- Ke Fang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- School of Bioengineering, Qilu University of Technology, Jinan, Shandong, China
| | - Jun Ma
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- School of Bioengineering, Qilu University of Technology, Jinan, Shandong, China
| | - Xinyu Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- School of Bioengineering, Qilu University of Technology, Jinan, Shandong, China
| | - Ziting Xu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- School of Bioengineering, Qilu University of Technology, Jinan, Shandong, China
| | - Ziyang Zhang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- School of Bioengineering, Qilu University of Technology, Jinan, Shandong, China
| | - Piwu Li
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- School of Bioengineering, Qilu University of Technology, Jinan, Shandong, China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- School of Bioengineering, Qilu University of Technology, Jinan, Shandong, China
| | - Junqing Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- School of Bioengineering, Qilu University of Technology, Jinan, Shandong, China
| | - Chuying Sun
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- School of Bioengineering, Qilu University of Technology, Jinan, Shandong, China
| | - Ziyang Dong
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- School of Bioengineering, Qilu University of Technology, Jinan, Shandong, China
| |
Collapse
|
4
|
Du C, Tan S, Liu L, Zhou Y, Wu P, Zhang G. Improving the specific activity and stability of alkaline pectinase PEL3 through SpyTag/SpyCatcher cyclization. Biotechnol Lett 2023:10.1007/s10529-023-03385-9. [PMID: 37171698 DOI: 10.1007/s10529-023-03385-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 04/11/2023] [Accepted: 04/21/2023] [Indexed: 05/13/2023]
Abstract
OBJECTIVES PEL3, an alkaline pectinase, exhibited the highest activity among documented alkaline pectate lyases reported in our early study. Unfortunately, undesired thermal stability hampering its industrial application. The purpose of this study is to enhance the performance of wild-type PEL3 (W-PEL3) based on SpyTag/SpyCatcher-mediated cyclization. RESULTS The cyclized PEL3 (C-PEL3) was observed to fold correctly and generate a spatial conformation in a head-to-tail manner in E. coli. C-PEL3 exhibited comparable optimum pH and temperature to those of W-PEL3. Moreover, the catalytic activity of C-PEL3 increased by 23% compared to W-PEL3, and the kcat/Km of C-PEL3 was 1.5-fold greater than that of the W-PEL3. Importantly, C-PEL3 showed improved stability compared to W-PEL3. Firstly, C-PEL3 displayed a 65% increase in residual activity after treatment at 55 °C for 30 min. Secondly, C-PEL3 was prone to resist heat-induced protein aggregation. Thirdly, C-PEL3 exhibited metal ion stability. Circular dichroism analysis revealed that C-PEL3 was more capable of maintaining its secondary structures than W-PEL3 upon heat treatment. CONCLUSIONS C-PEL3, the initial example of a circular pectinase through SpyTag/SpyCatcher cyclization, exhibits superior performance and represents a highly encouraging contender for industrial utilization.
Collapse
Affiliation(s)
- Chao Du
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Siqin Tan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Lin Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yuling Zhou
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Pan Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Guimin Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
5
|
Dhayalan A, Thillainathan N, Velramar B, Athiyappagounder P, Sundaramoorthy D, Pachiappan P. Pectinase from a Fish Gut Bacterium, Aeromonas guangheii (SS6): Production, Cloning and Characterization. Protein J 2022; 41:572-590. [PMID: 36208356 DOI: 10.1007/s10930-022-10077-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2022] [Indexed: 11/28/2022]
Abstract
During the present research, 11 gut bacteria were isolated from the freshwater fish, Systomus sarana (General name: olive barb) and upon screening, the strains produced extracellular pectinase enzyme. Among them, the SS6 strain was found to produce a high quantity of 208.731 U/ml pectinase and through molecular characterization the SS6 strain was identified as Aeromonas guangheii. During the culture of SS6 strain, a set of parameters were optimized through the response surface methodology with a Box-Behnken design, for the production of the enzyme. The optimal conditions were found to be 2.11% of maltose, 2.20% of yeast extract, 6.5 of pH, and a temperature of 27.3 °C at 32-h incubation. Under the above conditions, the activity of pectinase production was enhanced to 371 U/ml. The purified pectinase's molecular weight was determined to be ~ 50 kDa (by 10% 2-D PAGE). Totally, nine peptides were identified from the purified pectinase enzyme through the MALDI-TOF-MS analysis and MASCOT tool was used to get the mass spectrum of the peak at 2211 of peptide that indicated the reference pectinase protein. The referenced gene primer (pectate lyases) was PCR amplified and its nucleotide sequence was analyzed. The exo-pelA gene was cloned in pREST vector, which was found to be over expressed in Escherichia coli BL21. The ORF encoded for a mature protein comprising of 425 amino acids (1236 nucleotides) with a predicted molecular weight of ~ 48.7 kDa. The present findings underline the potential of the fish-gut microbes as a source of biotechnologically important enzymes.
Collapse
Affiliation(s)
- Arul Dhayalan
- Department of Biotechnology, School of Biosciences, Periyar University, Salem, Tamil Nadu, 636011, India.,SRS of ICAR- National Dairy Research Institute, Adugodi, Bengaluru, Karnataka, 560030, India
| | - Natarajan Thillainathan
- Department of Biotechnology, School of Biosciences, Periyar University, Salem, Tamil Nadu, 636011, India.,Department of Biomedical Engineering, Central University of Rajasthan, Ajmer, Rajasthan, 305817, India
| | - Balasubramanian Velramar
- Department of Biotechnology, School of Biosciences, Periyar University, Salem, Tamil Nadu, 636011, India.,Amity Institute of Biotechnology, Amity University, Raipur, Chhattisgarh, 493225, India
| | - Palanisammi Athiyappagounder
- Veterinary College & Research Institute, Tamil Nadu Veterinary & Animal Science University, Tirunelveli, Tamil Nadu, 627358, India
| | - Dhanasundaram Sundaramoorthy
- Department of Marine Science, School of Marine Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Perumal Pachiappan
- Department of Biotechnology, School of Biosciences, Periyar University, Salem, Tamil Nadu, 636011, India. .,Department of Marine Science, School of Marine Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India.
| |
Collapse
|
6
|
Long C, Qi XL, Venema K. Chemical and nutritional characteristics, and microbial degradation of rapeseed meal recalcitrant carbohydrates: A review. Front Nutr 2022; 9:948302. [PMID: 36245487 PMCID: PMC9554435 DOI: 10.3389/fnut.2022.948302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Approximately 35% of rapeseed meal (RSM) dry matter (DM) are carbohydrates, half of which are water-soluble carbohydrates. The cell wall of rapeseed meal contains arabinan, galactomannan, homogalacturonan, rhamnogalacturonan I, type II arabinogalactan, glucuronoxylan, XXGG-type and XXXG-type xyloglucan, and cellulose. Glycoside hydrolases including in the degradation of RSM carbohydrates are α-L-Arabinofuranosidases (EC 3.2.1.55), endo-α-1,5-L-arabinanases (EC 3.2.1.99), Endo-1,4-β-mannanase (EC 3.2.1.78), β-mannosidase (EC 3.2.1.25), α-galactosidase (EC 3.2.1.22), reducing-end-disaccharide-lyase (pectate disaccharide-lyase) (EC 4.2.2.9), (1 → 4)-6-O-methyl-α-D-galacturonan lyase (pectin lyase) (EC 4.2.2.10), (1 → 4)-α-D-galacturonan reducing-end-trisaccharide-lyase (pectate trisaccharide-lyase) (EC 4.2.2.22), α-1,4-D-galacturonan lyase (pectate lyase) (EC 4.2.2.2), (1 → 4)-α-D-galacturonan glycanohydrolase (endo-polygalacturonase) (EC 3.2.1.15), Rhamnogalacturonan hydrolase, Rhamnogalacturonan lyase (EC 4.2.2.23), Exo-β-1,3-galactanase (EC 3.2.1.145), endo-β-1,6-galactanase (EC 3.2.1.164), Endo-β-1,4-glucanase (EC 3.2.1.4), α-xylosidase (EC 3.2.1.177), β-glucosidase (EC 3.2.1.21) endo-β-1,4-glucanase (EC 3.2.1.4), exo-β-1,4-glucanase (EC 3.2.1.91), and β-glucosidase (EC 3.2.1.21). In conclusion, this review summarizes the chemical and nutritional compositions of RSM, and the microbial degradation of RSM cell wall carbohydrates which are important to allow to develop strategies to improve recalcitrant RSM carbohydrate degradation by the gut microbiota, and eventually to improve animal feed digestibility, feed efficiency, and animal performance.
Collapse
Affiliation(s)
- Cheng Long
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
- Faculty of Science and Engineering, Centre for Healthy Eating and Food Innovation, Maastricht University - Campus Venlo, Venlo, Netherlands
| | - Xiao-Long Qi
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Koen Venema
- Faculty of Science and Engineering, Centre for Healthy Eating and Food Innovation, Maastricht University - Campus Venlo, Venlo, Netherlands
- *Correspondence: Koen Venema
| |
Collapse
|
7
|
Biochemical characterization and immobilization of a novel pectate lyase ErPL2 for efficient preparation of pectin oligosaccharides. Int J Biol Macromol 2022; 204:532-539. [PMID: 35151709 DOI: 10.1016/j.ijbiomac.2022.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/26/2022] [Accepted: 02/06/2022] [Indexed: 11/20/2022]
Abstract
Pectate lyase (ErPL2) from Echinicola rosea JL3085 showed maximal activity at 45 °C and pH 9.0 with 0.6 mM CaCl2. The Km and Vmax values of ErPL2 for polygalacturonic sodium were 2.098 mmol/L and 0.955 mmol/s, respectively. ErPL2 endolytically degraded pectic substances into oligosaccharides with degree of polymerization (DP) 1-5. To improve the thermostability and pH operation range, recombinant ErPL2 was immobilized onto mesoporous titanium oxide particles (MTOPs). MTOPs have abundant hydroxyl groups on the surface, which is a non-toxicity and good biocompatibility carrier. The residual enzyme activity of immobilized ErPL2 at 40 °C increased remarkably from 11% to 91% compared with free enzyme. The operable pH range was extended from 8-9 to 9-11. Surprisingly, the catalytic efficiency of immobilized ErPL2 was about 19 times higher than free enzyme. To our knowledge this is the first attempt of pectate lyase immobilized on MTOPs and it provides a new option for improving the catalytic performance.
Collapse
|
8
|
Zheng L, Guo Z, Cao S, Zhu B. Elucidating the degradation pattern of a new cold-tolerant pectate lyase used for efficient preparation of pectin oligosaccharides. BIORESOUR BIOPROCESS 2021; 8:121. [PMID: 38650291 PMCID: PMC10992097 DOI: 10.1186/s40643-021-00475-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/28/2021] [Indexed: 01/17/2023] Open
Abstract
The cold-active pectate lyases have drawn increasing attention in food and biotechnological applications due to their ability to retain high catalytic efficiency under lower temperatures, which could be helpful for energy saving, cost reduction and flavor preservation. Herein, a new cold-tolerant pectate lyase (ErPelPL1) gene from Echinicola rosea was cloned and heterologously expressed in Escherichia coli. Interestingly, ErPelPL1 retained high catalytic activity even at a low temperature (4 °C). ErPelPL1 exhibited optimal activity at 35 ℃, pH 8.0 with 1 mM of Ca2+. It showed high specific activity towards polygalacturonic acid (34.7 U/mg) and sodium polygalacturonate (59.3 U/mg). The combined thin-layer chromatography (TLC), fast protein liquid chromatography (FPLC) and electrospray ionization mass spectrometry (ESI-MS) results indicated that ErPelPL1 endolytically degraded pectic substances into the oligosaccharides with degrees of depolymerization (Dps) of 1-6. In conclusion, this study mainly conducted biochemical characterization and product analysis of a cold-tolerant pectate lyase. Therefore, it provides a promising enzyme candidate for food and biotechnological applications.
Collapse
Affiliation(s)
- Ling Zheng
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - Zilong Guo
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - Shengsheng Cao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - Benwei Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China.
| |
Collapse
|
9
|
Zhou Z, Wang X. Rational design and structure-based engineering of alkaline pectate lyase from Paenibacillus sp. 0602 to improve thermostability. BMC Biotechnol 2021; 21:32. [PMID: 33941157 PMCID: PMC8091735 DOI: 10.1186/s12896-021-00693-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/26/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ramie degumming is often carried out at high temperatures; therefore, thermostable alkaline pectate lyase (PL) is beneficial for ramie degumming for industrial applications. Thermostable PLs are usually obtained by exploring new enzymes or reconstructing existing enzyme by rational design. Here, we improved the thermostability of an alkaline pectate lyase (PelN) from Paenibacillus sp. 0602 with rational design and structure-based engineering. RESULTS From 26 mutants, two mutants of G241A and G241V showed a higher thermostability compared with the wild-type PL. The mutant K93I showed increasing specific activity at 45 °C. Subsequently, we obtained combinational mutations (K93I/G241A) and found that their thermostability and specific activity improved simultaneously. The K93I/G241A mutant showed a half-life time of 15.9 min longer at 60 °C and a melting temperature of 1.6 °C higher than those of the wild PL. The optimum temperature decreased remarkably from 67.5 °C to 60 °C, accompanied by a 57% decrease in Km compared with the Km value of the wild-type strain. Finally, we found that the intramolecular interaction in PelN was the source in the improvements of molecular properties by comparing the model structures. Rational design of PelN was performed by stabilizing the α-helices with high conservation and increasing the stability of the overall structure of the protein. Two engineering strategies were applied by decreasing the mutation energy calculated by Discovery Studio and predicting the free energy in the process of protein folding by the PoPMuSiC algorithm. CONCLUSIONS The results demonstrated that the K93I/G241A mutant was more suitable for industrial production than the wild-type enzyme. Furthermore, the two forementioned strategies could be extended to reveal engineering of other kinds of industrial enzymes.
Collapse
Affiliation(s)
- Zhanping Zhou
- Tianjin Sinonocy Biological Technology Co. Ltd., Tianjin, 300308, China
| | - Xiao Wang
- Nanfang College of Sun Yat-Sen University, Guangzhou, 510970, China.
| |
Collapse
|
10
|
Sharma DC, Satyanarayana T. Thermostable and alkalistable exopolygalacturonase of Bacillus pumilus dcsr1: Characteristics and applicability. Int J Biol Macromol 2020; 164:3340-3348. [DOI: 10.1016/j.ijbiomac.2020.08.204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/15/2020] [Accepted: 08/26/2020] [Indexed: 12/21/2022]
|
11
|
John J, Kaimal KS, Smith ML, Rahman PK, Chellam PV. Advances in upstream and downstream strategies of pectinase bioprocessing: A review. Int J Biol Macromol 2020; 162:1086-1099. [DOI: 10.1016/j.ijbiomac.2020.06.224] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 12/25/2022]
|
12
|
Liu YC, Han LL, Chen TY, Lu YB, Feng H. Characterization of a Protease Hyper-Productive Mutant of Bacillus pumilus by Comparative Genomic and Transcriptomic Analysis. Curr Microbiol 2020; 77:3612-3622. [PMID: 32749522 DOI: 10.1007/s00284-020-02154-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 07/28/2020] [Indexed: 01/06/2023]
Abstract
Bacillus pumilus BA06 has great potential for the production of alkaline proteases. To improve the protease yield, classical mutagenesis to combine the physical and chemical mutagens was performed to obtain a protease hyper-productive mutant SCU11. The full genome sequences of BA06 and SCU11 strains were assembled through DNA sequencing using the PacBio sequencing platform. By comparative genomics analysis, 147 SNPs and 15 InDels were found between these two genomes, which lead to alternation of coding sequence in 15 genes. Noticeable, the gene (kinA) encoding sporulation kinase A is interrupted by introducing a stop codon in its coding region in BA06. Interestedly, this gene is reversely corrected in SCU11. Furthermore, comparative transcriptome analysis revealed that kinA and two positive regulatory genes (DegU and Spo0A) were upregulated in transcription in SCU11. In terms of the transcriptional data, upregulation of a phosphorylation cascade starting with KinA may enhance Spo0A phosphorylation, and thus activate expression of the gene aprE (encoding major extracellular protease) through repression of AbrB (a repressor of aprE) and activation of SinI, an antagonist of SinR (a repressor of aprE). In addition, the other genes involved in various metabolic pathways, especially of membrane transport and sporulation, were altered in transcription between these two strains. Conclusively, our transcriptome data suggested that upregulation degU and spo0A, as well as kinA, may at least partially contribute to the high production of alkaline protease in SCU11.
Collapse
Affiliation(s)
- Yong-Cheng Liu
- College of Life Sciences, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Sichuan University, Chengdu, 610064, Sichuan, People's Republic of China
| | - Lin-Li Han
- College of Life Sciences, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Sichuan University, Chengdu, 610064, Sichuan, People's Republic of China
| | - Tian-Yu Chen
- College of Life Sciences, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Sichuan University, Chengdu, 610064, Sichuan, People's Republic of China
| | - Yan-Bing Lu
- College of Life Sciences, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Sichuan University, Chengdu, 610064, Sichuan, People's Republic of China
| | - Hong Feng
- College of Life Sciences, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Sichuan University, Chengdu, 610064, Sichuan, People's Republic of China.
| |
Collapse
|
13
|
Zheng X, Zhang Y, Liu X, Li C, Lin Y, Liang S. High-Level Expression and Biochemical Properties of A Thermo-Alkaline Pectate Lyase From Bacillus sp. RN1 in Pichia pastoris With Potential in Ramie Degumming. Front Bioeng Biotechnol 2020; 8:850. [PMID: 32850721 PMCID: PMC7396651 DOI: 10.3389/fbioe.2020.00850] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/02/2020] [Indexed: 12/11/2022] Open
Abstract
Pectate lyases play an essential role in textiles, animal feed, and oil extraction industries. Pichia pastoris can be an ideal platform for pectate lyases production, and BspPel (a thermo-alkaline pectate lyase from Bacillus sp. RN1) was overexpressed by combined strategies, reaching 1859 U/mL in a 50 L fermentator. It displayed the highest activity at 80°C, and maintained more than 60% of the activity between 30 and 70°C for 1 h. It showed an optimal pH of 10.0, and exhibited remarkable stability over a wider pH range (3.0-11.0), retaining more than 80.0% of enzyme activity for 4 h. The Km and kcat of BspPel on PGA (polygalacturonic acid) was 2.19 g L–1 and 116.1 s–1, respectively. The activity was significantly enhanced by Ca2+, Mn2+, and Cu2+, and a slight increase was observed with the addition of Ba2+ and Mg2+. Scanning electron microscope was used to show the degumming efficiency of BspPel on ramie fibers. The loss weight was 9.2% when treated with crude enzyme supernatant and 20.8% when treated with the enzyme-chemical method, which was higher than the 14.2% weight loss in the positive control treated with 0.5% (w/v) NaOH alone. In conclusion, BspPel could be a good candidate for the ramie degumming industry.
Collapse
Affiliation(s)
- Xueyun Zheng
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China.,Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Yimin Zhang
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China.,Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Xiaoxiao Liu
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China.,Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Cheng Li
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Ying Lin
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China.,Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shuli Liang
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China.,Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
14
|
Wu P, Yang S, Zhan Z, Zhang G. Origins and features of pectate lyases and their applications in industry. Appl Microbiol Biotechnol 2020; 104:7247-7260. [PMID: 32666183 DOI: 10.1007/s00253-020-10769-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/12/2020] [Accepted: 07/02/2020] [Indexed: 11/25/2022]
Abstract
Pectate lyase treatment can be an alternative strategy of the chemical processing, which causes severe environmental pollution, and has been broadly studied and applied for diverse industrial applications including textile industry, beverage industry, pulp processing, pectic wastewater pretreatment, and oil extraction. This review gave a brief description of the origins, enzymatic characterizations, structure, and applications of pectate lyases (Pels). Most of the reported pectate lyases are originated from microorganisms with a small number of them from plants and animals. Due to the diverse environments that these microorganisms exist, Pels present diversified features, especially for the range of optimal pH and temperature. The diversified biochemical properties of Pels define their applications in different industries, and the applications of alkaline Pels on cotton bioscouring and ramie degumming in textile industry were focused in this review. This review also discussed the perspectives of the development and applications of Pels. KEY POINTS: • The first review on pectate lyase focusing on biotechnological applications. • Origins, features, structures, applications of pectate lyases reviewed. • Applications of alkaline Pels in textile industry demonstrated. • Perspectives on future development and applications of Pels discussed.
Collapse
Affiliation(s)
- Pan Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Wuhan Sunhy Biology Co., Ltd., Wuhan, 430206, China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Zhichun Zhan
- Wuhan Sunhy Biology Co., Ltd., Wuhan, 430206, China
| | - Guimin Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
15
|
Green bioprocess of degumming of jute fibers and bioscouring of cotton fabric by recombinant pectin methylesterase and pectate lyases from Clostridium thermocellum. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.02.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Wu P, Luo F, Lu Z, Zhan Z, Zhang G. Improving the Catalytic Performance of Pectate Lyase Through Pectate Lyase/Cu 3(PO 4) 2 Hybrid Nanoflowers as an Immobilized Enzyme. Front Bioeng Biotechnol 2020; 8:280. [PMID: 32309279 PMCID: PMC7145898 DOI: 10.3389/fbioe.2020.00280] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/17/2020] [Indexed: 11/13/2022] Open
Abstract
Pectate lyases (Pels) can be used in the textile industrial process for cotton scouring and ramie degumming, and its hydrolyzed products oligo galacturonic acid, are high-value added agricultural and health products. In our previous studies, an alkaline pectate lyase PEL168 mutant, PEL3, was obtained with improved specific activity and thermostability. Here, a facile and rapid method for preparing an immobilized PEL3-inorganic hybrid nanoflower was developed, as it could improve its biocatalytic performance. With 0.02 mg/mL (112.2 U/mL) PEL3 in PBS buffer, five different divalent ions, including Mn2+, Ca2+, Co2+, Zn2+, and Cu2+, were used as inorganic component. The results showed that PEL3/Cu3(PO4)2 hybrid nanoflowers presented the highest relative activity with 2.5-fold increase, compared to the free PEL3. X-ray diffraction analysis confirmed that the composition of PEL3/Cu3(PO4)2 hybrid nanoflowers were pectate lyase PEL3 and Cu3(PO4)2⋅5H2O. The optimum temperature and pH of PEL3/Cu3(PO4)2 hybrid nanoflowers were ascertained to be 55°C and pH 9.0, respectively, exhibiting subtle difference from the free PEL3. However, the PEL3/Cu3(PO4)2 hybrid nanoflowers maintained 33% residual activity after 24 h incubation at 55°C, while the free PEL3 completely lost its activity after 18 h incubation at 55°C. Furthermore, over 50% residual activity of the PEL3/Cu3(PO4)2 hybrid nanoflowers was remained, even after four times of repetitive utilization, demonstrating its promising stability for practical application.
Collapse
Affiliation(s)
- Pan Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, China
- Wuhan Sunhy Biology Co., Ltd., Wuhan, China
| | - Feifan Luo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, China
| | - Zhenghui Lu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, China
| | | | - Guimin Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
17
|
Abdollahzadeh R, Pazhang M, Najavand S, Fallahzadeh-Mamaghani V, Amani-Ghadim AR. Screening of pectinase-producing bacteria from farmlands and optimization of enzyme production from selected strain by RSM. Folia Microbiol (Praha) 2020; 65:705-719. [PMID: 32026289 DOI: 10.1007/s12223-020-00776-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/22/2020] [Indexed: 11/26/2022]
Abstract
Pectinolytic enzymes that catalyze the breakdown of substrates containing pectin are widespread. Pectinases have potential applications in various industries, including food, animal feed, textile, paper, and fuel. In this study, one hundred bacterial isolates were collected from Marand city farmlands (Azarbaijan-E-Sharqi, Iran) and screened by MP medium on the base of pectinase activity considering the significance of pectinases. The results depicted that three isolates showed the most pectinase activity (more massive halo). The biochemical and molecular test results showed that the three screened bacteria were Enterobacter and named Enterobacter sp. MF41, Enterobacter sp. MF84, and Enterobacter sp. MF90. Enterobacter sp. MF84 had the largest halo, so this strain was selected for the study of its produced pectinase. The results exhibited that the produced enzyme has optimum temperature and pH for activity at 30 °C and in 9, respectively. Finally, the enzyme production by Enterobacter sp. MF84 is optimized using response surface methodology (RSM) considering four factors (NH4Cl, K2HPO4, pectin, and incubation time) as variables. The results showed that the optimization procedure increased the enzyme production up to 12 times (from 1.16 to 14.16 U/mg). The Pareto analysis revealed that ammonium chloride has a significant role in decreasing the enzyme production, probably by inducing the nitrification pathway enzymes in the presence of organic nitrogen in Enterobacter sp. MF84.
Collapse
Affiliation(s)
- Rezvan Abdollahzadeh
- Department of Cellular and Molecular Biology, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Mohammad Pazhang
- Department of Cellular and Molecular Biology, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, Iran.
| | - Saeed Najavand
- Department of Cellular and Molecular Biology, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, Iran
| | | | - Ali Reza Amani-Ghadim
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
18
|
Yu P, Wang X, Ren Q, Huang X, Yan T. Genome shuffling for improving the activity of alkaline pectinase in Bacillus subtilis FS105 and its molecular mechanism. World J Microbiol Biotechnol 2019; 35:165. [PMID: 31641866 DOI: 10.1007/s11274-019-2749-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 10/15/2019] [Indexed: 11/25/2022]
Abstract
Genome shuffling for improving the activity of alkaline pectinase in Bacillus subtilis FS105 and its molecular mechanism were investigated. The fused strain B. subtilis FS105 with the highest activity of alkaline pectinase was obtained after two rounds of genome shuffling. The activity of alkaline pectinase in B. subtilis FS105 was 499 U/ml, which was improved by 1.6 times compared to that in original strain. To elucidate its molecular mechanism, rpsL gene sequences from original and fused strains were cloned and aligned, and the space structure of their coding proteins were also analyzed and compared. The alignment of the rpsL gene sequences indicated that three bases G, G and C were respectively replaced by A, A and G in the positions 52, 408 and 409 after genome shuffling. This resulted in the substitution of two amino acid residues in ribosomal protein S12: D18N and P137A, and therefore improving the biosynthesis of alkaline pectinase. This study lays a foundation for improving the activity of alkaline pectinase by genome shuffling and understanding its molecular mechanism.
Collapse
Affiliation(s)
- Ping Yu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, 310035, Zhejiang, People's Republic of China.
| | - Xinxin Wang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, 310035, Zhejiang, People's Republic of China
| | - Qian Ren
- College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, 310035, Zhejiang, People's Republic of China
| | - Xingxing Huang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, 310035, Zhejiang, People's Republic of China
| | - Tingting Yan
- College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, 310035, Zhejiang, People's Republic of China
| |
Collapse
|
19
|
Koshy M, De S. Effect of Bacillus tequilensis SALBT crude extract with pectinase activity on demucilation of coffee beans and juice clarification. J Basic Microbiol 2019; 59:1185-1194. [PMID: 31617605 DOI: 10.1002/jobm.201900321] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/18/2019] [Accepted: 09/29/2019] [Indexed: 11/08/2022]
Abstract
Pectinases are a group of enzymes, which catalyze the breakdown of pectin with numerous applications in various industries. Microbes are the predominant pectinase producers. In the present study, bacterial species were isolated from the soil of a vegetable and fruit dump yard area in a market. The species screened and isolated were identified as Bacillus tequilensis SALBT, and the media and culture conditions were optimized for enhanced production of total pectinases. Maximum pectinolytic activity was observed with 1.5% (w/v) pectin concentration with a combination of yeast extract as nitrogen source and MgSO4 as a metal ion source. Carbon/nitrogen in 2:1 ratio (w/v) yielded the maximum pectinase production with pH and temperature of the medium of 7.5°C and 40°C, respectively. Pectinase activity was determined by the dinitrosalicylic acid method. The pectinase production was relatively stable in the presence of various surfactants like Tween (20, 40, 60, and 80) and sodium dodecyl sulfate (SDS), whereas Triton X-100 showed an inhibitory effect. Mass production of the enzyme in optimized media and partial purification was performed by ammonium sulfate precipitation followed by dialysis. The approximate molecular weight of the partially purified pectinase was found to be 35 kDa by SDS-polyacrylamide gel electrophoresis. Application studies such as demucilaging coffee beans and juice clarification were also performed. The findings revealed that B. tequilensis SALBT with pectinase activity has the ability to remove the mucilage layer of pulped coffee seeds, and the partially purified pectinases found to be effective in clarifying juice.
Collapse
Affiliation(s)
- Mittu Koshy
- Department of Biotechnology, School of Sciences, Jain (Deemed-to-be) University, Bangalore, India
| | - Salamun De
- Department of Biotechnology, School of Sciences, Jain (Deemed-to-be) University, Bangalore, India
| |
Collapse
|
20
|
Tang Y, Wu P, Jiang S, Selvaraj JN, Yang S, Zhang G. A new cold-active and alkaline pectate lyase from Antarctic bacterium with high catalytic efficiency. Appl Microbiol Biotechnol 2019; 103:5231-5241. [PMID: 31028436 DOI: 10.1007/s00253-019-09803-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 10/26/2022]
Abstract
Cold-active enzymes have become attractive biocatalysts in biotechnological applications for their ability to retain high catalytic activity below 30 °C, which allows energy reduction and cost saving. Here, a 1041 bp gene pel1 encoding a 34.7 KDa pectate lyase was cloned from a facultatively psychrophilic Antarctic bacterium Massilia eurypsychrophila and heterologously expressed in Escherichia coli. PEL1 presented the highest 66% identity to the reported mesophilic pectate lyase PLXc. The purified PEL1 exhibits the optimum temperature and pH of 30 °C and 10 toward polygalacturonic acid, respectively. PEL1 is a cold-active enzyme that can retain 60% and 25% relative activity at 10 °C and 0 °C, respectively, while it loses most of activity at 40 °C for 10 min. PEL1 has the highest specific activity (78.75 U mg-1) than all other reported cold-active pectinase, making it a better choice for use in industry. Based on the detailed sequence and structure comparison between PEL1 and PLXc and mutation analysis, more flexible structure and some loop regions may contribute to the cold activity and thermal instability of PEL1. Our investigations of the cold-active mechanism of PEL1 might guide the rational design of PEL1 and other related enzymes.
Collapse
Affiliation(s)
- Yumeng Tang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Pan Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Sijing Jiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Jonathan Nimal Selvaraj
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Guimin Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
21
|
Dhillon A, Rajulapati V, Goyal A. Bio‐scouring of cotton fabric and enzymatic degumming of jute fibres by a thermo‐alkaline recombinant rhamnogalacturonan lyase, ctrglf fromClostridium thermocellum. CAN J CHEM ENG 2018. [DOI: 10.1002/cjce.23342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Arun Dhillon
- Carbohydrate Enzyme Biotechnology LaboratoryDepartment of Biosciences and BioengineeringIndian Institute of Technology GuwahatiGuwahati 781039AssamIndia
| | - Vikky Rajulapati
- Carbohydrate Enzyme Biotechnology LaboratoryDepartment of Biosciences and BioengineeringIndian Institute of Technology GuwahatiGuwahati 781039AssamIndia
| | - Arun Goyal
- Carbohydrate Enzyme Biotechnology LaboratoryDepartment of Biosciences and BioengineeringIndian Institute of Technology GuwahatiGuwahati 781039AssamIndia
| |
Collapse
|
22
|
Immobilization of an alkaline endopolygalacturonase purified from Bacillus paralicheniformis exhibits bioscouring of cotton fabrics. Bioprocess Biosyst Eng 2018; 41:1425-1436. [PMID: 29926218 DOI: 10.1007/s00449-018-1971-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/13/2018] [Indexed: 10/28/2022]
Abstract
Pectin degrading enzyme has been increasing interest in an industrial application as biocatalysts, such as juice, textile, and wine industry. Bacillus paralicheniformis CBS3, isolated from popular traditional Korean food (kimchi), produced a novel extracellular thermostable alkaline endopolygalacturonase (BPN3). In this study, BPN3 was purified to 22.04-fold with a recovery yield of 18.93% and specific activity of 2216.41 U/mg by gel filtration and anion exchange column chromatography. The molecular mass of BPN3 was approximately 53 kDa as analyzed by SDS-PAGE and pectic zymography. The N-terminal sequence of BPN3 was AIPVILAX. BPN3 was stable over a broad pH range (8.14-11.47), was thermally stable at 50-60 °C, and functioned optimally in pH 9.1 at 60 °C. BPN3 had Km and Vmax values of 0.039 mg/mL and 747.9 ± 1.2 U mg- 1, respectively, whereas pectin from apple as substrate. BPN3 activity was remarkably affected by metal ions, modulators, and detergents. Digalacturonic acid (GA2) was the major oligosaccharide produced by hydrolysis of BPN3. Immobilized BPN3 was active over a pH range (8.1-11.5), temperature (50-60)°C, and remained stable with 63.34 and 43.41% of its relative activity during second and third cycle, respectively. Desized cotton exhibited highest reducing sugar liberation through optimized conditions of bioscouring. Bioscouring effectiveness of BPN3 was characterized by the comparison of weight loss for purified BPN3 with commercial pectinase and comparison of BPN3 with grey fabric. BPN3 was simple to purify, had high thermal stability, and was stable over a broad pH range that suggests its suitability for bioscouring application as an industrial catalyst.
Collapse
|
23
|
Improving the specific activity and thermo-stability of alkaline pectate lyase from Bacillus subtilis 168 for bioscouring. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2017.11.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Zhou M, Wu J, Wang T, Gao L, Yin H, Lü X. The purification and characterization of a novel alkali-stable pectate lyase produced by Bacillus subtilis PB1. World J Microbiol Biotechnol 2017; 33:190. [PMID: 28975516 DOI: 10.1007/s11274-017-2357-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 09/23/2017] [Indexed: 10/18/2022]
Abstract
Pectinase is an important kind of enzyme with many industrial applications, among which pectinases produced by bacteria were scarce compared with fungal sources. In this study, a novel bacterium which produced extracellular pectinase was firstly isolated from flue-cured tobacco leaves and identified as Bacillus subtilis PB1 according to its 16S rRNA gene. The pectinolytic enzyme was purified by ammonium sulfate precipitation, ion-exchange and gel filtration chromatography, after which molecular weight was determined as 43.1 ± 0.5 kDa by SDS-PAGE. Peptide mass fingerprinting of the pectinase by MALDI-TOF MS showed that the purified enzyme shared homology with pectate lyase and was designated as BsPel-PB1. The optimal temperature for BsPel-PB1 was 50 °C. The optimal pH was pH 9.5 for BsPel-PB1 while it had a broad pH stability from 5 to 11. The values of K m and V max were 0.312 mg/mL and 1248 U/mL, respectively. Accordingly, the BsPel-PB1 was a novel alkaline pectate lyase which could find potential application as a commercial candidate in the pectinolytic related industries.
Collapse
Affiliation(s)
- Man Zhou
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Jingli Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Tao Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Lina Gao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Huijun Yin
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, China.
| |
Collapse
|
25
|
Amin F, Bhatti HN, Bilal M, Asgher M. Purification, Kinetic, and Thermodynamic Characteristics of an Exo-polygalacturonase from Penicillium notatum with Industrial Perspective. Appl Biochem Biotechnol 2017; 183:426-443. [DOI: 10.1007/s12010-017-2455-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 03/12/2017] [Indexed: 10/19/2022]
|
26
|
Zhou C, Xue Y, Ma Y. Characterization and overproduction of a thermo-alkaline pectate lyase from alkaliphilic Bacillus licheniformis with potential in ramie degumming. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.01.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
Zhou C, Xue Y, Ma Y. Cloning, evaluation, and high-level expression of a thermo-alkaline pectate lyase from alkaliphilic Bacillus clausii with potential in ramie degumming. Appl Microbiol Biotechnol 2017; 101:3663-3676. [DOI: 10.1007/s00253-017-8110-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/28/2016] [Accepted: 12/31/2016] [Indexed: 10/20/2022]
|
28
|
Immobilization of alkaline polygalacturonate lyase from Bacillus subtilis on the surface of bacterial polyhydroxyalkanoate nano-granules. Appl Microbiol Biotechnol 2017; 101:3247-3258. [PMID: 28105486 DOI: 10.1007/s00253-016-8085-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/18/2016] [Accepted: 12/19/2016] [Indexed: 01/30/2023]
Abstract
Alkaline polygalacturonate lyase (PGL), one of the pectinolytic enzymes, has been widely used for the bioscouring of cotton fibers, biodegumming, and biopulp production. In our study, PGL from Bacillus subtilis was successfully immobilized on the surface of polyhydroxyalkanoate (PHA) nanogranules by fusing PGL to the N-terminal of PHA synthase from Ralstonia eutropha via a designed linker. The PGL-decorated PHA beads could be simply achieved by recombinant fermentation and consequent centrifugation. The fused PGL occupied 0.985% of the total weight of purified PHA granules, which was identified by mass spectrometer-based quantitative proteomics. The activity of immobilized PGL (184.67 U/mg PGL protein) was a little lower than that of the free PGL (215.93 U/mg PGL protein). The immobilization process did not affect the optimal pH and the optimal temperature of the PGL, but it did enhance the thermostability as well as the pH stability at certain conditions, which will extend the practicability of the immobilized PGL-PHA beads in the alkaline and generally harsh bioscouring process. Furthermore, the immobilized PGL still retained more than 60% of its initial activity after 8 cycles of reuse. Our study provided a novel and promising approach for cost-efficient in vivo PGL immobilization, contributing to wider commercialization of this environmental-friendly biocatalyst.
Collapse
|
29
|
Zhou Z, Liu Y, Chang Z, Wang H, Leier A, Marquez-Lago TT, Ma Y, Li J, Song J. Structure-based engineering of a pectate lyase with improved specific activity for ramie degumming. Appl Microbiol Biotechnol 2016; 101:2919-2929. [PMID: 28028551 DOI: 10.1007/s00253-016-7994-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/26/2016] [Accepted: 11/05/2016] [Indexed: 11/27/2022]
Abstract
Biotechnological applications of microbial pectate lyases (Pels) in plant fiber processing are promising, eco-friendly substitutes for conventional chemical degumming processes. However, to potentiate the enzymes' use for industrial applications, resolving the molecular structure to elucidate catalytic mechanisms becomes necessary. In this manuscript, we report the high resolution (1.45 Å) crystal structure of pectate lyase (pelN) from Paenibacillus sp. 0602 in apo form. Through sequence alignment and structural superposition with other members of the polysaccharide lyase (PL) family 1 (PL1), we determined that pelN shares the characteristic right-handed β-helix and is structurally similar to other members of the PL1 family, while exhibiting key differences in terms of catalytic and substrate binding residues. Then, based on information from structure alignments with other PLs, we engineered a novel pelN. Our rational design yielded a pelN mutant with a temperature for enzymatic activity optimally shifted from 67.5 to 60 °C. Most importantly, this pelN mutant displayed both higher specific activity and ramie fiber degumming ability when compared with the wild-type enzyme. Altogether, our rational design method shows great potential for industrial applications. Moreover, we expect the reported high-resolution crystal structure to provide a solid foundation for future rational, structure-based engineering of genetically enhanced pelNs.
Collapse
Affiliation(s)
- Zhanping Zhou
- National Engineering Laboratory for Industrial Enzymes and Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Yang Liu
- National Engineering Laboratory for Industrial Enzymes and Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Zhenying Chang
- National Engineering Laboratory for Industrial Enzymes and Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Huilin Wang
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - André Leier
- Isaac Newton Institute for Mathematical Sciences, University of Cambridge, Cambridge, UK
| | - Tatiana T Marquez-Lago
- Isaac Newton Institute for Mathematical Sciences, University of Cambridge, Cambridge, UK
| | - Yanhe Ma
- National Engineering Laboratory for Industrial Enzymes and Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jian Li
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Jiangning Song
- National Engineering Laboratory for Industrial Enzymes and Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia.
- Monash Centre for Data Science, Faculty of Information Technology, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
30
|
Garg G, Singh A, Kaur A, Singh R, Kaur J, Mahajan R. Microbial pectinases: an ecofriendly tool of nature for industries. 3 Biotech 2016; 6:47. [PMID: 28330117 PMCID: PMC4746199 DOI: 10.1007/s13205-016-0371-4] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/23/2015] [Indexed: 11/29/2022] Open
Abstract
Pectinases are the growing enzymes of biotechnological sector, showing gradual increase in their market. They hold a leading position among the commercially produced industrial enzymes. These enzymes are ecofriendly tool of nature that are being used extensively in various industries like wine industry; food industry; paper industry for bleaching of pulp and waste paper recycling; in the processing of fruit–vegetables, tea–coffee, animal feed; extraction of vegetable oil and scouring of plant fibres. Moreover, enzymatic catalysis is preferred over other chemical methods, since it is more specific, less aggressive and saves energy. This is the review which covers the information available on the applicability potential of this group of enzymes in various sectors.
Collapse
Affiliation(s)
- G Garg
- Department of Biotechnology, Maharishi Markendeshwar University, Mullana, Ambala, India
| | - A Singh
- Department of Biotechnology, Kurukshetra University, Kurukshetra, India
| | - A Kaur
- Department of Biotechnology, Kurukshetra University, Kurukshetra, India
| | - R Singh
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - J Kaur
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - R Mahajan
- Department of Biotechnology, Kurukshetra University, Kurukshetra, India.
| |
Collapse
|
31
|
Jaramillo PMD, Andreaus J, Neto GPDS, Castro CFDS, Filho EXF. The characterization of a pectin-degrading enzyme fromAspergillus oryzaegrown on passion fruit peel as the carbon source and the evaluation of its potential for industrial applications. BIOCATAL BIOTRANSFOR 2016. [DOI: 10.3109/10242422.2016.1168817] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
32
|
Saoudi B, Habbeche A, Kerouaz B, Haberra S, Ben Romdhane Z, Tichati L, Boudelaa M, Belghith H, Gargouri A, Ladjama A. Purification and characterization of a new thermoalkaliphilic pectate lyase from Actinomadura keratinilytica Cpt20. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
33
|
Nanotechnology based activation-immobilization of psychrophilic pectate lyase: A novel approach towards enzyme stabilization and enhanced activity. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.05.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
34
|
|
35
|
Directed Evolution and Structural Analysis of Alkaline Pectate Lyase from the Alkaliphilic Bacterium Bacillus sp. Strain N16-5 To Improve Its Thermostability for Efficient Ramie Degumming. Appl Environ Microbiol 2015; 81:5714-23. [PMID: 26070675 DOI: 10.1128/aem.01017-15] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/07/2015] [Indexed: 11/20/2022] Open
Abstract
Thermostable alkaline pectate lyases have potential applications in the textile industry as an alternative to chemical-based ramie degumming processes. In particular, the alkaline pectate lyase from Bacillus sp. strain N16-5 (BspPelA) has potential for enzymatic ramie degumming because of its high specific activity under extremely alkaline conditions without the requirement for additional Ca(2+). However, BspPelA displays poor thermostability and is inactive after incubation at 50°C for only 30 min. Here, directed evolution was used to improve the thermostability of BspPelA for efficient and stable degumming. After two rounds of error-prone PCR and screening of >12,000 mutants, 10 mutants with improved thermostability were obtained. Sequence analysis and site-directed mutagenesis revealed that single E124I, T178A, and S271G substitutions were responsible for improving thermostability. Structural and molecular dynamic simulation analysis indicated that the formation of a hydrophobic cluster and new H-bond networks was the key factor contributing to the improvement in thermostability with these three substitutions. The most thermostable combined mutant, EAET, exhibited a 140-fold increase in the t50 (time at which the enzyme loses 50% of its initial activity) value at 50°C, accompanied by an 84.3% decrease in activity compared with that of wild-type BspPelA, while the most advantageous combined mutant, EA, exhibited a 24-fold increase in the t50 value at 50°C, with a 23.3% increase in activity. Ramie degumming with the EA mutant was more efficient than that with wild-type BspPelA. Collectively, our results suggest that the EA mutant, exhibiting remarkable improvements in thermostability and activity, has the potential for applications in ramie degumming in the textile industry.
Collapse
|
36
|
Irshad M, Asgher M, Anwar Z, Ahmad A. Biotechnological Valorization of Pectinolytics and Their Industrial Applications: A Review. Nat Prod Commun 2014. [DOI: 10.1177/1934578x1400901129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In the last several years, in serious consideration of the worldwide economic and environmental issues there has been an increasing research interest in the value of naturally occurring bio-sourced materials. Agro-industrial based biomass comprised of pectin is an inexpensive, renewable, abundant natural resource that could be utilized for large-scale and cost-effective production of natural products i.e., pectinolytics. Pectinolytics are one of the most widely distributed enzymes in bacteria, fungi and plants. From ancient times to date, many methods have been introduced to improve the optimization of pectinolytics to obtain high yields of maximal purity. To expand the range of natural bio-resources the rapidly evolving tools of biotechnology can lower the conversion costs and also enhance target yield of the product of interest. This green biotechnology presents a promising approach to convert most of the agricultural materials into a value-added product with multiple applications. Major advances have already been achieved in recent years in order to obtain high levels of purity with optimal yields. The present review begins with an overview of pectinolytics and their physico-chemical features, and their specific role with classification based on pectic materials. Information is also given on the culture influences and potential sources of pectinolytics, followed by a brief summary of various industrial and biotechnological applications and future considerations.
Collapse
Affiliation(s)
- Muhammad Irshad
- Department of Biochemistry, NSMC, University of Gujrat, Gujrat, Pakistan
| | - Muhammad Asgher
- Industrial Biotechnology Lab, Department of Biochemistry, University of Faisalabad, Faisalabad, Pakistan
| | - Zahid Anwar
- Department of Biochemistry, NSMC, University of Gujrat, Gujrat, Pakistan
| | - Aftab Ahmad
- Department of Biochemistry and Molecular Biology, University of Gujrat, Gujrat, Pakistan
| |
Collapse
|
37
|
Biochemical characteristics of an alkaline pectate lyase PelA from Volvariella volvacea: roles of the highly conserved N-glycosylation site in its secretion and activity. Appl Microbiol Biotechnol 2014; 99:3447-58. [DOI: 10.1007/s00253-014-6146-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 10/06/2014] [Accepted: 10/09/2014] [Indexed: 02/05/2023]
|
38
|
Liang C, Gui X, Zhou C, Xue Y, Ma Y, Tang SY. Improving the thermoactivity and thermostability of pectate lyase from Bacillus pumilus for ramie degumming. Appl Microbiol Biotechnol 2014; 99:2673-82. [PMID: 25287558 DOI: 10.1007/s00253-014-6091-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 08/27/2014] [Accepted: 09/10/2014] [Indexed: 10/24/2022]
Abstract
Thermostable alkaline pectate lyases can be potentially used for enzymatically degumming ramie in an environmentally sustainable manner and as an alternative to the currently used chemical-based ramie degumming processes. To assess its potential applications, pectate lyase from Bacillus pumilus (ATCC 7061) was cloned and expressed in Escherichia coli. Evolutionary strategies were applied to generate efficient ramie degumming enzymes. Obtained from site-saturation mutagenesis and random mutagenesis, the best performing mutant enzyme M3 exhibited a 3.4-fold higher specific activity on substrate polygalacturonic acid, compared with the wild-type enzyme. Furthermore, the half-life of inactivation at 50 °C for M3 mutant extended to over 13 h. In contrast, the wild-type enzyme was completely inactivated in less than 10 min under the same conditions. An upward shift in the optimal reaction temperature of M3 mutant, to 75 °C, was observed, which was 10 °C higher than that of the wild-type enzyme. Kinetic parameter data revealed that the catalysis efficiency of M3 mutant was higher than that of the wild-type enzyme. Ramie degumming with M3 mutant was also demonstrated to be more efficient than that with the wild-type enzyme. Collectively, our results suggest that the M3 mutant, with remarkable improvements in thermoactivity and thermostability, has potential applications for ramie degumming in the textile industry.
Collapse
Affiliation(s)
- Chaoning Liang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, 100101, Beijing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
39
|
Cui YX, Liu JJ, Liu Y, Cheng QY, Yu Q, Chen X, Ren XD. Protoplast fusion enhances lignocellulolytic enzyme activities in Trichoderma reesei. Biotechnol Lett 2014; 36:2495-9. [DOI: 10.1007/s10529-014-1627-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 08/06/2014] [Indexed: 11/29/2022]
|
40
|
Tepe O, Dursun AY. Exo-pectinase production by Bacillus pumilus using different agricultural wastes and optimizing of medium components using response surface methodology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:9911-9920. [PMID: 24819433 DOI: 10.1007/s11356-014-2833-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 03/24/2014] [Indexed: 06/03/2023]
Abstract
In this research, the production of exo-pectinase by Bacillus pumilus using different agricultural wastes was studied. Agricultural wastes containing pectin such as wheat bran, sugar beet pulp, sunflower plate, orange peel, banana peel, apple pomace and grape pomace were tested as substrates, and activity of exo-pectinase was determined only in the mediums containing sugar beet pulp and wheat bran. Then, effects of parameters such as concentrations of solid substrate (wheat bran and sugar beet pulp) (A), ammonium sulphate (B) and yeast extract (C) on the production of exo-pectinase were investigated by response surface methodology. First, wheat bran was used as solid substrate, and it was determined that exo-pectinase activity increased when relatively low concentrations of ammonium sulphate (0.12-0.21% w/v) and yeast extract (0.12-0.3% w/v) and relatively high wheat bran (~5-6% w/v) were used. Then, exo-pectinase production was optimized by response surface methodology using sugar beet pulp as a solid substrate. In comparison to P values of the coefficients, values of not greater than 0.05 of A and B (2) showed that the effect of these process variables in exo-pectinase production was important and that changes done in these variables will alter the enzyme activity.
Collapse
Affiliation(s)
- Ozlem Tepe
- Department of Environmental Engineering, Firat University, 23100, Elazig, Turkey
| | | |
Collapse
|
41
|
Chiliveri SR, Linga VR. A novel thermostable, alkaline pectate lyase from Bacillus tequilensis SV11 with potential in textile industry. Carbohydr Polym 2014; 111:264-72. [PMID: 25037351 DOI: 10.1016/j.carbpol.2014.04.065] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 04/09/2014] [Accepted: 04/15/2014] [Indexed: 11/18/2022]
Abstract
An extracellular pectate lyase was purified and characterized from a UV mutant of Bacillus tequilensis SV11. Purification resulted in a 16.2-fold improvement in the enzyme specific activity, with approximately 40.2% yield. SDS-PAGE showed that the enzyme had two subunits with molecular masses of 135 ± 2 and 43 ± 2 kDa. Further, MALDI-TOF MS experiments revealed that the mass spectrum of the second peptide significantly (91% score) matched with the unsaturated rhamnogalacturonyl hydrolase YteR OS-Bacillus subtilis (strain 168) by 27% sequence coverage, nominal mass 43,231 Da, and PI 5.91. The enzyme was optimally active at 60 °C, pH 9. Km and Vmax of the purified pectate lyase was found to be 1.220 mg/mL and 1773 U/mL, respectively. The enzyme was studied for its applicability in bioscouring and found to be efficient in the removal of 97.91% pectin of cotton fabric when compared with alkali-treated fabric.
Collapse
Affiliation(s)
- Swarupa Rani Chiliveri
- Department of Microbiology, Osmania University, Hyderabad 500007, Andhra Pradesh, India.
| | - Venkateswar Rao Linga
- Department of Microbiology, Osmania University, Hyderabad 500007, Andhra Pradesh, India.
| |
Collapse
|
42
|
Zou M, Guo F, Li X, Zhao J, Qu Y. Enhancing production of alkaline polygalacturonate lyase from Bacillus subtilis by fed-batch fermentation. PLoS One 2014; 9:e90392. [PMID: 24603713 PMCID: PMC3946182 DOI: 10.1371/journal.pone.0090392] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 01/29/2014] [Indexed: 11/19/2022] Open
Abstract
Alkaline polygalacturonate lyase (PGL, EC 4.2.2.2) is an enzyme used in many industries. We developed a fed-batch fermentation process that combines the enzymatic pretreatment of the carbon source with controlling the pH of the fermentative broth to enhance the PGL production from Bacillus subtilis 7-3-3 to decrease the production cost. Maintaining the fermentation broth at pH 6.5 prior to feeding with ammonia and at pH 6.0 after feeding significantly improved PGL activity (743.5 U mL-1) compared with the control (202.5 U mL-1). The average PGL productivity reached 19.6 U mL-1 h-1 after 38 h of fermentation. The crude PGL was suitable for environmentally friendly ramie enzymatic degumming.
Collapse
Affiliation(s)
- Mouyong Zou
- State Key Laboratory of Microbial Technology, Shandong University, Ji-nan City, P.R. China
| | - Fenfen Guo
- State Key Laboratory of Microbial Technology, Shandong University, Ji-nan City, P.R. China
| | - Xuezhi Li
- State Key Laboratory of Microbial Technology, Shandong University, Ji-nan City, P.R. China
| | - Jian Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Ji-nan City, P.R. China
| | - Yinbo Qu
- State Key Laboratory of Microbial Technology, Shandong University, Ji-nan City, P.R. China
| |
Collapse
|
43
|
Characterization and high-level expression of a metagenome-derived alkaline pectate lyase in recombinant Escherichia coli. Process Biochem 2014. [DOI: 10.1016/j.procbio.2013.10.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
44
|
Cloning, purification and biochemical properties of a thermostable pectinase from Bacillus halodurans M29. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2013.05.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Wei M, Bai Y, Ao M, Jin W, Yu P, Zhu M, Yu L. Novel method utilizing microbial treatment for cleaner production of diosgenin from Dioscorea zingiberensis C.H. Wright (DZW). BIORESOURCE TECHNOLOGY 2013; 146:549-555. [PMID: 23973974 DOI: 10.1016/j.biortech.2013.07.090] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/17/2013] [Accepted: 07/19/2013] [Indexed: 06/02/2023]
Abstract
A novel method utilizing microbial treatment for cleaner production of diosgenin from Dioscorea zingiberensis C.H. Wright (DZW) was presented. A new Bacillus pumilus HR19, which has the great ability to secrete pectinase, was screened and applied in the microbial treatment. Low-pressure steam expansion pretreatment (LSEP) was employed in advance to assist microbial treatment efficiently in releasing saponins, which are the precursors of diosgenin. Compared with the traditional process of acid hydrolysis, this novel process reduced the consumptions of water, acid and organic solvent by more than 92.5%, 97.0%, 97.0%, respectively, while simultaneously increasing the diosgenin yield by 6.21%. In addition, the microbial treatment was more efficient than enzymatic treatment, which arised from that microorganisms could be induced to secrete related enzymes by the compositions of DZW and relieve product inhibition by utilizing enzyme hydrolysates.
Collapse
Affiliation(s)
- Mi Wei
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yun Bai
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mingzhang Ao
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wenwen Jin
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Panpan Yu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Min Zhu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Longjiang Yu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China; Wuhan Institute of Biotechnology, Wuhan 430075, China.
| |
Collapse
|
46
|
Zou M, Li X, Shi W, Guo F, Zhao J, Qu Y. Improved production of alkaline polygalacturonate lyase by homologous overexpression pelA in Bacillus subtilis. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.05.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
A low-temperature-active alkaline pectate lyase from Xanthomonas campestris ACCC 10048 with high activity over a wide pH range. Appl Biochem Biotechnol 2012; 168:1489-500. [PMID: 22983714 DOI: 10.1007/s12010-012-9872-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 08/28/2012] [Indexed: 10/27/2022]
Abstract
Alkaline pectate lyases are favorable for the textile industry. Here, we report the gene cloning and expression of a low-temperature-active alkaline pectate lyase (PL D) from Xanthomonas campestris ACCC 10048. Deduced PL D consists of a putative 27-residue signal peptide and a catalytic domain of 320 residues belonging to family PF09492. Recombinant PL D (r-PL D) produced in Escherichia coli was purified to electrophoretic homogeneity with a single step of Ni(2+)-NTA affinity chromatography and showed an apparent molecular weight of ~38 kDa. The pH and temperature optima of r-PL D were found to be 9.0 °C and 30 °C, respectively. Compared with its microbial counterparts, r-PL D had higher activity over a wide pH range (>45 % of the maximum activity at pH 3.0-12.0) and at lower temperatures (>35 % of activity even at 0 °C). The K(m) and V(max) values of r-PL D for polygalacturonic acid were 4.9 gl(-1) and 30.1 μmolmin(-1) mg(-1), respectively. Compared with the commercial compound pectinase from Novozymes, r-PL D showed similar efficacy in reducing the intrinsic viscosity of polygalacturonic acid (35.1 % vs. 36.5 %) and in bioscouring of jute (10.25 % vs. 10.82 %). Thus, r-PL D is a valuable additive candidate for the textile industry.
Collapse
|
48
|
Zhou J, Dong Y, Gao Y, Tang X, Li J, Yang Y, Xu B, Xie Z, Huang Z. Characterization of a family 3 polysaccharide lyase with broad temperature adaptability, thermo-alkali stability, and ethanol tolerance. BIOTECHNOL BIOPROC E 2012. [DOI: 10.1007/s12257-012-0122-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
49
|
Mukhopadhyay A, Dasgupta AK, Chattopadhyay D, Chakrabarti K. Improvement of thermostability and activity of pectate lyase in the presence of hydroxyapatite nanoparticles. BIORESOURCE TECHNOLOGY 2012; 116:348-354. [PMID: 22541951 DOI: 10.1016/j.biortech.2012.03.094] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 03/29/2012] [Accepted: 03/29/2012] [Indexed: 05/31/2023]
Abstract
The activity and half-life of pectate lyase (PL) from Bacillus megaterium were nine- and 60-fold, respectively, higher at 90 °C in the presence of hydroxyapatite nanoparticles (NP-PLs) than in the presence of 1mM CaCl(2). Thermodynamic analysis of the nanoparticle-induced stability revealed an enhanced entropy-enthalpy compensation by the NP-PLs since a reciprocal linearity of the enthalpy-entropy change to 90 °C was observed. Without nanoparticles, the linearity range was 70 °C. Such compensation reflected the maintenance of the native structure of proteins. The remarkable enhancement of activity and stability of the NP-PL system at high temperatures may be utilized commercially e.g. in the food industry or the processing of natural fibers that may require a thermotolerant enzyme.
Collapse
Affiliation(s)
- Arka Mukhopadhyay
- Department of Biochemistry, University College of Science, Calcutta University, 35 Ballygunge Circular Road, West Bengal, Kolkata 700 019, India
| | | | | | | |
Collapse
|
50
|
Yuan P, Meng K, Shi P, Luo H, Huang H, Tu T, Yang P, Yao B. An alkaline-active and alkali-stable pectate lyase from Streptomyces sp. S27 with potential in textile industry. ACTA ACUST UNITED AC 2012; 39:909-15. [DOI: 10.1007/s10295-012-1085-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 01/04/2012] [Indexed: 10/14/2022]
Abstract
Abstract
A pectate lyase gene (pl-str) was cloned from Streptomyces sp. S27 and expressed in Escherichia coli Rosetta. The full-length pl-str consists of 972 bp and encodes for a protein of 323 amino acids without signal peptide that belongs to family PF00544. The recombinant enzyme (r-PL-STR) was purified to electrophoretic homogeneity using Ni2+–NTA chromatography and showed apparent molecular mass of ~35 kDa. The pH optimum of r-PL-STR was found to be 10.0, and it exhibited >70% of the maximal activity at pH 12.0. After incubation at 37°C for 1 h without substrate, the enzyme retained more than 55% activity at pH 7.0–12.0. Compared with the commercial complex enzyme Scourzyme@301L from Novozymes, purified r-PL-STR showed similar efficacy in reducing the intrinsic viscosity of polygalacturonic acid (49.0 vs. 49.7%). When combined with cellulase and α-amylase, r-PL-STR had comparable performance in bioscouring of jute fabric (22.39 vs. 22.99%). Thus, r-PL-STR might represent a good candidate for use in alkaline industries such as textile.
Collapse
Affiliation(s)
- Peng Yuan
- grid.410727.7 0000000105261937 Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute Chinese Academy of Agricultural Sciences No. 12 Zhongguancun South Street 100081 Beijing People’s Republic of China
| | - Kun Meng
- grid.410727.7 0000000105261937 Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute Chinese Academy of Agricultural Sciences No. 12 Zhongguancun South Street 100081 Beijing People’s Republic of China
| | - Pengjun Shi
- grid.410727.7 0000000105261937 Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute Chinese Academy of Agricultural Sciences No. 12 Zhongguancun South Street 100081 Beijing People’s Republic of China
| | - Huiying Luo
- grid.410727.7 0000000105261937 Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute Chinese Academy of Agricultural Sciences No. 12 Zhongguancun South Street 100081 Beijing People’s Republic of China
| | - Huoqing Huang
- grid.410727.7 0000000105261937 Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute Chinese Academy of Agricultural Sciences No. 12 Zhongguancun South Street 100081 Beijing People’s Republic of China
| | - Tao Tu
- grid.410727.7 0000000105261937 Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute Chinese Academy of Agricultural Sciences No. 12 Zhongguancun South Street 100081 Beijing People’s Republic of China
| | - Peilong Yang
- grid.410727.7 0000000105261937 Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute Chinese Academy of Agricultural Sciences No. 12 Zhongguancun South Street 100081 Beijing People’s Republic of China
| | - Bin Yao
- grid.410727.7 0000000105261937 Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute Chinese Academy of Agricultural Sciences No. 12 Zhongguancun South Street 100081 Beijing People’s Republic of China
| |
Collapse
|