1
|
Suzuki M, Date M, Kashiwagi T, Takahashi K, Nakamura A, Tanokura M, Suzuki E, Yokoyama K. Random mutagenesis and disulfide bond formation improved thermostability in microbial transglutaminase. Appl Microbiol Biotechnol 2024; 108:478. [PMID: 39354113 PMCID: PMC11445358 DOI: 10.1007/s00253-024-13304-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024]
Abstract
Microbial transglutaminase (MTG) from Streptomyces mobaraensis is widely used in the food and pharmaceutical industries for cross-linking and post-translational modification of proteins. It is believed that its industrial applications could be further broadened by improving its thermostability. In our previous study, we showed that the introduction of structure-based disulfide bonds improved the thermostability of MTG, and we succeeded in obtaining a thermostable mutant, D3C/G283C, with a T50 (incubation temperature at which 50% of the initial activity remains) 9 °C higher than that of wild-type MTG. In this study, we performed random mutations using D3C/G283C as a template and found several amino acid substitutions that contributed to the improvement of thermostability, and investigated a thermostable mutant (D3C/S101P/G157S/G250R/G283C) with three amino acid mutations in addition to the disulfide bond. The T50 of this mutant was 10 °C higher than that of the wild type, the optimal temperature for enzymatic reaction was increased to 65 °C compared to 50 °C for the wild type, and the catalytic efficiency (kcat/Km) at 37.0 °C was increased from 3.3 × 102 M-1 s-1 for the wild type to 5.9 × 102 M-1 s-1. X-ray crystallography of the D3C/G283C MTG showed no major structural differences against wild-type MTG. Structural differences were found that may contribute to thermostabilization and improve catalytic efficiency. KEY POINTS: • Improved heat resistance is essential to broaden the application of MTG. • The MTG mutant D3C/S101P/G157S/G250R/G283C showed improved thermostability. • X-ray crystallography of the disulfide bridge mutant D3C/G283C MTG was elucidated.
Collapse
Affiliation(s)
- Mototaka Suzuki
- Institute for Innovation, Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Shi, Kanagawa, 210-8681, Japan
| | - Masayo Date
- Institute for Innovation, Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Shi, Kanagawa, 210-8681, Japan
| | - Tatsuki Kashiwagi
- Institute for Innovation, Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Shi, Kanagawa, 210-8681, Japan
| | - Kazutoshi Takahashi
- Institute for Innovation, Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Shi, Kanagawa, 210-8681, Japan
| | - Akira Nakamura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113-8657, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113-8657, Japan
| | - Eiichiro Suzuki
- Institute for Innovation, Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Shi, Kanagawa, 210-8681, Japan
- Kihara Memorial Yokohama Foundation for the Advancement of Life Sciences Yokohama Bio Industry Center, 1-6 Suehiro-Cho, Yokohama, Tsurumi-Ku, 230-0045, Japan
| | - Keiichi Yokoyama
- Institute for Innovation, Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Shi, Kanagawa, 210-8681, Japan.
- R&B Planning Department, Ajinomoto Co., Inc., Tokyo, 104-8315, Japan.
| |
Collapse
|
2
|
Lerner A, Benzvi C, Vojdani A. The Frequently Used Industrial Food Process Additive, Microbial Transglutaminase: Boon or Bane. Nutr Rev 2024:nuae087. [PMID: 38960726 DOI: 10.1093/nutrit/nuae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024] Open
Abstract
Microbial transglutaminase (mTG) is a frequently consumed processed food additive, and use of its cross-linked complexes is expanding rapidly. It was designated as a processing aid and was granted the generally recognized as safe (GRAS) classification decades ago, thus avoiding thorough assessment according to current criteria of toxicity and public health safety. In contrast to the manufacturer's declarations and claims, mTG and/or its transamidated complexes are proinflammatory, immunogenic, allergenic, pathogenic, and potentially toxic, hence raising concerns for public health. Being a member of the transglutaminase family and functionally imitating the tissue transglutaminase, mTG was recently identified as a potential inducer of celiac disease. Microbial transglutaminase and its docked complexes have numerous detrimental effects. Those harmful aspects are denied by the manufacturers, who claim the enzyme is deactivated when heated or by gastric acidity, and that its covalently linked isopeptide bonds are safe. The present narrative review describes the potential side effects of mTG, highlighting its thermostability and activity over a broad pH range, thus, challenging the manufacturers' and distributers' safety claims. The national food regulatory authorities and the scientific community are urged to reevaluate mTG's GRAS status, prioritizing public health protection against the possible risks associated with this enzyme and its health-damaging consequences.
Collapse
Affiliation(s)
- Aaron Lerner
- Research Department, Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, 52621 Tel Hashomer, Israel
| | - Carina Benzvi
- Research Department, Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, 52621 Tel Hashomer, Israel
| | - Aristo Vojdani
- Research Department, Immunosciences Lab., Inc., Los Angeles, CA 90035, USA
| |
Collapse
|
3
|
Aqeel SM, Abdulqader AA, Du G, Liu S. Integrated strategies for efficient production of Streptomyces mobaraensis transglutaminase in Komagataella phaffii. Int J Biol Macromol 2024; 273:133113. [PMID: 38885870 DOI: 10.1016/j.ijbiomac.2024.133113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/21/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
Transglutaminase (TGase) from Streptomyces mobaraensis commonly used to improve protein-based foods due to its unique enzymatic reactions, which imply considerable attention in its production. Recently, TGase exhibit broad market potential in non-food industries. However, achieving efficient synthesis of TGase remains a significant challenge. Herein, we achieved a substantial amount of a fully functional and kinetically stable TGase produced by Komagataella phaffii (Pichia pastoris) using multiple strategies including Geneticin (G418) screening, combinatorial mutations, promoter optimization, and co-expression. The active TGase expression reached a maximum of 10.1 U mL-1 in shake flask upon 96 h of induction, which was 3.8-fold of the wild type. Also, the engineered strain exhibited a 6.4-fold increase in half-life and a 2-fold increase in specific activity, reaching 172.67 min at 60 °C (t1/2(60 °C)) and 65.3 U mg-1, respectively. Moreover, the high-cell density cultivation in 5-L fermenter was also applied to test the productivity at large scale. Following optimization at a fermenter, the secretory yield of TGase reached 47.96 U mL-1 in the culture supernatant. Given the complexity inherent in protein expression and secretion, our research is of great significance and offers a comprehensive guide for improving the production of a wide range of heterologous proteins.
Collapse
Affiliation(s)
- Sahibzada Muhammad Aqeel
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Al-Adeeb Abdulqader
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China.
| | - Song Liu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
4
|
Ariyoshi R, Matsuzaki T, Sato R, Minamihata K, Hayashi K, Koga T, Orita K, Nishioka R, Wakabayashi R, Goto M, Kamiya N. Engineering the Propeptide of Microbial Transglutaminase Zymogen: Enabling Substrate-Dependent Activation for Bioconjugation Applications. Bioconjug Chem 2024; 35:340-350. [PMID: 38421254 DOI: 10.1021/acs.bioconjchem.3c00544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Microbial transglutaminase (MTG) from Streptomyces mobaraensis is a powerful biocatalytic glue for site-specific cross-linking of a range of biomolecules and synthetic molecules that have an MTG-reactive moiety. The preparation of active recombinant MTG requires post-translational proteolytic digestion of a propeptide that functions as an intramolecular chaperone to assist the correct folding of the MTG zymogen (MTGz) in the biosynthesis. Herein, we report engineered active zymogen of MTG (EzMTG) that is expressed in soluble form in the host Escherichia coli cytosol and exhibits cross-linking activity without limited proteolysis of the propeptide. We found that the saturation mutagenesis of residues K10 or Y12 in the propeptide domain generated several active MTGz mutants. In particular, the K10D/Y12G mutant exhibited catalytic activity comparable to that of mature MTG. However, the expression level was low, possibly because of decreased chaperone activity and/or the promiscuous substrate specificity of MTG, which is potentially harmful to the host cells. The K10R/Y12A mutant exhibited specific substrate-dependent reactivity toward peptidyl substrates. Quantitative analysis of the binding affinity of the mutated propeptides to the active site of MTG suggested an inverse relationship between the binding affinity and the catalytic activity of EzMTG. Our proof-of-concept study provides insights into the design of a new biocatalyst using the MTGz as a scaffold and a potential route to high-throughput screening of EzMTG mutants for bioconjugation applications.
Collapse
Affiliation(s)
- Ryutaro Ariyoshi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Takashi Matsuzaki
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Ryo Sato
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Kosuke Minamihata
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Kounosuke Hayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Taisei Koga
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Kensei Orita
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Riko Nishioka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Rie Wakabayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
- Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
- Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| |
Collapse
|
5
|
Ye J, Yang P, Zhou J, Du G, Liu S. Efficient Production of a Thermostable Mutant of Transglutaminase by Streptomyces mobaraensis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4207-4216. [PMID: 38354706 DOI: 10.1021/acs.jafc.3c07621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The transglutaminase (TGase) from Streptomyces mobaraensis is widely used to improve the texture of protein-based foods. However, wild-type TGase is not heat-resistant, which is unfavorable for its application. In this study, we successfully constructed a S. mobaraensis strain that can efficiently produce TGm2, a thermostable mutant of S. mobaraensis TGase. First, S. mobaraensis DSM40587 was subjected to atmospheric room temperature plasma mutagenesis, generating mutant smY2022 with a 12.2-fold increase in TGase activity. Then, based on the double-crossover recombination, we replaced the coding sequence of the TGase with that of TGm2 in smY2022, obtaining the strain smY2022-TGm2. The extracellular TGase activity of smY2022-TGm2 reached 61.7 U/mL, 147% higher than that of smY2022. Finally, the catalytic properties of TGm2 were characterized. The half-life time at 60 °C and specific activity of TGm2 reached 64 min and 71.15 U/mg, 35.6- and 2.9-fold higher than those of the wild-type TGase, respectively. As indicated by SDS-PAGE analysis, TGm2 exhibited demonstrably better protein cross-linking ability than the wild-type TGase at 70 °C, although both enzymes shared a similar ability at 40 °C. With improved enzyme production and thermal stability, smY2022-TGm2 could be a competitive strain for the industrial production of transglutaminase.
Collapse
Affiliation(s)
- Jiacai Ye
- Engineering Research Center of Ministry of Education on Food Synthetic Biorheology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Penghui Yang
- Engineering Research Center of Ministry of Education on Food Synthetic Biorheology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biorheology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guocheng Du
- Engineering Research Center of Ministry of Education on Food Synthetic Biorheology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Song Liu
- Engineering Research Center of Ministry of Education on Food Synthetic Biorheology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
6
|
Kolotylo V, Piwowarek K, Kieliszek M. Microbiological transglutaminase: Biotechnological application in the food industry. Open Life Sci 2023; 18:20220737. [PMID: 37791057 PMCID: PMC10543708 DOI: 10.1515/biol-2022-0737] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 10/05/2023] Open
Abstract
Microbial transglutaminases (mTGs) belong to the family of global TGs, isolated and characterised by various bacterial strains, with the first being Streptomyces mobaraensis. This literature review also discusses TGs of animal and plant origin. TGs catalyse the formation of an isopeptide bond, cross-linking the amino and acyl groups. Due to its broad enzymatic activity, TG is extensively utilised in the food industry. The annual net growth in the utilisation of enzymes in the food processing industry is estimated to be 21.9%. As of 2020, the global food enzymes market was valued at around $2.3 billion USD (mTG market was estimated to be around $200 million USD). Much of this growth is attributed to the applications of mTG, benefiting both producers and consumers. In the food industry, TG enhances gelation and modifies emulsification, foaming, viscosity, and water-holding capacity. Research on TG, mainly mTG, provides increasing insights into the wide range of applications of this enzyme in various industrial sectors and promotes enzymatic processing. This work presents the characteristics of TGs, their properties, and the rationale for their utilisation. The review aims to provide theoretical foundations that will assist researchers worldwide in building a methodological framework and furthering the advancement of biotechnology research.
Collapse
Affiliation(s)
- Vitaliy Kolotylo
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159 C, 02-776Warsaw, Poland
| | - Kamil Piwowarek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159 C, 02-776Warsaw, Poland
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159 C, 02-776Warsaw, Poland
| |
Collapse
|
7
|
Abstract
The ability to site-selectively modify equivalent functional groups in a molecule has the potential to streamline syntheses and increase product yields by lowering step counts. Enzymes catalyze site-selective transformations throughout primary and secondary metabolism, but leveraging this capability for non-native substrates and reactions requires a detailed understanding of the potential and limitations of enzyme catalysis and how these bounds can be extended by protein engineering. In this review, we discuss representative examples of site-selective enzyme catalysis involving functional group manipulation and C-H bond functionalization. We include illustrative examples of native catalysis, but our focus is on cases involving non-native substrates and reactions often using engineered enzymes. We then discuss the use of these enzymes for chemoenzymatic transformations and target-oriented synthesis and conclude with a survey of tools and techniques that could expand the scope of non-native site-selective enzyme catalysis.
Collapse
Affiliation(s)
- Dibyendu Mondal
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Harrison M Snodgrass
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Christian A Gomez
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jared C Lewis
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
8
|
Yang P, Wang X, Ye J, Rao S, Zhou J, Du G, Liu S. Enhanced Thermostability and Catalytic Activity of Streptomyces mobaraenesis Transglutaminase by Rationally Engineering Its Flexible Regions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6366-6375. [PMID: 37039372 DOI: 10.1021/acs.jafc.3c00260] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Streptomyces mobaraenesis transglutaminase can catalyze the cross-linking of proteins, which has been widely used in food processing. In this study, we rationally modified flexible regions to further improve the thermostability of FRAPD-TGm2 (S2P-S23V-Y24N-E28T-S199A-A265P-A287P-K294L), a stable mutant of the transglutaminase constructed in our previous study. First, five flexible regions of FRAPD-TGm2 were identified by molecular dynamics simulations at 330 and 360 K. Second, a script based on Rosetta Cartesian_ddg was developed for virtual saturation mutagenesis within the flexible regions far from the substrate binding pocket, generating the top 18 mutants with remarkable decreases in folding free energy. Third, from the top 18 mutants, we identified two mutants (S116A and S179L) with increased thermostability and activity. Finally, the above favorable mutations were combined to obtain FRAPD-TGm2-S116A-S179L (FRAPD-TGm2A), exhibiting a half-life of 132.38 min at 60 °C (t1/2(60 °C)) and a specific activity of 79.15 U/mg, 84 and 21% higher than those of FRAPD-TGm2, respectively. Therefore, the current result may benefit the application of S. mobaraenesis transglutaminase at high temperatures.
Collapse
Affiliation(s)
- Penghui Yang
- Engineering Research Center of Ministry of Education on Food Synthetic Biorheology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xinglong Wang
- Engineering Research Center of Ministry of Education on Food Synthetic Biorheology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jiacai Ye
- Engineering Research Center of Ministry of Education on Food Synthetic Biorheology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shengqi Rao
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biorheology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guocheng Du
- Engineering Research Center of Ministry of Education on Food Synthetic Biorheology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Song Liu
- Engineering Research Center of Ministry of Education on Food Synthetic Biorheology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
9
|
Khim Chan S, Yi Lai J, Gan CY, Soon Lim T. A Semi-Rational Mutagenesis Approach For Improved Substrate Activity Of Microbial Transglutaminase. Food Chem 2023; 419:136070. [PMID: 37030209 DOI: 10.1016/j.foodchem.2023.136070] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/12/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
A higher specific activity of microbial transglutaminase (mTGase) is desirable for a broad range of applications ranging from food industry to biotechnology. Three-dimensional docking simulation of mTGase revealed that residues V65, W69, and Y75 were critical for substrate recognition. A semi-rational mutagenesis approach was applied to each residue to generate three separate mini mutant libraries. A high-throughput screening process identified five mutants that demonstrated improved specific activities than the wild type (WT) mTGase were isolated from the Y75 mini mutant library. Mutant Y75L showed approximately 60% increment in specific activity and improved substrate specificity. Conjugation of two heterologous single-chain fragment variable clones to generate a diabody with mutant Y75L was successfully performed and validated. This work demonstrates the successful application of semi-rational mutagenesis coupled with a high-throughput screening approach to identify mTGase mutants with improved specific activities and specificities which are beneficial for protein-protein conjugation.
Collapse
|
10
|
Song X, Sheng H, Zhou Y, Yu Y, He Y, Wang Z. Construction, expression, purification, characterization, and structural analysis of microbial transglutaminase variants. Biotechnol Appl Biochem 2022; 69:2486-2495. [PMID: 34894362 DOI: 10.1002/bab.2298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/30/2021] [Indexed: 12/27/2022]
Abstract
Microbial transglutaminase (MTG, EC 2.3.2.13) derived from Streptomyces mobaraensis is widely used in the food and pharmaceutical industry because of its ability to synthesize isopeptide bonds between the proteinogenic side chains of glutamine and lysine. The half-life (t1/2 ) of the activated wild-type enzyme at 60°C is 2 min. To improve the activity and thermostability of MTG for higher temperature application, three variants (Mut1, Mut2, and Mut3) were obtained by combining key amino acid mutations on the basis of previous research results. The best variant Mut2 with a specific combination of five of seven substitutions (S2P-S23V-Y24N-R215A-H289Y) shows a 10-fold increased half-life at 60°C (t1/2 = 27.6 min), and a 2.4-fold increased specific enzyme activity (39.3 U/mg). As measured by circular dichroism, the curve of Mut2 was basically the same as that of MTG-WT. The structural simulation of Mut2 shows that the overall structure is discoid with a crack, but the crack openings are wider than that of MTG-WT. Furthermore, structural analysis of Mut2 showed that there were seven hydrogen bonds and one π-anion interaction between Mut2 and its adjacent amino acids, and the number of hydrogen bonds was one more than that of MTG-WT (six hydrogen bonds).
Collapse
Affiliation(s)
- Xiaoping Song
- Department of Pharmacy, Anhui Medical College, Hefei, China.,Anhui Engineering Research Center of Recombinant Protein Pharmaceutical Biotechnology, School of Life Science, University of Science and Technology of China, Hefei, China
| | - Hefang Sheng
- Department of Pharmacy, Anhui Medical College, Hefei, China
| | - Yueqiao Zhou
- Department of Pharmacy, Anhui Medical College, Hefei, China
| | - Yin Yu
- Department of Pharmacy, Anhui Medical College, Hefei, China.,Anhui Engineering Research Center of Recombinant Protein Pharmaceutical Biotechnology, School of Life Science, University of Science and Technology of China, Hefei, China
| | - Yingjiao He
- Department of Pharmacy, Anhui Medical College, Hefei, China
| | - Zihan Wang
- Department of Pharmacy, Anhui Medical College, Hefei, China.,Anhui Engineering Research Center of Recombinant Protein Pharmaceutical Biotechnology, School of Life Science, University of Science and Technology of China, Hefei, China
| |
Collapse
|
11
|
Hore R, Alaneed R, Pietzsch M, Kressler J. Enzymatic HES conjugation with recombinant human erythropoietin via variant microbial transglutaminase TG
16. STARCH-STARKE 2022. [DOI: 10.1002/star.202200034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rana Hore
- Department of Chemistry Martin Luther University Halle‐Wittenberg Von‐Danckelmann‐Platz 4 Halle/Saale D‐06099 Germany
| | - Razan Alaneed
- Department of Chemistry Martin Luther University Halle‐Wittenberg Von‐Danckelmann‐Platz 4 Halle/Saale D‐06099 Germany
- Department of Pharmacy Martin Luther University Halle‐Wittenberg Weinbergweg 22 Halle/Saale D‐06120 Germany
| | - Markus Pietzsch
- Department of Pharmacy Martin Luther University Halle‐Wittenberg Weinbergweg 22 Halle/Saale D‐06120 Germany
| | - Jörg Kressler
- Department of Chemistry Martin Luther University Halle‐Wittenberg Von‐Danckelmann‐Platz 4 Halle/Saale D‐06099 Germany
| |
Collapse
|
12
|
Suzuki M, Date M, Kashiwagi T, Suzuki E, Yokoyama K. Rational design of a disulfide bridge increases the thermostability of microbial transglutaminase. Appl Microbiol Biotechnol 2022; 106:4553-4562. [PMID: 35729274 DOI: 10.1007/s00253-022-12024-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 11/02/2022]
Abstract
Microbial transglutaminase (MTG) has numerous industrial applications in the food and pharmaceutical sectors. Unfortunately, the thermostability of MTG is too low to tolerate the desired conditions used in many of these commercial processes. In a previous study, we used protein engineering to improve the thermostability of MTG. Specifically, we generated a T7C/E58C mutant of MTG from Streptomyces mobaraensis that displayed enhanced resistance to thermal inactivation. In this study, a rational structure-based approach was adopted to introduce a disulfide bridge to further increase the thermostability of MTG. In all, four new mutants, each containing a novel disulfide bond, were engineered. Of these four mutants, D3C/G283C showed the most promising thermostability with a significantly higher ∆T50 (defined as the temperature of incubation at which 50% of the initial activity remains) of + 9 °C by comparison to wild-type MTG. Indeed, D3C/G283C combined enhanced thermostability with a 2.1-fold increased half-life at 65 °C compared with the wild-type enzyme. By structure-based rational design, we were able to create an MTG variant which might be useful for expanding the scope of application in food. KEY POINTS: • Microbial transglutaminase (MTG) is an enzyme used in many food applications • The applicability of MTG to various industrial processes other than the food sector is being investigated • Improvement of thermostability was confirmed for the disulfide bridge mutant D3C/G283C.
Collapse
Affiliation(s)
- Mototaka Suzuki
- Institute for Innovation, Ajinomoto Co., Inc., 1-1, Suzuki-cho, Kawasaki-shi, Kanagawa, 210-8681, Japan
| | - Masayo Date
- Institute for Innovation, Ajinomoto Co., Inc., 1-1, Suzuki-cho, Kawasaki-shi, Kanagawa, 210-8681, Japan
| | - Tatsuki Kashiwagi
- Institute for Innovation, Ajinomoto Co., Inc., 1-1, Suzuki-cho, Kawasaki-shi, Kanagawa, 210-8681, Japan
| | - Eiichiro Suzuki
- Institute for Innovation, Ajinomoto Co., Inc., 1-1, Suzuki-cho, Kawasaki-shi, Kanagawa, 210-8681, Japan.,Kihara Memorial Yokohama Foundation for the Advancement of Life Sciences Yokohama, Bio Industry Center, 1-6 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Keiichi Yokoyama
- Institute for Innovation, Ajinomoto Co., Inc., 1-1, Suzuki-cho, Kawasaki-shi, Kanagawa, 210-8681, Japan. .,R&B Planning Department, Ajinomoto Co., Inc, Tokyo, 104-8315, Japan.
| |
Collapse
|
13
|
Enhancing the thermostability of transglutaminase from Streptomyces mobaraensis based on the rational design of a disulfide bond. Protein Expr Purif 2022; 195-196:106079. [DOI: 10.1016/j.pep.2022.106079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 11/22/2022]
|
14
|
Microbial Transglutaminase-Mediated Formation of Erythropoietin-Polyester Conjugates. J Biotechnol 2022; 346:1-10. [PMID: 35038459 DOI: 10.1016/j.jbiotec.2022.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 01/22/2023]
Abstract
Erythropoietin (EPO) is a glycoprotein hormone that has been used to treat anemia in patients with chronic kidney disease and in cancer patients who are receiving chemotherapy. Here, we investigated the accessibility of the glutamine (Gln, Q) residues of recombinant human erythropoietin (rHuEPO) towards a thermoresistant variant microbial transglutaminase (mTGase), TG16 with the aim of developing novel rHuEPO conjugates that may potentially enhance its biological efficacy. As a model bioconjugation, we studied the reactivity of rHuEPO towards TG16 with a low molar mass amine group containing substrate, monodansyl cadaverine (MDC). The reactions were carried out at a Tm of 54.3 °C, the transition temperature of rHuEPO. Characterization by SDS-PAGE and mass spectrometry confirmed the conjugates formation. Then, we examined the conjugation of rHuEPO with a biodegradable and biocompatible polyester, poly(D-sorbitol adipate) (PDSA). To achieve this, PDSA was enzymatically synthesized using lipase B from Candida antartica (CAL-B), chemically modified with side chains having free primary amine (NH2) groups that can be acyl acceptor substrate of TG16, thoroughly characterized by 1H NMR spectroscopy, and then applied for the TG16-mediated conjugation reaction with rHuEPO. rHuEPO conjugates generated by this approach were identified by SDS-PAGE proving that the amine-grafted PDSA is accepted as a substrate for TG16. The successful conjugation was further verified by the detection of high molar mass fluorescent bands after labelling of amine-grafted PDSA with rhodamine B-isothiocyanate. Overall, this enzymatic procedure is considered as an effective approach to prepare biodegradable rHuEPO-polymer conjugates even in the presence of N- and O-glycans.
Collapse
|
15
|
Wang X, Du J, Zhao B, Wang H, Rao S, Du G, Zhou J, Chen J, Liu S. Significantly Improving the Thermostability and Catalytic Efficiency of Streptomyces mobaraenesis Transglutaminase through Combined Rational Design. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15268-15278. [PMID: 34874715 DOI: 10.1021/acs.jafc.1c05256] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Streptomyces mobaraenesis transglutaminase has been widely used in food processing. We here significantly improved the catalytic properties of S2P-S23V-Y24N-S199A-K294L (TGm1), a highly stabilized variant of the transglutaminase. First, a virtual proline scan was performed based on folding free energy changes to obtain TGm1 variants with enhanced thermostability. Second, the residues within 15 Å of Cys64 in the enzyme-substrate complex of TGm1 were subjected to virtual saturation mutagenesis to generate the variants with reduced binding free energy and increased activity. After combining the favorable mutations, we obtained the variant FRAPD-TGm1-E28T-A265P-A287P (FRAPD-TGm2), exhibiting 66.9 min of half-life at 60 °C (t1/2(60 °C)), 67.8 °C of melting temperature (Tm), and 71.8 U/mg of specific activity, which are 2-fold, 2.6 °C, and 43.8% higher than those of FRAPD-TGm1, respectively. At last, to increase the surface negative net charge of FRAPD-TGm2, we introduced the mutations N96E-S144E-N163D-R183E-R208E-K325E, yielding FRAPD-TGm3. The latter's t1/2(60 °C), Tm, and specific activity were 122.9 min, 68.6 °C, and 83.7 U/mg, which are 83.8%, 0.8 °C, and 16.6% higher than the former, respectively. FRAPD-TGm3 is thus a robust candidate for transglutaminase application.
Collapse
Affiliation(s)
- Xinglong Wang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Jianhui Du
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Beichen Zhao
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Haiyan Wang
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Shengqi Rao
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 214122, China
| | - Guocheng Du
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 214122, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Jian Chen
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Song Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
16
|
Fuchsbauer HL. Approaching transglutaminase from Streptomyces bacteria over three decades. FEBS J 2021; 289:4680-4703. [PMID: 34102019 DOI: 10.1111/febs.16060] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/23/2021] [Accepted: 06/07/2021] [Indexed: 11/28/2022]
Abstract
Transglutaminases are protein cross-linking and protein-modifying enzymes that have attracted considerable interest due to their causal involvement in various diseases and versatility in industrial applications. In particular, microbial transglutaminases (MTG) from Streptomyces bacteria have managed in recent years to evolve from simple food additives to specialized enzymes for the site-directed modification of therapeutic proteins. The review summarizes relevant studies from the beginning dealing with the occurrence, production, structure, catalysis, and substrate molecules of MTG enzymes. It also addresses biotechnological procedures with MTG from S. mobaraensis (SmMTG) as the most prominent representative in focus. Reassessment of the available data revealed unexpected insights into catalysis of SmMTG and other transglutaminases, suggesting selection of glutamine donor proteins by subsites at the front vestibule and the existence of distinct lysine pockets. Flexibility of the SmMTG-accessible glutamine donor substrate regions seems to be more important than the glutamine environment. Nevertheless, residues in close vicinity to glutamines also determine interaction with the SmMTG subsites. The apparent lack of subsites for lysine donor proteins suggests self-assembly of the substrate proteins prior to enzymatic cross-linking. The study of natural substrate proteins, especially their mutual interaction, is proposed to further illuminate catalysis of SmMTG. To this end, structure and function of the characterized substrate proteins from S. mobaraensis are discussed in conclusion.
Collapse
Affiliation(s)
- Hans-Lothar Fuchsbauer
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt, Germany
| |
Collapse
|
17
|
Akbari M, Razavi SH, Kieliszek M. Recent advances in microbial transglutaminase biosynthesis and its application in the food industry. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Effect of introducing a disulfide bridge on the thermostability of microbial transglutaminase from Streptomyces mobaraensis. Appl Microbiol Biotechnol 2021; 105:2737-2745. [PMID: 33738551 DOI: 10.1007/s00253-021-11200-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 02/11/2021] [Accepted: 02/24/2021] [Indexed: 10/21/2022]
Abstract
Microbial transglutaminase (MTG) has been used extensively in academic research and the food industry through cross-linking or posttranslational modification of proteins. In our previous paper, the activity-increased MTG mutants were obtained by means of rational mutagenesis and random mutagenesis coupled with the newly developed screening system. In addition, the improvement of heat resistance of MTG is needed to expand further its industrial applications. Here, a structure-based rational enzyme engineering approach was applied to improve the thermostability of MTG by introducing an artificial disulfide bridge. As a result of narrowing down candidates using a rational approach, we successfully engineered a disulfide bridge into the N-terminal region of MTG by substituting Thr-7 and Glu-58 with cysteine. The T7C/E58C mutant was observed to have a de novo disulfide bridge and showed an increased melting temperature (Tm value) of 4.3 °C with retained enzymatic activity. To address the benefit-gained reason, we focused on the Cβ temperature factor of the amino-acid residues that might form a disulfide bridge in MTG. Introducing the disulfide bridge had no remarkable effect on the mutant aiming to stabilize the high temperature factor. On the other hand, the mutation was effective on the relatively stable region. The introduction of a disulfide bridge may therefore be effective to stabilize further the relatively stable part. This finding is considered to be useful for the rational design of mutants aiming at heat resistance of proteins.Key Points• Microbial transglutaminase (MTG) is used as a binder in the food industry.• MTG has the potential for use in the manufacturing of various commercial materials.• Enhanced thermostability was observed for the disulfide bridge mutant, T7C/G58C.
Collapse
|
19
|
Nagibina GS, Melnik TN, Glukhova KA, Uversky VN, Melnik BS. Intrinsic disorder-based design of stable globular proteins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 174:157-186. [PMID: 32828465 DOI: 10.1016/bs.pmbts.2020.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Directed stabilization of globular proteins via substitution of a minimal number of amino acid residues is one of the most complicated experimental tasks. In this work, we have successfully used algorithms for the evaluation of intrinsic disorder predisposition (such as PONDR® FIT and IsUnstruct) as tools for searching for the weakened regions in structured globular proteins. We have shown that the weakened regions found by these programs as regions with highest levels of predicted intrinsic disorder predisposition are a suitable target for introduction of stabilizing mutations.
Collapse
Affiliation(s)
- Galina S Nagibina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Tatiana N Melnik
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Ksenia A Glukhova
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States; Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow Region, Russia.
| | - Bogdan S Melnik
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia.
| |
Collapse
|
20
|
Nagibina GS, Glukhova KA, Uversky VN, Melnik TN, Melnik BS. Intrinsic Disorder-Based Design of Stable Globular Proteins. Biomolecules 2019; 10:E64. [PMID: 31906016 PMCID: PMC7022990 DOI: 10.3390/biom10010064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 11/24/2022] Open
Abstract
Directed stabilization of globular proteins via substitution of a minimal number of amino acid residues is one of the most complicated experimental tasks. This work summarizes our research on the effect of amino acid substitutions on the protein stability utilizing the outputs of the analysis of intrinsic disorder predisposition of target proteins. This allowed us to formulate the basis of one of the possible approaches to the stabilization of globular proteins. The idea is quite simple. To stabilize a protein as a whole, one needs to find its "weakest spot" and stabilize it, but the question is how this weak spot can be found in a query protein. Our approach is based on the utilization of the computational tools for the per-residue evaluation of intrinsic disorder predisposition to search for the "weakest spot" of a query protein (i.e., the region(s) with the highest local predisposition for intrinsic disorder). When such "weakest spot" is found, it can be stabilized through a limited number of point mutations by introducing order-promoting residues at hot spots, thereby increasing structural stability of a protein as a whole. Using this approach, we were able to obtain stable mutant forms of several globular proteins, such as Gαo, GFP, ribosome protein L1, and circular permutant of apical domain of GroEL.
Collapse
Affiliation(s)
- Galina S. Nagibina
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia; (G.S.N.); (K.A.G.); (T.N.M.)
| | - Ksenia A. Glukhova
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia; (G.S.N.); (K.A.G.); (T.N.M.)
| | - Vladimir N. Uversky
- Department of Molecular Medicine and Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA;
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Moscow Region, Russia
| | - Tatiana N. Melnik
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia; (G.S.N.); (K.A.G.); (T.N.M.)
| | - Bogdan S. Melnik
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia; (G.S.N.); (K.A.G.); (T.N.M.)
| |
Collapse
|
21
|
Alaneed R, Hauenschild T, Mäder K, Pietzsch M, Kressler J. Conjugation of Amine-Functionalized Polyesters With Dimethylcasein Using Microbial Transglutaminase. J Pharm Sci 2019; 109:981-991. [PMID: 31682828 DOI: 10.1016/j.xphs.2019.10.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 10/25/2022]
Abstract
Protein-polymer conjugates have been used as therapeutics because they exhibit frequently higher stability, prolonged in vivo half-life, and lower immunogenicity compared with native proteins. The first part of this report describes the enzymatic synthesis of poly(glycerol adipate) (PGA(M)) by transesterification between glycerol and dimethyl adipate using lipase B from Candida antarctica. PGA(M) is a hydrophilic, biodegradable but water insoluble polyester. By acylation, PGA(M) is modified with 6-(Fmoc-amino)hexanoic acid and with hydrophilic poly(ethylene glycol) side chains (mPEG12) rendering the polymer highly water soluble. This is followed by the removal of protecting groups, fluorenylmethyloxycarbonyl, to generate polyester with primary amine groups, namely PGA(M)-g-NH2-g-mPEG12. 1H NMR spectroscopy, FTIR spectroscopy, and gel permeation chromatography have been used to determine the chemical structure and polydispersity index of PGA(M) before and after modification. In the second part, we discuss the microbial transglutaminase-mediated conjugation of the model protein dimethylcasein with PGA(M)-g-NH2-g-mPEG12 under mild reaction conditions. SDS-PAGE proves the protein-polyester conjugation.
Collapse
Affiliation(s)
- Razan Alaneed
- Department of Physical Chemistry, Institute of Chemistry, Martin Luther University Halle-Wittenberg, D-06099 Halle/Saale, Germany; Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, D-06120 Halle/Saale, Germany
| | - Till Hauenschild
- Department of Physical Chemistry, Institute of Chemistry, Martin Luther University Halle-Wittenberg, D-06099 Halle/Saale, Germany
| | - Karsten Mäder
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, D-06120 Halle/Saale, Germany
| | - Markus Pietzsch
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, D-06120 Halle/Saale, Germany.
| | - Jörg Kressler
- Department of Physical Chemistry, Institute of Chemistry, Martin Luther University Halle-Wittenberg, D-06099 Halle/Saale, Germany.
| |
Collapse
|
22
|
Liu Y, Huang L, Shan M, Sang J, Li Y, Jia L, Wang N, Wang S, Shao S, Liu F, Lu F. Enhancing the activity and thermostability of Streptomyces mobaraensis transglutaminase by directed evolution and molecular dynamics simulation. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107333] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
23
|
Deweid L, Avrutina O, Kolmar H. Microbial transglutaminase for biotechnological and biomedical engineering. Biol Chem 2019; 400:257-274. [PMID: 30291779 DOI: 10.1515/hsz-2018-0335] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/04/2018] [Indexed: 12/17/2022]
Abstract
Research on bacterial transglutaminase dates back to 1989, when the enzyme has been isolated from Streptomyces mobaraensis. Initially discovered during an extensive screening campaign to reduce costs in food manufacturing, it quickly appeared as a robust and versatile tool for biotechnological and pharmaceutical applications due to its excellent activity and simple handling. While pioneering attempts to make use of its extraordinary cross-linking ability resulted in heterogeneous polymers, currently it is applied to site-specifically ligate diverse biomolecules yielding precisely modified hybrid constructs comprising two or more components. This review covers the extensive and rapidly growing field of microbial transglutaminase-mediated bioconjugation with the focus on pharmaceutical research. In addition, engineering of the enzyme by directed evolution and rational design is highlighted. Moreover, cumbersome drawbacks of this technique mainly caused by the enzyme's substrate indiscrimination are discussed as well as the ways to bypass these limitations.
Collapse
Affiliation(s)
- Lukas Deweid
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, D-64287 Darmstadt, Germany
| | - Olga Avrutina
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, D-64287 Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, D-64287 Darmstadt, Germany
| |
Collapse
|
24
|
Enzymatic activity and thermoresistance of improved microbial transglutaminase variants. Amino Acids 2019; 52:313-326. [DOI: 10.1007/s00726-019-02764-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 07/17/2019] [Indexed: 01/31/2023]
|
25
|
Bioengineering of microbial transglutaminase for biomedical applications. Appl Microbiol Biotechnol 2019; 103:2973-2984. [PMID: 30805670 DOI: 10.1007/s00253-019-09669-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/27/2019] [Accepted: 01/28/2019] [Indexed: 02/07/2023]
Abstract
Microbial transglutaminase (mTGase) is commonly known in the food industry as meat glue due to its incredible ability to "glue" meat proteins together. Aside from being widely exploited in the meat processing industries, mTGase is also widely applied in other food and textile industries by catalysing the formation of isopeptide bonds between peptides or protein substrates. The advancement of technology has opened up new avenues for mTGase in the field of biomedical engineering. Efforts have been made to study the structural properties of mTGase in order to gain an in-depth understanding of the structure-function relationship. This review highlights the developments in mTGase engineering together with its role in biomedical applications including biomaterial fabrication for tissue engineering and biotherapeutics.
Collapse
|
26
|
Ohtake K, Mukai T, Iraha F, Takahashi M, Haruna KI, Date M, Yokoyama K, Sakamoto K. Engineering an Automaturing Transglutaminase with Enhanced Thermostability by Genetic Code Expansion with Two Codon Reassignments. ACS Synth Biol 2018; 7:2170-2176. [PMID: 30063837 DOI: 10.1021/acssynbio.8b00157] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the present study, we simultaneously incorporated two types of synthetic components into microbial transglutaminase (MTG) from Streptoverticillium mobaraense to enhance the utility of this industrial enzyme. The first amino acid, 3-chloro-l-tyrosine, was incorporated into MTG in response to in-frame UAG codons to substitute for the 15 tyrosine residues separately. The two substitutions at positions 20 and 62 were found to each increase thermostability of the enzyme, while the seven substitutions at positions 24, 34, 75, 146, 171, 217, and 310 exhibited neutral effects. Then, these two stabilizing chlorinations were combined with one of the neutral ones, and the most stabilized variant was found to contain 3-chlorotyrosines at positions 20, 62, and 171, exhibiting a half-life 5.1-fold longer than that of the wild-type enzyme at 60 °C. Next, this MTG variant was further modified by incorporating the α-hydroxy acid analogue of Nε-allyloxycarbonyl-l-lysine (AlocKOH), specified by the AGG codon, at the end of the N-terminal inhibitory peptide. We used an Escherichia coli strain previously engineered to have a synthetic genetic code with two codon reassignments for synthesizing MTG variants containing both 3-chlorotyrosine and AlocKOH. The ester bond, thus incorporated into the main chain, efficiently self-cleaved under alkaline conditions (pH 11.0), achieving the autonomous maturation of the thermostabilized MTG. The results suggested that synthetic genetic codes with multiple codon reassignments would be useful for developing the novel designs of enzymes.
Collapse
Affiliation(s)
| | | | | | | | - Ken-ichi Haruna
- Institute for Innovation, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki 210-8681, Japan
| | - Masayo Date
- Institute for Innovation, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki 210-8681, Japan
| | - Keiichi Yokoyama
- Institute for Innovation, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki 210-8681, Japan
| | | |
Collapse
|
27
|
Deweid L, Neureiter L, Englert S, Schneider H, Deweid J, Yanakieva D, Sturm J, Bitsch S, Christmann A, Avrutina O, Fuchsbauer HL, Kolmar H. Directed Evolution of a Bond-Forming Enzyme: Ultrahigh-Throughput Screening of Microbial Transglutaminase Using Yeast Surface Display. Chemistry 2018; 24:15195-15200. [PMID: 30047596 DOI: 10.1002/chem.201803485] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Indexed: 12/12/2022]
Abstract
Microbial transglutaminase from Streptomyces mobaraensis (mTG) has emerged as a useful biotechnological tool due to its ability to crosslink a side chain of glutamine and primary amines. To date, the substrate specificity of mTG is not fully understood, which poses an obvious challenge when mTG is used to address novel targets. To that end, a viable strategy providing an access to tailor-made transglutaminases is required. This work reports an ultrahigh-throughput screening approach based on yeast surface display and fluorescence-activated cell sorting (FACS) that enabled the evolution of microbial transglutaminase towards enhanced activity. Five rounds of FACS screening followed by recombinant expression of the most potent variants in E. coli yielded variants that possessed, compared to the wild type enzyme, improved enzymatic performance and labeling behavior upon conjugation with an engineered therapeutic anti-HER2 antibody. This robust and generally applicable platform enables tailoring of the catalytic efficiency of mTG.
Collapse
Affiliation(s)
- Lukas Deweid
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Lara Neureiter
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Simon Englert
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Hendrik Schneider
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Jakob Deweid
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Desislava Yanakieva
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Janna Sturm
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Sebastian Bitsch
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Andreas Christmann
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Olga Avrutina
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Hans-Lothar Fuchsbauer
- Fachbereich Chemie- und Biotechnologie, Hochschule Darmstadt, Stephanstraße 7, 64295, Darmstadt, Germany
| | - Harald Kolmar
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| |
Collapse
|
28
|
Wan W, He D, Xue Z, Zhang Z. Specific mutation of transglutaminase gene from Streptomyces hygroscopicus H197 and characterization of microbial transglutaminase. J Biosci 2018; 42:537-546. [PMID: 29229872 DOI: 10.1007/s12038-017-9707-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Microbial transglutaminase (MTG) gene (mtg) from Streptomyces hygroscopicus H197 strain was cloned by PCR and mutated by deleting a specific 84 bp fragment using overlapping extension PCR. The mutant MTG and the wild MTG genes expressed by recombinant plasmid pET32a+- mutant mtg and pET32a+ -mtg, respectively, and were harvested by alternating freeze-thaw steps and purified by Ni column. The purified mutant MTG and the wild MTG exhibited 0.22 U/mg and 0.16 U/mg activity, respectively, and 0.69 U/mg and 0.54 U/mg activity, respectively, after activated by trypsin. The molecular weight of mutant MTG was estimated as 67 kDa by SDS-PAGE. Both MTGs showed optimum activity at pH 6-8 for hydroxamate formation from N-CBZ-Gln-Gly and hydroxylamine, and exhibited higher stability at 40°C and 1-3% salinity. The two types of MTG were not stable in the presence of Zn(II), Cu(II), Hg(II), Pb(II), Fe(III), and Ag(I), suggesting that they could possess a thiol group. In addition, the mutant MTG and the wild MTG were strongly affected by ethanol. Furthermore, the mutant MTG was obviously (P less than 0.05 or P less than 0.01) more stable than the wild MTG at 50°C and 60°C, at pH 4, 5, and 9, at 7 % and 9 % salinity, 30 % and 35 % ethanol concentration, and in the presence of Li(I) and Ag(I). The polyhydroxy compounds as protein stabilizers could elevate MTG stability.
Collapse
Affiliation(s)
- Wenjie Wan
- South-Central University for Nationalities, Wuhan 430070, People's Republic of China
| | | | | | | |
Collapse
|
29
|
Mu D, Lu J, Shu C, Li H, Li X, Cai J, Luo S, Yang P, Jiang S, Zheng Z. Improvement of the activity and thermostability of microbial transglutaminase by multiple-site mutagenesis. Biosci Biotechnol Biochem 2018; 82:106-109. [DOI: 10.1080/09168451.2017.1403881] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Abstract
Microbial transglutaminase (MTG) is an enzyme widely used in the food industry. Mutiple-site mutagenesis of Streptomyces mobaraensis transglutaminase was performed in Escherichia coli. According to enzymatic assay and thermostability study, among three penta-site MTG mutants (DM01-03), DM01 exhibited the highest enzymatic activity of 55.7 ± 1.4 U/mg and longest half-life at 50 °C (418.2 min) and 60 °C (24.8 min).
Collapse
Affiliation(s)
- Dongdong Mu
- School of Food Science and Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Jiaojiao Lu
- School of Food Science and Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| | - Chang Shu
- School of Food Science and Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| | - Haowen Li
- School of Food Science and Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| | - Xingjiang Li
- School of Food Science and Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| | - Jing Cai
- School of Food Science and Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| | - Shuizhong Luo
- School of Food Science and Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| | - Peizhou Yang
- School of Food Science and Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| | - Shaotong Jiang
- School of Food Science and Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| | - Zhi Zheng
- School of Food Science and Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, China
| |
Collapse
|
30
|
Ceresino EB, de Melo RR, Kuktaite R, Hedenqvist MS, Zucchi TD, Johansson E, Sato HH. Transglutaminase from newly isolated Streptomyces sp. CBMAI 1617: Production optimization, characterization and evaluation in wheat protein and dough systems. Food Chem 2017; 241:403-410. [PMID: 28958547 DOI: 10.1016/j.foodchem.2017.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 07/25/2017] [Accepted: 09/04/2017] [Indexed: 11/30/2022]
Abstract
The popularity of transglutaminase (TG) by the food industry and the variation in functionality of this enzyme from different origins, prompted us to isolate and evaluate a high-yielding TG strain. Through the statistical approaches, Plackett-Burman and response surface methodology, a low cost fermentation media was obtained to produce 6.074±0.019UmL-1 of TG from a novel source; Streptomyces sp. CBMAI 1617 (SB6). Its potential exploitation was compared to commonly used TG, from Streptomyces mobaraensis. Biochemical and FT-IR studies indicated differences between SB6 and commercial TG (Biobond™ TG-M). Additions of TG to wheat protein and flour based doughs revealed that the dough stretching depended on the wheat protein fraction, TG amount and its origin. A higher degree of cross-linking of glutenins and of inclusion of gliadin in the polymers was seen for SB6 as compared to commercial TG. Thus, our results support the potential of SB6 to tailor wheat protein properties within various food applications.
Collapse
Affiliation(s)
- Elaine B Ceresino
- Department of Food Science, School of Food Engineering, University of Campinas, Box 6121, 13083-862 Sao Paulo, SP, Brazil.
| | - Ricardo R de Melo
- Department of Food Science, School of Food Engineering, University of Campinas, Box 6121, 13083-862 Sao Paulo, SP, Brazil.
| | - Ramune Kuktaite
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, Box 104, SE-23053 Alnarp, Sweden.
| | - Mikael S Hedenqvist
- KTH Royal Institute of Technology, School of Chemical and Engineering, Fibre and Polymer Technology, SE-10044 Stockholm, Sweden.
| | - Tiago D Zucchi
- Department of Research & Development, Agrivalle, 13329-600 Salto, SP, Brazil.
| | - Eva Johansson
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, Box 104, SE-23053 Alnarp, Sweden.
| | - Helia H Sato
- Department of Food Science, School of Food Engineering, University of Campinas, Box 6121, 13083-862 Sao Paulo, SP, Brazil.
| |
Collapse
|
31
|
Steffen W, Ko FC, Patel J, Lyamichev V, Albert TJ, Benz J, Rudolph MG, Bergmann F, Streidl T, Kratzsch P, Boenitz-Dulat M, Oelschlaegel T, Schraeml M. Discovery of a microbial transglutaminase enabling highly site-specific labeling of proteins. J Biol Chem 2017; 292:15622-15635. [PMID: 28751378 PMCID: PMC5612097 DOI: 10.1074/jbc.m117.797811] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/26/2017] [Indexed: 12/21/2022] Open
Abstract
Microbial transglutaminases (MTGs) catalyze the formation of Gln–Lys isopeptide bonds and are widely used for the cross-linking of proteins and peptides in food and biotechnological applications (e.g. to improve the texture of protein-rich foods or in generating antibody-drug conjugates). Currently used MTGs have low substrate specificity, impeding their biotechnological use as enzymes that do not cross-react with nontarget substrates (i.e. as bio-orthogonal labeling systems). Here, we report the discovery of an MTG from Kutzneria albida (KalbTG), which exhibited no cross-reactivity with known MTG substrates or commonly used target proteins, such as antibodies. KalbTG was produced in Escherichia coli as soluble and active enzyme in the presence of its natural inhibitor ammonium to prevent potentially toxic cross-linking activity. The crystal structure of KalbTG revealed a conserved core similar to other MTGs but very short surface loops, making it the smallest MTG characterized to date. Ultra-dense peptide array technology involving a pool of 1.4 million unique peptides identified specific recognition motifs for KalbTG in these peptides. We determined that the motifs YRYRQ and RYESK are the best Gln and Lys substrates of KalbTG, respectively. By first reacting a bifunctionalized peptide with the more specific KalbTG and in a second step with the less specific MTG from Streptomyces mobaraensis, a successful bio-orthogonal labeling system was demonstrated. Fusing the KalbTG recognition motif to an antibody allowed for site-specific and ratio-controlled labeling using low label excess. Its site specificity, favorable kinetics, ease of use, and cost-effective production render KalbTG an attractive tool for a broad range of applications, including production of therapeutic antibody-drug conjugates.
Collapse
Affiliation(s)
- Wojtek Steffen
- From Roche Diagnostics GmbH, CPS, Nonnenwald 2, 82377 Penzberg, Germany,
| | - Fu Chong Ko
- From Roche Diagnostics GmbH, CPS, Nonnenwald 2, 82377 Penzberg, Germany
| | - Jigar Patel
- Roche Sequencing, NimbleGen, Madison, Wisconsin 53719, and
| | | | | | - Jörg Benz
- F. Hoffmann-La Roche Ltd., pRED, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Markus G Rudolph
- F. Hoffmann-La Roche Ltd., pRED, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Frank Bergmann
- From Roche Diagnostics GmbH, CPS, Nonnenwald 2, 82377 Penzberg, Germany
| | - Thomas Streidl
- From Roche Diagnostics GmbH, CPS, Nonnenwald 2, 82377 Penzberg, Germany
| | - Peter Kratzsch
- From Roche Diagnostics GmbH, CPS, Nonnenwald 2, 82377 Penzberg, Germany
| | | | | | - Michael Schraeml
- From Roche Diagnostics GmbH, CPS, Nonnenwald 2, 82377 Penzberg, Germany
| |
Collapse
|
32
|
Lv F, Cong X, Tang W, Han Y, Tang Y, Liu Y, Su L, Liu M, Jin M, Yi Z. Novel hemostatic agents based on gelatin-microbial transglutaminase mix. SCIENCE CHINA-LIFE SCIENCES 2017; 60:397-403. [PMID: 28321657 DOI: 10.1007/s11427-015-9019-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/17/2017] [Indexed: 12/17/2022]
Abstract
Hemostasis is a major challenge in surgical procedures and traumas. Conventional hemostatic methods have limited efficacy and may cause additional tissue damage. In this study, we designed a novel hemostatic agent based on the in situ gel formation of gelatin cross-linked by a novel microbial transglutaminase (mTGase), in which the amino acid sequences differed from commercial mTGases. The new hemostatic agent showed the same biochemical crosslinking chemistry as the final stages of the blood coagulation cascade while using gelatin as a "structural" protein (rather than fibrin) and a calcium-independent mTGase as the crosslinking catalyst (rather than factor XIIIa). In rat liver hemostasis models, the hemostatic agent not only showed a similar hemostatic effect as that of SURGIFLO® (positive control), but also stronger adhesion strength and elasticity than SURGIFLO®. Therefore, this biomimetic gelatin-mTGase mix hemostatic is a novel and effective surgical sealant.
Collapse
Affiliation(s)
- Fang Lv
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiaonan Cong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Wenshu Tang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yiming Han
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yu Tang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yongrui Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Liqiang Su
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Mingfei Jin
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Zhengfang Yi
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
33
|
Javitt G, Ben-Barak-Zelas Z, Jerabek-Willemsen M, Fishman A. Constitutive expression of active microbial transglutaminase in Escherichia coli and comparative characterization to a known variant. BMC Biotechnol 2017; 17:23. [PMID: 28245818 PMCID: PMC5331659 DOI: 10.1186/s12896-017-0339-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/15/2017] [Indexed: 01/11/2023] Open
Abstract
Background Microbial transglutaminase (mTG) is a robust enzyme catalyzing the formation of an isopeptide bond between glutamine and lysine residues. It has found use in food applications, pharmaceuticals, textiles, and biomedicine. Overexpression of soluble and active mTG in E. coli has been limited due to improper protein folding and requirement for proteolytic cleavage of the pro-domain. Furthermore, to integrate mTG more fully industrially and academically, thermostable and solvent-stable variants may be imperative. Results A novel expression system constitutively producing active mTG was designed. Wild-type (WT) mTG and a S2P variant had similar expression levels, comparable to previous studies. Kinetic constants were determined by a glutamate dehydrogenase-coupled assay, and the S2P variant showed an increased affinity and a doubled enzyme efficiency towards Z-Gln-Gly. The melting temperature (Tm) of the WT was determined by intrinsic fluorescence measurements to be 55.8 ± 0.1 °C and of the S2P variant to be 56.3 ± 0.4 °C and 45.5 ± 0.1 °C, showing a moderately different thermostability profile. Stability in water miscible organic solvents was determined for both the WT and S2P variant. Of the solvents tested, incubation of mTG in isopropanol for 24 h at 4 °C showed the strongest stabilizing effect with mTG retaining 61 and 72% activity for WT and S2P respectively in 70% isopropanol. Both enzymes also showed an increased initial activity in the presence of organic solvents with the highest activity increase in 40% DMSO. Nevertheless, both enzymes were inactivated in 70% of all organic solvents tested. Conclusions A constitutive expression system of active mTG in E. coli without downstream proteolytic cleavage processing was used for overexpression and characterization. High throughput techniques for testing thermostability and kinetics were useful in streamlining analysis and could be used in the future for quickly identifying beneficial mutants. Hitherto untested thermostability and stability of mTG in organic solvents was evaluated, which can pave the way for use of the enzyme in novel applications and processes.
Collapse
Affiliation(s)
- Gabe Javitt
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Zohar Ben-Barak-Zelas
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | | | - Ayelet Fishman
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel.
| |
Collapse
|
34
|
Fiebig D, Schmelz S, Zindel S, Ehret V, Beck J, Ebenig A, Ehret M, Fröls S, Pfeifer F, Kolmar H, Fuchsbauer HL, Scrima A. Structure of the Dispase Autolysis-inducing Protein from Streptomyces mobaraensis and Glutamine Cross-linking Sites for Transglutaminase. J Biol Chem 2016; 291:20417-26. [PMID: 27493205 DOI: 10.1074/jbc.m116.731109] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Indexed: 11/06/2022] Open
Abstract
Transglutaminase from Streptomyces mobaraensis (MTG) is an important enzyme for cross-linking and modifying proteins. An intrinsic substrate of MTG is the dispase autolysis-inducing protein (DAIP). The amino acid sequence of DAIP contains 5 potential glutamines and 10 lysines for MTG-mediated cross-linking. The aim of the study was to determine the structure and glutamine cross-linking sites of the first physiological MTG substrate. A production procedure was established in Escherichia coli BL21 (DE3) to obtain high yields of recombinant DAIP. DAIP variants were prepared by replacing four of five glutamines for asparagines in various combinations via site-directed mutagenesis. Incorporation of biotin cadaverine revealed a preference of MTG for the DAIP glutamines in the order of Gln-39 ≫ Gln-298 > Gln-345 ∼ Gln-65 ≫ Gln-144. In the structure of DAIP the preferred glutamines do cluster at the top of the seven-bladed β-propeller. This suggests a targeted cross-linking of DAIP by MTG that may occur after self-assembly in the bacterial cell wall. Based on our biochemical and structural data of the first physiological MTG substrate, we further provide novel insight into determinants of MTG-mediated modification, specificity, and efficiency.
Collapse
Affiliation(s)
- David Fiebig
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt, 64287 Darmstadt, Germany, and the Department of Chemistry and
| | - Stefan Schmelz
- From the Helmholtz-Centre for Infection Research, Braunschweig, 38124 Germany
| | - Stephan Zindel
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt, 64287 Darmstadt, Germany, and the Department of Chemistry and
| | - Vera Ehret
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt, 64287 Darmstadt, Germany, and
| | - Jan Beck
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt, 64287 Darmstadt, Germany, and the Department of Chemistry and
| | - Aileen Ebenig
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt, 64287 Darmstadt, Germany, and the Department of Chemistry and
| | - Marina Ehret
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt, 64287 Darmstadt, Germany, and
| | - Sabrina Fröls
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Felicitas Pfeifer
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | | | - Hans-Lothar Fuchsbauer
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt, 64287 Darmstadt, Germany, and
| | - Andrea Scrima
- From the Helmholtz-Centre for Infection Research, Braunschweig, 38124 Germany,
| |
Collapse
|
35
|
Rickert M, Strop P, Lui V, Melton-Witt J, Farias SE, Foletti D, Shelton D, Pons J, Rajpal A. Production of soluble and active microbial transglutaminase in Escherichia coli for site-specific antibody drug conjugation. Protein Sci 2015; 25:442-55. [PMID: 26481561 DOI: 10.1002/pro.2833] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 10/06/2015] [Accepted: 10/19/2015] [Indexed: 11/11/2022]
Abstract
Applications of microbial transglutaminase (mTGase) produced from Streptomyces mobarensis (S. mobarensis) were recently extended from food to pharmaceutical industry. To use mTGase for clinical applications, like generation of site specific antibody drug conjugates, it would be beneficial to manufacture mTGase in Escherichia coli (E. coli). To date, attempts to express recombinant soluble and active S. mobarensis mTGase have been largely unsuccessful. mTGase from S. mobarensis is naturally expressed as proenzyme and stepwise proteolytically processed into its active mature form outside of the bacterial cell. The pro-domain is essential for correct folding of mTGase as well as for inhibiting activity of mTGase inside the cell. Here, we report a genetically modified mTGase that has full activity and can be expressed at high yields in the cytoplasm of E. coli. To achieve this we performed an alanine-scan of the mTGase pro-domain and identified mutants that maintain its chaperone function but destabilize the cleaved pro-domain/mTGase interaction in a temperature dependent fashion. This allows proper folding of mTGase and keeps the enzyme inactive during expression at 20°C, but results in full activity when shifted to 37°C due to loosen domain interactions. The insertion of the 3C protease cleavage site together with pro-domain alanine mutants Tyr14, Ile24, or Asn25 facilitate high yields (30-75 mg/L), and produced an enzyme with activity identical to wild type mTGase from S. mobarensis. Site-specific antibody drug conjugates made with the E .coli produced mTGase demonstrated identical potency in an in vitro cell assay to those made with mTGase from S. mobarensis.
Collapse
Affiliation(s)
- Mathias Rickert
- Rinat Laboratories, Pfizer, Inc, 230 East Grand Avenue, South San Francisco, California, 94080, USA
| | - Pavel Strop
- Rinat Laboratories, Pfizer, Inc, 230 East Grand Avenue, South San Francisco, California, 94080, USA
| | - Victor Lui
- Rinat Laboratories, Pfizer, Inc, 230 East Grand Avenue, South San Francisco, California, 94080, USA
| | - Jody Melton-Witt
- Rinat Laboratories, Pfizer, Inc, 230 East Grand Avenue, South San Francisco, California, 94080, USA
| | - Santiago Esteban Farias
- Rinat Laboratories, Pfizer, Inc, 230 East Grand Avenue, South San Francisco, California, 94080, USA
| | - Davide Foletti
- Rinat Laboratories, Pfizer, Inc, 230 East Grand Avenue, South San Francisco, California, 94080, USA
| | | | - Jaume Pons
- Rinat Laboratories, Pfizer, Inc, 230 East Grand Avenue, South San Francisco, California, 94080, USA
| | - Arvind Rajpal
- Rinat Laboratories, Pfizer, Inc, 230 East Grand Avenue, South San Francisco, California, 94080, USA
| |
Collapse
|
36
|
Siegmund V, Schmelz S, Dickgiesser S, Beck J, Ebenig A, Fittler H, Frauendorf H, Piater B, Betz UAK, Avrutina O, Scrima A, Fuchsbauer H, Kolmar H. Locked by Design: A Conformationally Constrained Transglutaminase Tag Enables Efficient Site‐Specific Conjugation. Angew Chem Int Ed Engl 2015; 54:13420-4. [DOI: 10.1002/anie.201504851] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Vanessa Siegmund
- Clemens‐Schöpf‐Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich‐Weiss‐Straße 4, 64287 Darmstadt (Germany)
| | - Stefan Schmelz
- Arbeitsgruppe Strukturbiologie der Autophagie, Abteilung Struktur und Funktion der Proteine, Helmholtz‐Zentrum für Infektionsforschung, Inhoffenstr. 7, 38124 Braunschweig (Germany)
| | - Stephan Dickgiesser
- Clemens‐Schöpf‐Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich‐Weiss‐Straße 4, 64287 Darmstadt (Germany)
| | - Jan Beck
- Clemens‐Schöpf‐Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich‐Weiss‐Straße 4, 64287 Darmstadt (Germany)
| | - Aileen Ebenig
- Clemens‐Schöpf‐Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich‐Weiss‐Straße 4, 64287 Darmstadt (Germany)
| | - Heiko Fittler
- Clemens‐Schöpf‐Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich‐Weiss‐Straße 4, 64287 Darmstadt (Germany)
| | - Holm Frauendorf
- Institut für Organische und Biomolekulare Chemie, Zentrale Analytik/Massenspektrometrie, Georg‐August‐Universität Göttingen, Tammannstr. 2, 37077 Göttingen (Germany)
| | - Birgit Piater
- Merck KGaA, Frankfurterstr. 250, 64293 Darmstadt (Germany)
| | | | - Olga Avrutina
- Clemens‐Schöpf‐Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich‐Weiss‐Straße 4, 64287 Darmstadt (Germany)
| | - Andrea Scrima
- Arbeitsgruppe Strukturbiologie der Autophagie, Abteilung Struktur und Funktion der Proteine, Helmholtz‐Zentrum für Infektionsforschung, Inhoffenstr. 7, 38124 Braunschweig (Germany)
| | - Hans‐Lothar Fuchsbauer
- Fachbereich Chemie‐ und Biotechnologie, Hochschule Darmstadt, Schnittspahnstraße 12, 64287 Darmstadt (Germany)
| | - Harald Kolmar
- Clemens‐Schöpf‐Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich‐Weiss‐Straße 4, 64287 Darmstadt (Germany)
| |
Collapse
|
37
|
Siegmund V, Schmelz S, Dickgiesser S, Beck J, Ebenig A, Fittler H, Frauendorf H, Piater B, Betz UAK, Avrutina O, Scrima A, Fuchsbauer H, Kolmar H. Durch Design verbrückt: ein konformativ eingeschränkter Transglutaminase‐Marker ermöglicht effiziente ortsspezifische Konjugation. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201504851] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Vanessa Siegmund
- Clemens‐Schöpf‐Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich‐Weiss‐Straße 4, 64287 Darmstadt (Deutschland)
| | - Stefan Schmelz
- Arbeitsgruppe Strukturbiologie der Autophagie, Abteilung Struktur und Funktion der Proteine, Helmholtz‐Zentrum für Infektionsforschung, Braunschweig (Deutschland)
| | - Stephan Dickgiesser
- Clemens‐Schöpf‐Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich‐Weiss‐Straße 4, 64287 Darmstadt (Deutschland)
| | - Jan Beck
- Clemens‐Schöpf‐Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich‐Weiss‐Straße 4, 64287 Darmstadt (Deutschland)
| | - Aileen Ebenig
- Clemens‐Schöpf‐Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich‐Weiss‐Straße 4, 64287 Darmstadt (Deutschland)
| | - Heiko Fittler
- Clemens‐Schöpf‐Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich‐Weiss‐Straße 4, 64287 Darmstadt (Deutschland)
| | - Holm Frauendorf
- Institut für Organische und Biomolekulare Chemie, Zentrale Analytik/Massenspektrometrie, Universität Göttingen (Deutschland)
| | | | | | - Olga Avrutina
- Clemens‐Schöpf‐Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich‐Weiss‐Straße 4, 64287 Darmstadt (Deutschland)
| | - Andrea Scrima
- Arbeitsgruppe Strukturbiologie der Autophagie, Abteilung Struktur und Funktion der Proteine, Helmholtz‐Zentrum für Infektionsforschung, Braunschweig (Deutschland)
| | | | - Harald Kolmar
- Clemens‐Schöpf‐Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich‐Weiss‐Straße 4, 64287 Darmstadt (Deutschland)
| |
Collapse
|
38
|
Malešević M, Migge A, Hertel TC, Pietzsch M. A fluorescence-based array screen for transglutaminase substrates. Chembiochem 2015; 16:1169-74. [PMID: 25940638 DOI: 10.1002/cbic.201402709] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Indexed: 01/05/2023]
Abstract
Transglutaminases (EC 2.3.2.13) form an enzyme family that catalyzes the formation of isopeptide bonds between the γ-carboxamide group of glutamine and the ε-amine group of lysine residues of peptides and proteins. Other primary amines can be accepted in place of lysine. Because of their important physiological and pathophysiological functions, transglutaminases have been studied for 60 years. However, the substrate preferences of this enzyme class remain largely elusive. In this study, we used focused combinatorial libraries of 400 peptides to investigate the influence of the amino acids adjacent to the glutamine and lysine residues on the catalysis of isopeptide bond formation by microbial transglutaminase. Using the peptide microarray technology we found a strong positive influence of hydrophobic and basic amino acids, especially arginine, tyrosine, and leucine. Several tripeptide substrates were synthesized, and enzymatic kinetic parameters were determined both by microarray analysis and in solution.
Collapse
Affiliation(s)
- Miroslav Malešević
- Institute of Biochemistry and Biotechnology, Department of Enzymology, Project Group gFP5, Martin Luther University Halle-Wittenberg, Weinbergweg 22, 06120 Halle/Saale (Germany)
| | - Andreas Migge
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Faculty of Sciences I, Biosciences, Martin Luther University Halle-Wittenberg, Weinbergweg 22, 06120 Halle/Saale (Germany)
| | - Thomas C Hertel
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Faculty of Sciences I, Biosciences, Martin Luther University Halle-Wittenberg, Weinbergweg 22, 06120 Halle/Saale (Germany)
| | - Markus Pietzsch
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Faculty of Sciences I, Biosciences, Martin Luther University Halle-Wittenberg, Weinbergweg 22, 06120 Halle/Saale (Germany).
| |
Collapse
|
39
|
Kieliszek M, Misiewicz A. Microbial transglutaminase and its application in the food industry. A review. Folia Microbiol (Praha) 2013; 59:241-50. [PMID: 24198201 PMCID: PMC3971462 DOI: 10.1007/s12223-013-0287-x] [Citation(s) in RCA: 234] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 10/14/2013] [Indexed: 12/19/2022]
Abstract
The extremely high costs of manufacturing transglutaminase from animal origin (EC 2.3.2.13) have prompted scientists to search for new sources of this enzyme. Interdisciplinary efforts have been aimed at producing enzymes synthesised by microorganisms which may have a wider scope of use. Transglutaminase is an enzyme that catalyses the formation of isopeptide bonds between proteins. Its cross-linking property is widely used in various processes: to manufacture cheese and other dairy products, in meat processing, to produce edible films and to manufacture bakery products. Transglutaminase has considerable potential to improve the firmness, viscosity, elasticity and water-binding capacity of food products. In 1989, microbial transglutaminase was isolated from Streptoverticillium sp. Its characterisation indicated that this isoform could be extremely useful as a biotechnological tool in the food industry. Currently, enzymatic preparations are used in almost all industrial branches because of their wide variety and low costs associated with their biotechnical production processes. This paper presents an overview of the literature addressing the characteristics and applications of transglutaminase.
Collapse
Affiliation(s)
- Marek Kieliszek
- Department of Microbiology, Institute of Agricultural and Food Biotechnology, Rakowiecka, 36 St., 02-532, Warsaw, Poland,
| | | |
Collapse
|
40
|
Rachel NM, Pelletier JN. Biotechnological applications of transglutaminases. Biomolecules 2013; 3:870-88. [PMID: 24970194 PMCID: PMC4030973 DOI: 10.3390/biom3040870] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 10/10/2013] [Accepted: 10/11/2013] [Indexed: 12/28/2022] Open
Abstract
In nature, transglutaminases catalyze the formation of amide bonds between proteins to form insoluble protein aggregates. This specific function has long been exploited in the food and textile industries as a protein cross-linking agent to alter the texture of meat, wool, and leather. In recent years, biotechnological applications of transglutaminases have come to light in areas ranging from material sciences to medicine. There has also been a substantial effort to further investigate the fundamentals of transglutaminases, as many of their characteristics that remain poorly understood. Those studies also work towards the goal of developing transglutaminases as more efficient catalysts. Progress in this area includes structural information and novel chemical and biological assays. Here, we review recent achievements in this area in order to illustrate the versatility of transglutaminases.
Collapse
Affiliation(s)
- Natalie M Rachel
- Chimie, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, Québec, H3T 1J4, Canada.
| | - Joelle N Pelletier
- Chimie, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, Québec, H3T 1J4, Canada.
| |
Collapse
|
41
|
Chen K, Liu S, Wang G, Zhang D, Du G, Chen J, Shi Z. Enhancement of Streptomyces transglutaminase activity and pro-peptide cleavage efficiency by introducing linker peptide in the C-terminus of the pro-peptide. ACTA ACUST UNITED AC 2013; 40:317-25. [DOI: 10.1007/s10295-012-1221-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 11/30/2012] [Indexed: 01/05/2023]
Abstract
Abstract
Streptomyces transglutaminase (TGase) has been widely used in food, pharmaceutical and textile industries. Streptomyces TGase is naturally synthesized as zymogen (pro-TGase), which is then processed to produce active enzyme by removing its N-terminal pro-peptide. Although the pro-peptide is essential for TGase folding and secretion, few studies have been reported on improving the properties of TGase by pro-peptide engineering. In this study, we developed a new approach to improve the properties of TGase based on pro-peptide engineering. When the α-helix37G−42S in pro-peptide was substituted with three glycines and three alanines respectively, the mutants exhibited higher specific activity and the efficiency of pro-peptide cleavage was enhanced. To further improve the properties of TGase, relevant mutations were constructed by introducing linker peptides in the C-terminus of the pro-peptide. Mutants with GS (GGGGS) and PT (PTPPTTPT) linker peptide exhibited 1.28 fold and 1.5 fold higher specific activity than the wild-type enzyme, respectively. This new method could be used to improve the properties of TGase by pro-peptide modification, which is a promising technology for creating unique TGase with various beneficial properties.
Collapse
Affiliation(s)
- Kangkang Chen
- grid.258151.a 0000000107081323 School of Biotechnology Jiangnan University 1800 Lihu Road 214122 Wuxi China
- grid.258151.a 0000000107081323 Key Laboratory of Industrial Biotechnology, Ministry of Education Jiangnan University Wuxi China
| | - Song Liu
- grid.258151.a 0000000107081323 School of Biotechnology Jiangnan University 1800 Lihu Road 214122 Wuxi China
- grid.258151.a 0000000107081323 Key Laboratory of Industrial Biotechnology, Ministry of Education Jiangnan University Wuxi China
| | - Guangsheng Wang
- grid.258151.a 0000000107081323 School of Biotechnology Jiangnan University 1800 Lihu Road 214122 Wuxi China
| | - Dongxu Zhang
- grid.258151.a 0000000107081323 School of Biotechnology Jiangnan University 1800 Lihu Road 214122 Wuxi China
- grid.258151.a 0000000107081323 State Key Laboratory of Food Science and Technology Jiangnan University Wuxi China
| | - Guocheng Du
- grid.258151.a 0000000107081323 School of Biotechnology Jiangnan University 1800 Lihu Road 214122 Wuxi China
- grid.258151.a 0000000107081323 The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education Jiangnan University Wuxi China
| | - Jian Chen
- grid.258151.a 0000000107081323 School of Biotechnology Jiangnan University 1800 Lihu Road 214122 Wuxi China
- grid.258151.a 0000000107081323 National Engineering Laboratory for Cereal Fermentation Technology Jiangnan University Wuxi China
| | - Zhongping Shi
- grid.258151.a 0000000107081323 School of Biotechnology Jiangnan University 1800 Lihu Road 214122 Wuxi China
- grid.258151.a 0000000107081323 Key Laboratory of Industrial Biotechnology, Ministry of Education Jiangnan University Wuxi China
| |
Collapse
|
42
|
Chen K, Liu S, Ma J, Zhang D, Shi Z, Du G, Chen J. Deletion combined with saturation mutagenesis of N-terminal residues in transglutaminase from Streptomyces hygroscopicus results in enhanced activity and thermostability. Process Biochem 2012. [DOI: 10.1016/j.procbio.2012.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Sommer C, Hertel TC, Schmelzer CEH, Pietzsch M. Investigations on the activation of recombinant microbial pro-transglutaminase: in contrast to proteinase K, dispase removes the histidine-tag. Amino Acids 2011; 42:997-1006. [DOI: 10.1007/s00726-011-1016-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 06/13/2011] [Indexed: 11/24/2022]
|
44
|
Buettner K, Hertel TC, Pietzsch M. Increased thermostability of microbial transglutaminase by combination of several hot spots evolved by random and saturation mutagenesis. Amino Acids 2011; 42:987-96. [PMID: 21863232 DOI: 10.1007/s00726-011-1015-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 06/13/2011] [Indexed: 10/17/2022]
Abstract
The thermostability of microbial transglutaminase (MTG) of Streptomyces mobaraensis was further improved by saturation mutagenesis and DNA-shuffling. High-throughput screening was used to identify clones with increased thermostability at 55°C. Saturation mutagenesis was performed at seven "hot spots", previously evolved by random mutagenesis. Mutations at four positions (2, 23, 269, and 294) led to higher thermostability. The variants with single amino acid exchanges comprising the highest thermostabilities were combined by DNA-shuffling. A library of 1,500 clones was screened and variants showing the highest ratio of activities after incubation for 30 min at 55°C relative to a control at 37°C were selected. 116 mutants of this library showed an increased thermostability and 2 clones per deep well plate were sequenced (35 clones). 13 clones showed only the desired sites without additional point mutations and eight variants were purified and characterized. The most thermostable mutant (triple mutant S23V-Y24N-K294L) exhibited a 12-fold higher half-life at 60°C and a 10-fold higher half-life at 50°C compared to the unmodified recombinant wild-type enzyme. From the characterization of different triple mutants differing only in one amino acid residue, it can be concluded that position 294 is especially important for thermostabilization. The simultaneous exchange of amino acids at sites 23, 24, 269 and 289 resulted in a MTG-variant with nearly twofold higher specific activity and a temperature optimum of 55°C. A triple mutant with amino acid substitutions at sites 2, 289 and 294 exhibits a temperature optimum of 60°C, which is 10°C higher than that of the wild-type enzyme.
Collapse
Affiliation(s)
- Karin Buettner
- Department of Downstream Processing, Institute of Pharmacy, Faculty of Sciences I, Martin Luther University Halle-Wittenberg, 06099, Halle (Saale), Germany
| | | | | |
Collapse
|
45
|
Sommer C, Volk N, Pietzsch M. Model based optimization of the fed-batch production of a highly active transglutaminase variant in Escherichia coli. Protein Expr Purif 2010; 77:9-19. [PMID: 21168505 DOI: 10.1016/j.pep.2010.12.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 12/06/2010] [Accepted: 12/13/2010] [Indexed: 11/18/2022]
Abstract
A process for the production of a thermostable variant of a microbial transglutaminase was developed. The transglutaminase variant produced, carried a single amino acid exchange (serine replaced by proline at position 2) and showed a nearly doubled specific activity of 46.1 Umg(-1) compared to the wild-type enzyme. Based on a model based optimization strategy, intracellular soluble production in Escherichia coli was optimized. After parameter identification and only two fed-batch cultivations, a space time yield of 1438 U(TG)L(-1)h(-1) was obtained which is 175% higher than the highest values published so far (extracellular production using Corynebacterium ammoniagenes). High carbon source concentrations during expression were found to increase the product formation. Prior to the fed-batch cultivation, the host strain was adapted from complex medium to minimal medium by serial dilution. Upon transfer to the minimal medium, initially the maximal growth rate dropped to 0.13 h(-1). After the six consecutive cultivations the rate increased to 0.47 h(-1) and the portion of the complex medium was reduced to 1 ppm. Using the adapted cells, temperature after induction and IPTG-concentration were investigated by satellite batch cultivation according to a Design of Experiment (DoE) plan. The product yield was strongly influenced by the temperature after induction but not by the inductor concentration. The highest specific activity of 1386 Ug(-1) bio dry mass was obtained at 29°C and 0.7 mM IPTG.
Collapse
Affiliation(s)
- Christian Sommer
- Department of Downstream Processing, Institute of Pharmacy, Faculty of Sciences I, Martin Luther University Halle-Wittenberg, 06099 Halle, Saale, Germany
| | | | | |
Collapse
|
46
|
Yokoyama K, Utsumi H, Nakamura T, Ogaya D, Shimba N, Suzuki E, Taguchi S. Screening for improved activity of a transglutaminase from Streptomyces mobaraensis created by a novel rational mutagenesis and random mutagenesis. Appl Microbiol Biotechnol 2010; 87:2087-96. [DOI: 10.1007/s00253-010-2656-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 04/24/2010] [Accepted: 04/27/2010] [Indexed: 11/30/2022]
|
47
|
Patzsch K, Riedel K, Pietzsch M. Parameter Optimization of Protein Film Production Using Microbial Transglutaminase. Biomacromolecules 2010; 11:896-903. [DOI: 10.1021/bm901248d] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Katja Patzsch
- Department of Downstream Processing, Institute of Pharmacy, Faculty of Sciences I, Martin Luther University Halle-Wittenberg, 06099 Halle (Saale), Germany
| | - Kristin Riedel
- Department of Downstream Processing, Institute of Pharmacy, Faculty of Sciences I, Martin Luther University Halle-Wittenberg, 06099 Halle (Saale), Germany
| | - Markus Pietzsch
- Department of Downstream Processing, Institute of Pharmacy, Faculty of Sciences I, Martin Luther University Halle-Wittenberg, 06099 Halle (Saale), Germany
| |
Collapse
|
48
|
Jang MK, Lee SW, Lee DG, Kim NY, Yu KH, Jang HJ, Kim S, Kim A, Lee SH. Enhancement of the thermostability of a recombinant beta-agarase, AgaB, from Zobellia galactanivorans by random mutagenesis. Biotechnol Lett 2010; 32:943-9. [PMID: 20213521 DOI: 10.1007/s10529-010-0237-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 02/19/2010] [Indexed: 11/26/2022]
Abstract
Random mutagenesis was performed on beta-agarase, AgaB, from Zobellia galactanivorans to improve its catalytic activity and thermostability. The activities of three mutants E99K, T307I and E99K-T307I were approx. 140, 190 and 200%, respectively, of wild type beta-agarase (661 U/mg) at 40 degrees C. All three mutant enzymes were stable up to 50 degrees C and E99K-T307I had the highest thermostability. The melting temperature (Tm) of E99K-T307I, determined by CD spectra, was increased by 5.2 degrees C over that of the wild-type enzyme (54.6 degrees C). Activities of both the wild-type and E99K-T307I enzymes, as well as their overall thermostabilities, increased in 1 mM CaCl2. The E99K-T307I enzyme was stable at 55 degrees C with 1 mM CaCl2, reaching 260% of the activity the wild-type enzyme held at 40 degrees C without CaCl2.
Collapse
Affiliation(s)
- Min-Kyung Jang
- Department of Pharmaceutical Engineering, College of Medical Life Sciences, Silla University, Busan, 617-736, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Büttner K, Marx C, Hertel T, Pietzsch M. Optimierung einer rekombinanten mikrobiellen Transglutaminase. CHEM-ING-TECH 2010. [DOI: 10.1002/cite.200900104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
50
|
Zhao X, Shaw AC, Wang J, Chang CC, Deng J, Su J. A Novel High-Throughput Screening Method for Microbial Transglutaminases with High Specificity toward Gln141 of Human Growth Hormone. ACTA ACUST UNITED AC 2010; 15:206-12. [DOI: 10.1177/1087057109356206] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PEGylation modification has been used to improve the pharmacokinetic properties of protein-based drugs. For example, PEGylated human growth hormone (hGH) has been shown to exhibit better pharmacokinetic profiles than the unmodified hGH. Unlike chemical PEGylation of hGH that is difficult to be controlled to result in homogeneity, microbial transglutaminase (mTGase) only conjugates poly(ethelene glycol) (PEG) on glutamine-40 (Q40) and glutamine-141 (Q141) of hGH, the only glutamine residues exposed. Yet, an mTGase that can selectively conjugate PEG to only 1 glutamine residue is more desirable to control the homogeneity of the product. In this study, the authors have developed a novel high-throughput assay, with which they have identified 5 mTGase mutants that are highly specific for conjugating PEG to Q141 of hGH. In this scintillation proximity assay (SPA)–based method, the authors have (1) achieved a high expression level of active mTGase, which is toxic to the living cell, directly from Escherichia coli (0.2 U/mL/OD600) by in vivo activation; (2) developed a high-throughput affinity purification method to eliminate the strong interference of cellular protein to mTGase reaction; and (3) used therapeutic protein as the substrate. This method is highly sensitive, is easily automated, and could be generally applied to screening mTGases with desired specificity targeting on different therapeutic proteins.
Collapse
Affiliation(s)
- Xin Zhao
- Beijing Novo Nordisk Pharmaceuticals Sci & Tech Co. Ltd., Beijing, China
| | - Allan C. Shaw
- Department of Protein Expression, Novo Nordisk A/S, Måløv, Denmark
| | - Jianhua Wang
- Beijing Novo Nordisk Pharmaceuticals Sci & Tech Co. Ltd., Beijing, China
| | - Chih-Chuan Chang
- Beijing Novo Nordisk Pharmaceuticals Sci & Tech Co. Ltd., Beijing, China
| | - Jianhui Deng
- Beijing Novo Nordisk Pharmaceuticals Sci & Tech Co. Ltd., Beijing, China
| | - Jing Su
- Beijing Novo Nordisk Pharmaceuticals Sci & Tech Co. Ltd., Beijing, China
| |
Collapse
|