1
|
Fonseca FCDA, Antonino JD, de Moura SM, Rodrigues-Silva PL, Macedo LLP, Gomes Júnior JE, Lourenço-Tessuti IT, Lucena WA, Morgante CV, Ribeiro TP, Monnerat RG, Rodrigues MA, Cuccovia IM, Mattar Silva MC, Grossi-de-Sa MF. In vivo and in silico comparison analyses of Cry toxin activities toward the sugarcane giant borer. BULLETIN OF ENTOMOLOGICAL RESEARCH 2023; 113:335-346. [PMID: 36883802 DOI: 10.1017/s000748532200061x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The sugarcane giant borer, Telchin licus licus, is an insect pest that causes significant losses in sugarcane crops and in the sugar-alcohol sector. Chemical and manual control methods are not effective. As an alternative, in the current study, we have screened Bacillus thuringiensis (Bt) Cry toxins with high toxicity against this insect. Bioassays were conducted to determine the activity of four Cry toxins (Cry1A (a, b, and c) and Cry2Aa) against neonate T. licus licus larvae. Notably, the Cry1A family toxins had the lowest LC50 values, in which Cry1Ac presented 2.1-fold higher activity than Cry1Aa, 1.7-fold larger than Cry1Ab, and 9.7-fold larger than Cry2Aa toxins. In silico analyses were performed as a perspective to understand putative interactions between T. licus licus receptors and Cry1A toxins. The molecular dynamics and docking analyses for three putative aminopeptidase N (APN) receptors (TlAPN1, TlAPN3, and TlAPN4) revealed evidence for the amino acids that may be involved in the toxin-receptor interactions. Notably, the properties of Cry1Ac point to an interaction site that increases the toxin's affinity for the receptor and likely potentiate toxicity. The interacting amino acid residues predicted for Cry1Ac in this work are probably those shared by the other Cry1A toxins for the same region of APNs. Thus, the presented data extend the existing knowledge of the effects of Cry toxins on T. licus licus and should be considered in further development of transgenic sugarcane plants resistant to this major occurring insect pest in sugarcane fields.
Collapse
Affiliation(s)
- Fernando Campos de Assis Fonseca
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
- Biology Cellular Department, Federal University of Brasília (UnB), Brasília, DF, Brazil
- Federal Institut of Goias (IFG), Águas Lindas, GO, Brazil
| | - José Dijair Antonino
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
- Biology Cellular Department, Federal University of Brasília (UnB), Brasília, DF, Brazil
- Federal Rural University of Pernambuco (UFRPE), Recife, PE, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil
| | - Stéfanie Menezes de Moura
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil
| | - Paolo Lucas Rodrigues-Silva
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil
| | - Leonardo Lima Pepino Macedo
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil
| | - José Edílson Gomes Júnior
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
- Biology Cellular Department, Federal University of Brasília (UnB), Brasília, DF, Brazil
| | - Isabela Tristan Lourenço-Tessuti
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil
| | - Wagner Alexandre Lucena
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil
| | - Carolina Viana Morgante
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil
- Embrapa Semiarid, Petrolina, PE, Brazil
| | - Thuanne Pires Ribeiro
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil
| | | | | | | | - Maria Cristina Mattar Silva
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil
| | - Maria Fatima Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil
- Catholic University of Brasília, Brasília, DF, Brazil
| |
Collapse
|
2
|
Khorramnejad A, Bel Y, Talaei-Hassanloui R, Escriche B. Activation of Bacillus thuringiensis Cry1I to a 50 kDa stable core impairs its full toxicity to Ostrinia nubilalis. Appl Microbiol Biotechnol 2022; 106:1745-1758. [PMID: 35138453 PMCID: PMC8882101 DOI: 10.1007/s00253-022-11808-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/28/2021] [Accepted: 01/26/2022] [Indexed: 11/30/2022]
Abstract
Bacillus thuringiensis Cry1I insecticidal proteins are structurally similar to other three-domain Cry proteins, although their size, activity spectrum, and expression at the stationary phase are unique among other members of the Cry1 family. The mode of action of Cry1 proteins is not completely understood but the existence of an activation step prior to specific binding is widely accepted. In this study, we attempted to characterize and determine the importance of the activation process in the mode of action of Cry1I, as Cry1Ia protoxin or its partially processed form showed significantly higher toxicity to Ostrinia nubilalis than the fully processed protein either activated with trypsin or with O. nubilalis midgut juice. Oligomerization studies showed that Cry1Ia protoxin, in solution, formed dimers spontaneously, and the incubation of Cry1Ia protoxin with O. nubilalis brush border membrane vesicles (BBMV) promoted the formation of dimers of the partially processed form. While no oligomerization of fully activated proteins after incubation with BBMV was detected. The results of the in vitro competition assays showed that both the Cry1Ia protoxin and the approx. 50 kDa activated proteins bind specifically to the O. nubilalis BBMV and compete for the same binding sites. Accordingly, the in vivo binding competition assays show a decrease in toxicity following the addition of an excess of 50 kDa activated protein. Consequently, as full activation of Cry1I protein diminishes its toxicity against lepidopterans, preventing or decelerating proteolysis might increase the efficacy of this protein in Bt-based products. KEY POINTS: • Processing Cry1I to a 50 kDa stable core impairs its full toxicity to O. nubilalis • Partially processed Cry1Ia protoxin retains the toxicity of protoxin vs O. nubilalis • Protoxin and its final processed forms compete for the same functional binding sites.
Collapse
Affiliation(s)
- Ayda Khorramnejad
- Laboratory of Biotechnological Control of Pests, Departamento de Genética, Instituto BioTecMed, Universitat de València, Burjassot, València, Spain.,Laboratory of Biological Control of Pest, Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Yolanda Bel
- Laboratory of Biotechnological Control of Pests, Departamento de Genética, Instituto BioTecMed, Universitat de València, Burjassot, València, Spain.
| | - Reza Talaei-Hassanloui
- Laboratory of Biological Control of Pest, Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Baltasar Escriche
- Laboratory of Biotechnological Control of Pests, Departamento de Genética, Instituto BioTecMed, Universitat de València, Burjassot, València, Spain.
| |
Collapse
|
3
|
Genetic Modification Approaches for Parasporins Bacillus thuringiensis Proteins with Anticancer Activity. Molecules 2021; 26:molecules26247476. [PMID: 34946558 PMCID: PMC8706377 DOI: 10.3390/molecules26247476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 11/24/2022] Open
Abstract
Bacillus thuringiensis (Bt) is a bacterium capable of producing Cry toxins, which are recognized for their bio-controlling actions against insects. However, a few Bt strains encode proteins lacking insecticidal activity but showing cytotoxic activity against different cancer cell lines and low or no cytotoxicity toward normal human cells. A subset of Cry anticancer proteins, termed parasporins (PSs), has recently arisen as a potential alternative for cancer treatment. However, the molecular receptors that allow the binding of PSs to cells and their cytotoxic mechanisms of action have not been well established. Nonetheless, their selective cytotoxic activity against different types of cancer cell lines places PSs as a promising alternative treatment modality. In this review, we provide an overview of the classification, structures, mechanisms of action, and insights obtained from genetic modification approaches for PS proteins.
Collapse
|
4
|
Aya VM, Pabón A, González JM, Vargas G. Morphological and molecular characterization of Castniidae (Lepidoptera) associated to sugarcane in Colombia. BULLETIN OF ENTOMOLOGICAL RESEARCH 2021; 112:1-12. [PMID: 34809727 DOI: 10.1017/s0007485321000997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The giant sugarcane borer, Telchin licus, has been reported as an economically important sugarcane pest in Colombia; however, its taxonomic status has been scarcely investigated and previous reports offer an ambiguous characterization of both the immature and adult stages. The objective of this work is to identify Telchin species affecting sugarcane and alternative hosts in different departments of the country by integrating molecular analysis and conventional morphology. To date, T. licus has been found in the departments of Caquetá, Casanare, and Meta, while T. atymnius has been found in Antioquia, Caldas, Nariño, and Valle del Cauca. Sugarcane, Musaceae, and Heliconiaceae have been found to be hosts to both species. Additionally, the species T. cacica has also been registered in the department of Nariño, affecting heliconias and plantains. Genetic variation within the species allowed differentiation at the molecular level of subspecies of T. licus and T. atymnius, confirming that the subspecies present in Colombia are T. licus magdalena, T. atymnius humboldti, and T. atymnius atymnius. The haplotype diversity of populations is closely related to their geographical distribution, indicating low gene flow between populations and possible speciation inside the country. Analysis of genetic variance showed significant differences among and within T. atymnius populations, which may suggest a high genetic structure along the regions where it is found and the possible presence of additional subspecies to those previously reported. To understand the geographical and environmental conditions that determine the pest's distribution in Colombia, this information needs to be complemented with ecological considerations of possible geographical isolation and association of alternative hosts.
Collapse
Affiliation(s)
| | - Alejandro Pabón
- Colombian Sugarcane Research Centre, Cenicaña, Cali, Colombia
| | - Jorge M González
- Austin Achieve Public Schools (Research Associate, McGuire Centre for Lepidoptera and Biodiversity), Austin, TX, USA
| | - Germán Vargas
- Colombian Sugarcane Research Centre, Cenicaña, Cali, Colombia
| |
Collapse
|
5
|
Noriega DD, Arraes FBM, Antonino JD, Macedo LLP, Fonseca FCA, Togawa RC, Grynberg P, Silva MCM, Negrisoli AS, Grossi-de-Sa MF. Transcriptome Analysis and Knockdown of the Juvenile Hormone Esterase Gene Reveal Abnormal Feeding Behavior in the Sugarcane Giant Borer. Front Physiol 2020; 11:588450. [PMID: 33192604 PMCID: PMC7655874 DOI: 10.3389/fphys.2020.588450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022] Open
Abstract
The sugarcane giant borer (SGB), Telchin licus licus, is a pest that has strong economic relevance for sugarcane producers. Due to the endophytic behavior of the larva, current methods of management are inefficient. A promising biotechnological management option has been proposed based on RNA interference (RNAi), a process that uses molecules of double-stranded RNA (dsRNA) to specifically knock down essential genes and reduce insect survival. The selection of suitable target genes is often supported by omic sciences. Studies have shown that genes related to feeding adaptation processes are good candidates to be targeted by RNAi for pest management. Among those genes, esterases are highlighted because of their impact on insect development. In this study, the objective was to evaluate the transcriptome responses of the SGB’s gut in order to provide curated data of genes that could be used for pest management by RNAi in future studies. Further, we validated the function of an esterase-coding gene and its potential as a target for RNAi-based control. We sequenced the gut transcriptome of SGB larvae by Illumina HiSeq and evaluated its gene expression profiles in response to different diets (sugarcane stalk and artificial diet). We obtained differentially expressed genes (DEGs) involved in detoxification, digestion, and transport, which suggest a generalist mechanism of adaptation in SGB larvae. Among the DEGs, was identified and characterized a candidate juvenile hormone esterase gene (Tljhe). We knocked down the Tljhe gene by oral delivery of dsRNA molecules and evaluated gene expression in the gut. The survival and nutritional parameters of the larvae were measured along the developmental cycle of treated insects. We found that the gene Tljhe acts as a regulator of feeding behavior. The knockdown of Tljhe triggered a forced starvation state in late larval instars that significantly reduced the fitness of the larvae. However, the mechanism of action of this gene remains unclear, and the correlation between the expression of Tljhe and the levels of juvenile hormone (JH) metabolites in the hemolymph of the SGB must be assessed in future research.
Collapse
Affiliation(s)
- Daniel D Noriega
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil.,Department of Cellular Biology, University of Brasília, Brasília, Brazil.,PPG in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília, Brazil
| | - Fabricio B M Arraes
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil.,Biotechnology Center, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - José Dijair Antonino
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil.,Department of Agronomy/Entomology, Universidade Federal Rural de Pernambuco (UFRPE), Recife, Brazil
| | | | - Fernando C A Fonseca
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil.,Department of Cellular Biology, University of Brasília, Brasília, Brazil
| | | | | | - Maria C M Silva
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
| | | | - Maria F Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil.,PPG in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília, Brazil.,National Institute of Science and Technology (INCT) PlantStress Biotech, Brazilian Agricultural Research Corporation (EMBRAPA), Brasília, Brazil
| |
Collapse
|
6
|
Vílchez S. Making 3D-Cry Toxin Mutants: Much More Than a Tool of Understanding Toxins Mechanism of Action. Toxins (Basel) 2020; 12:toxins12090600. [PMID: 32948025 PMCID: PMC7551160 DOI: 10.3390/toxins12090600] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/15/2020] [Accepted: 08/20/2020] [Indexed: 12/21/2022] Open
Abstract
3D-Cry toxins, produced by the entomopathogenic bacterium Bacillus thuringiensis, have been extensively mutated in order to elucidate their elegant and complex mechanism of action necessary to kill susceptible insects. Together with the study of the resistant insects, 3D-Cry toxin mutants represent one of the pillars to understanding how these toxins exert their activity on their host. The principle is simple, if an amino acid is involved and essential in the mechanism of action, when substituted, the activity of the toxin will be diminished. However, some of the constructed 3D-Cry toxin mutants have shown an enhanced activity against their target insects compared to the parental toxins, suggesting that it is possible to produce novel versions of the natural toxins with an improved performance in the laboratory. In this report, all mutants with an enhanced activity obtained by accident in mutagenesis studies, together with all the variants obtained by rational design or by directed mutagenesis, were compiled. A description of the improved mutants was made considering their historical context and the parallel development of the protein engineering techniques that have been used to obtain them. This report demonstrates that artificial 3D-Cry toxins made in laboratories are a real alternative to natural toxins.
Collapse
Affiliation(s)
- Susana Vílchez
- Institute of Biotechnology, Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, 18071 Granada, Spain
| |
Collapse
|
7
|
Pinzón-Reyes EH, Sierra-Bueno DA, Suarez-Barrera MO, Rueda-Forero NJ, Abaunza-Villamizar S, Rondón-Villareal P. Generation of Cry11 Variants of Bacillus thuringiensis by Heuristic Computational Modeling. Evol Bioinform Online 2020; 16:1176934320924681. [PMID: 32782424 PMCID: PMC7385851 DOI: 10.1177/1176934320924681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 04/07/2020] [Indexed: 12/19/2022] Open
Abstract
Directed evolution methods mimic in vitro Darwinian evolution, inducing random mutations and selective pressure in genes to obtain proteins with enhanced characteristics. These techniques are developed using trial-and-error testing at an experimental level with a high degree of uncertainty. Therefore, in silico modeling of directed evolution is required to support experimental assays. Several in silico approaches have reproduced directed evolution, using statistical, thermodynamic, and kinetic models in an attempt to recreate experimental conditions. Likewise, optimization techniques using heuristic models have been used to understand and find the best scenarios of directed evolution. Our study uses an in silico model named HeurIstics DirecteD EvolutioN, which is based on a genetic algorithm designed to generate chimeric libraries from 2 parental genes, cry11Aa and cry11Ba, of Bacillus thuringiensis. These genes encode crystal-shaped δ-endotoxins with 3 conserved domains. Cry11 toxins are of biotechnological interest because they have shown to be effective as biopesticides for disease-spreading vectors. With our heuristic model, we considered experimental parameters such as DNA fragmentation length, number of generations or simulation cycles, and mutation rate, to get characteristics of Cry11 chimeric libraries such as percentage of population identity, truncation of variants obtained from the presence of internal stop codons, percentage of thermodynamic diversity, and stability of variants. Our study allowed us to focus on experimental conditions that may be useful for the design of in vitro and in silico experiments of directed evolution with Cry toxins of 3 conserved domains. Furthermore, we obtained in silico libraries of Cry11 variants, in which structural characteristics of wild Cry families were observed in a review of a sample of in silico sequences. We consider that future studies could use our in silico libraries and heuristic computational models, as the one suggested here, to support in vitro experiments of directed evolution.
Collapse
Affiliation(s)
- Efraín Hernando Pinzón-Reyes
- Universidad de Santander, Faculty of Health Sciences, Laboratory of Molecular Biology and Biotechnology, Bucaramanga, Colombia.,Centro de Bioinformática Simulación y Modelado (CBSM), School of Bioinformatic, Universidad de Talca, Talca, Chile
| | | | - Miguel Orlando Suarez-Barrera
- Universidad de Santander, Faculty of Health Sciences, Laboratory of Molecular Biology and Biotechnology, Bucaramanga, Colombia
| | - Nohora Juliana Rueda-Forero
- Universidad de Santander, Faculty of Health Sciences, Laboratory of Molecular Biology and Biotechnology, Bucaramanga, Colombia
| | - Sebastián Abaunza-Villamizar
- Universidad de Santander, Faculty of Health Sciences, Laboratory of Molecular Biology and Biotechnology, Bucaramanga, Colombia
| | - Paola Rondón-Villareal
- Universidad de Santander, Faculty of Health Sciences, Laboratory of Molecular Biology and Biotechnology, Bucaramanga, Colombia
| |
Collapse
|
8
|
Prado GS, Bamogo PKA, de Abreu JAC, Gillet FX, dos Santos VO, Silva MCM, Brizard JP, Bemquerer MP, Bangratz M, Brugidou C, Sérémé D, Grossi-de-Sa MF, Lacombe S. Nicotiana benthamiana is a suitable transient system for high-level expression of an active inhibitor of cotton boll weevil α-amylase. BMC Biotechnol 2019; 19:15. [PMID: 30849970 PMCID: PMC6408794 DOI: 10.1186/s12896-019-0507-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 03/04/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Insect resistance in crops represents a main challenge for agriculture. Transgenic approaches based on proteins displaying insect resistance properties are widely used as efficient breeding strategies. To extend the spectrum of targeted pathogens and overtake the development of resistance, molecular evolution strategies have been used on genes encoding these proteins to generate thousands of variants with new or improved functions. The cotton boll weevil (Anthonomus grandis) is one of the major pests of cotton in the Americas. An α-amylase inhibitor (α-AIC3) variant previously developed via molecular evolution strategy showed inhibitory activity against A. grandis α-amylase (AGA). RESULTS We produced in a few days considerable amounts of α-AIC3 using an optimised transient heterologous expression system in Nicotiana benthamiana. This high α-AIC3 accumulation allowed its structural and functional characterizations. We demonstrated via MALDI-TOF MS/MS technique that the protein was processed as expected. It could inhibit up to 100% of AGA biological activity whereas it did not act on α-amylase of two non-pathogenic insects. These data confirmed that N. benthamiana is a suitable and simple system for high-level production of biologically active α-AIC3. Based on other benefits such as economic, health and environmental that need to be considerate, our data suggested that α-AIC3 could be a very promising candidate for the production of transgenic crops resistant to cotton boll weevil without lethal effect on at least two non-pathogenic insects. CONCLUSIONS We propose this expression system can be complementary to molecular evolution strategies to identify the most promising variants before starting long-lasting stable transgenic programs.
Collapse
Affiliation(s)
- Guilherme Souza Prado
- Embrapa Genetic Resources and Biotechnology, Brasília, DF Brazil
- Catholic University of Brasília, Brasília, DF Brazil
| | - Pingdwende Kader Aziz Bamogo
- IRD, CIRAD, Université Montpellier, Interactions Plantes Microorganismes et Environnement (IPME), Montpellier, France
- INERA/LMI Patho-Bios, Institut de L’Environnement et de Recherches Agricoles (INERA), Laboratoire de Virologie et de Biotechnologies Végétales, Ouagadougou, Burkina Faso
| | | | | | | | | | - Jean-Paul Brizard
- IRD, CIRAD, Université Montpellier, Interactions Plantes Microorganismes et Environnement (IPME), Montpellier, France
| | | | - Martine Bangratz
- IRD, CIRAD, Université Montpellier, Interactions Plantes Microorganismes et Environnement (IPME), Montpellier, France
- INERA/LMI Patho-Bios, Institut de L’Environnement et de Recherches Agricoles (INERA), Laboratoire de Virologie et de Biotechnologies Végétales, Ouagadougou, Burkina Faso
| | - Christophe Brugidou
- IRD, CIRAD, Université Montpellier, Interactions Plantes Microorganismes et Environnement (IPME), Montpellier, France
- INERA/LMI Patho-Bios, Institut de L’Environnement et de Recherches Agricoles (INERA), Laboratoire de Virologie et de Biotechnologies Végétales, Ouagadougou, Burkina Faso
| | - Drissa Sérémé
- INERA/LMI Patho-Bios, Institut de L’Environnement et de Recherches Agricoles (INERA), Laboratoire de Virologie et de Biotechnologies Végétales, Ouagadougou, Burkina Faso
| | - Maria Fatima Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasília, DF Brazil
- Catholic University of Brasília, Brasília, DF Brazil
| | - Séverine Lacombe
- IRD, CIRAD, Université Montpellier, Interactions Plantes Microorganismes et Environnement (IPME), Montpellier, France
- INERA/LMI Patho-Bios, Institut de L’Environnement et de Recherches Agricoles (INERA), Laboratoire de Virologie et de Biotechnologies Végétales, Ouagadougou, Burkina Faso
| |
Collapse
|
9
|
Using phage display technology to obtain Crybodies active against non-target insects. Sci Rep 2017; 7:14922. [PMID: 29097681 PMCID: PMC5668233 DOI: 10.1038/s41598-017-09384-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/26/2017] [Indexed: 11/09/2022] Open
Abstract
The insecticidal Cry toxins produced by Bacillus thuringiensis (Bt) are increasingly important in the biological control of insect pests and vectors of human disease. Markets for Bt products and transgenic plants expressing their toxins are driven by their specificity, safety and the move away from chemical control agents. However, the high specificity of Cry toxins can also prove to be a limitation when there is no known Cry toxin active against a particular target. Novel activities can be discovered by screening natural Bt isolates or through modifications of the Cry proteins. Here we demonstrate the use of λ-phage displaying Cry1Aa13 toxin variants modified in domain II loop 2 (Crybodies) to select retargeted toxins. Through biopanning using gut tissue from larvae of the non-target insect Aedes aegypti, we isolated a number of phage for further testing. Two of the overexpressed Cry toxin variants showed significant activity against A. aegypti larvae while another induced mortality at the pupal stage. We present the first report of the use of phage display to identify novel activities toward insects from distant taxonomic Orders and establish this technology based on the use of Crybodies as a powerful tool for developing tailor-made insecticides against new target insects.
Collapse
|
10
|
Pacheco S, Cantón E, Zuñiga-Navarrete F, Pecorari F, Bravo A, Soberón M. Improvement and efficient display of Bacillus thuringiensis toxins on M13 phages and ribosomes. AMB Express 2015; 5:73. [PMID: 26606918 PMCID: PMC4659786 DOI: 10.1186/s13568-015-0160-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 11/04/2015] [Indexed: 11/10/2022] Open
Abstract
Bacillus thuringiensis (Bt) produces insecticidal proteins that have been used worldwide in the control of insect-pests in crops and vectors of human diseases. However, different insect species are poorly controlled by the available Bt toxins or have evolved resistance to these toxins. Evolution of Bt toxicity could provide novel toxins to control insect pests. To this aim, efficient display systems to select toxins with increased binding to insect membranes or midgut proteins involved in toxicity are likely to be helpful. Here we describe two display systems, phage display and ribosome display, that allow the efficient display of two non-structurally related Bt toxins, Cry1Ac and Cyt1Aa. Improved display of Cry1Ac and Cyt1Aa on M13 phages was achieved by changing the commonly used peptide leader sequence of the coat pIII-fusion protein, that relies on the Sec translocation pathway, for a peptide leader sequence that relies on the signal recognition particle pathway (SRP) and by using a modified M13 helper phage (Phaberge) that has an amber mutation in its pIII genomic sequence and preferentially assembles using the pIII-fusion protein. Also, both Cry1Ac and Cyt1Aa were efficiently displayed on ribosomes, which could allow the construction of large libraries of variants. Furthermore, Cry1Ac or Cyt1Aa displayed on M13 phages or ribosomes were specifically selected from a mixture of both toxins depending on which antigen was immobilized for binding selection. These improved systems may allow the selection of Cry toxin variants with improved insecticidal activities that could counter insect resistances.
Collapse
|
11
|
de Assis Fonseca FC, Firmino AAP, de Macedo LLP, Coelho RR, de Sousa Júnior JDA, Silva-Junior OB, Togawa RC, Pappas GJ, de Góis LAB, da Silva MCM, Grossi-de-Sá MF. Sugarcane giant borer transcriptome analysis and identification of genes related to digestion. PLoS One 2015; 10:e0118231. [PMID: 25706301 PMCID: PMC4338194 DOI: 10.1371/journal.pone.0118231] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 01/11/2015] [Indexed: 11/25/2022] Open
Abstract
Sugarcane is a widely cultivated plant that serves primarily as a source of sugar and ethanol. Its annual yield can be significantly reduced by the action of several insect pests including the sugarcane giant borer (Telchin licus licus), a lepidopteran that presents a long life cycle and which efforts to control it using pesticides have been inefficient. Although its economical relevance, only a few DNA sequences are available for this species in the GenBank. Pyrosequencing technology was used to investigate the transcriptome of several developmental stages of the insect. To maximize transcript diversity, a pool of total RNA was extracted from whole body insects and used to construct a normalized cDNA database. Sequencing produced over 650,000 reads, which were de novo assembled to generate a reference library of 23,824 contigs. After quality score and annotation, 43% of the contigs had at least one BLAST hit against the NCBI non-redundant database, and 40% showed similarities with the lepidopteran Bombyx mori. In a further analysis, we conducted a comparison with Manduca sexta midgut sequences to identify transcripts of genes involved in digestion. Of these transcripts, many presented an expansion or depletion in gene number, compared to B. mori genome. From the sugarcane giant borer (SGB) transcriptome, a number of aminopeptidase N (APN) cDNAs were characterized based on homology to those reported as Cry toxin receptors. This is the first report that provides a large-scale EST database for the species. Transcriptome analysis will certainly be useful to identify novel developmental genes, to better understand the insect's biology and to guide the development of new strategies for insect-pest control.
Collapse
Affiliation(s)
- Fernando Campos de Assis Fonseca
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Distrito Federal, Brazil
- Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Alexandre Augusto Pereira Firmino
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Distrito Federal, Brazil
- Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Leonardo Lima Pepino de Macedo
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Distrito Federal, Brazil
- Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil
| | - Roberta Ramos Coelho
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Distrito Federal, Brazil
- Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | | | - Orzenil Bonfim Silva-Junior
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Distrito Federal, Brazil
- Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil
| | | | | | | | | | - Maria Fátima Grossi-de-Sá
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Distrito Federal, Brazil
- Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil
| |
Collapse
|
12
|
Bt toxin modification for enhanced efficacy. Toxins (Basel) 2014; 6:3005-27. [PMID: 25340556 PMCID: PMC4210883 DOI: 10.3390/toxins6103005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 09/28/2014] [Accepted: 09/29/2014] [Indexed: 11/23/2022] Open
Abstract
Insect-specific toxins derived from Bacillus thuringiensis (Bt) provide a valuable resource for pest suppression. Here we review the different strategies that have been employed to enhance toxicity against specific target species including those that have evolved resistance to Bt, or to modify the host range of Bt crystal (Cry) and cytolytic (Cyt) toxins. These strategies include toxin truncation, modification of protease cleavage sites, domain swapping, site-directed mutagenesis, peptide addition, and phage display screens for mutated toxins with enhanced activity. Toxin optimization provides a useful approach to extend the utility of these proteins for suppression of pests that exhibit low susceptibility to native Bt toxins, and to overcome field resistance.
Collapse
|
13
|
Lucena WA, Pelegrini PB, Martins-de-Sa D, Fonseca FCA, Gomes JE, de Macedo LLP, da Silva MCM, Oliveira RS, Grossi-de-Sa MF. Molecular approaches to improve the insecticidal activity of Bacillus thuringiensis Cry toxins. Toxins (Basel) 2014; 6:2393-423. [PMID: 25123558 PMCID: PMC4147589 DOI: 10.3390/toxins6082393] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 06/23/2014] [Accepted: 06/27/2014] [Indexed: 02/01/2023] Open
Abstract
Bacillus thuringiensis (Bt) is a gram-positive spore-forming soil bacterium that is distributed worldwide. Originally recognized as a pathogen of the silkworm, several strains were found on epizootic events in insect pests. In the 1960s, Bt began to be successfully used to control insect pests in agriculture, particularly because of its specificity, which reflects directly on their lack of cytotoxicity to human health, non-target organisms and the environment. Since the introduction of transgenic plants expressing Bt genes in the mid-1980s, numerous methodologies have been used to search for and improve toxins derived from native Bt strains. These improvements directly influence the increase in productivity and the decreased use of chemical insecticides on Bt-crops. Recently, DNA shuffling and in silico evaluations are emerging as promising tools for the development and exploration of mutant Bt toxins with enhanced activity against target insect pests. In this report, we describe natural and in vitro evolution of Cry toxins, as well as their relevance in the mechanism of action for insect control. Moreover, the use of DNA shuffling to improve two Bt toxins will be discussed together with in silico analyses of the generated mutations to evaluate their potential effect on protein structure and cytotoxicity.
Collapse
Affiliation(s)
- Wagner A. Lucena
- Embrapa Cotton, Campina Grande, 58428-095, PB, Brazil; E-Mail:
- Graduate Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, 91501-970, RS, Brazil
- Embrapa Genetic Resources and Biotechnology, Brasília, 70779-917, DF, Brazil; E-Mails: (P.B.P.); (D.M.-S.); (F.C.A.F.); (J.E.G.); (L.L.P.M.); (M.C.M.S.); (R.S.)
| | - Patrícia B. Pelegrini
- Embrapa Genetic Resources and Biotechnology, Brasília, 70779-917, DF, Brazil; E-Mails: (P.B.P.); (D.M.-S.); (F.C.A.F.); (J.E.G.); (L.L.P.M.); (M.C.M.S.); (R.S.)
| | - Diogo Martins-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasília, 70779-917, DF, Brazil; E-Mails: (P.B.P.); (D.M.-S.); (F.C.A.F.); (J.E.G.); (L.L.P.M.); (M.C.M.S.); (R.S.)
- Department of Molecular Biology, Federal University of Brasília, Brasília, 70910-900, DF, Brazil
| | - Fernando C. A. Fonseca
- Embrapa Genetic Resources and Biotechnology, Brasília, 70779-917, DF, Brazil; E-Mails: (P.B.P.); (D.M.-S.); (F.C.A.F.); (J.E.G.); (L.L.P.M.); (M.C.M.S.); (R.S.)
- Department of Molecular Biology, Federal University of Brasília, Brasília, 70910-900, DF, Brazil
| | - Jose E. Gomes
- Embrapa Genetic Resources and Biotechnology, Brasília, 70779-917, DF, Brazil; E-Mails: (P.B.P.); (D.M.-S.); (F.C.A.F.); (J.E.G.); (L.L.P.M.); (M.C.M.S.); (R.S.)
- Department of Molecular Biology, Federal University of Brasília, Brasília, 70910-900, DF, Brazil
| | - Leonardo L. P. de Macedo
- Embrapa Genetic Resources and Biotechnology, Brasília, 70779-917, DF, Brazil; E-Mails: (P.B.P.); (D.M.-S.); (F.C.A.F.); (J.E.G.); (L.L.P.M.); (M.C.M.S.); (R.S.)
- Post-Graduation of Genomic Sciences and Biotechnology, Catholic University of Brasilia, Brasília, 70790-160, DF, Brazil
| | - Maria Cristina M. da Silva
- Embrapa Genetic Resources and Biotechnology, Brasília, 70779-917, DF, Brazil; E-Mails: (P.B.P.); (D.M.-S.); (F.C.A.F.); (J.E.G.); (L.L.P.M.); (M.C.M.S.); (R.S.)
| | - Raquel S. Oliveira
- Embrapa Genetic Resources and Biotechnology, Brasília, 70779-917, DF, Brazil; E-Mails: (P.B.P.); (D.M.-S.); (F.C.A.F.); (J.E.G.); (L.L.P.M.); (M.C.M.S.); (R.S.)
- Post-Graduation of Genomic Sciences and Biotechnology, Catholic University of Brasilia, Brasília, 70790-160, DF, Brazil
| | - Maria F. Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasília, 70779-917, DF, Brazil; E-Mails: (P.B.P.); (D.M.-S.); (F.C.A.F.); (J.E.G.); (L.L.P.M.); (M.C.M.S.); (R.S.)
- Post-Graduation of Genomic Sciences and Biotechnology, Catholic University of Brasilia, Brasília, 70790-160, DF, Brazil
| |
Collapse
|
14
|
da Silva MCM, Del Sarto RP, Lucena WA, Rigden DJ, Teixeira FR, Bezerra CDA, Albuquerque EVS, Grossi-de-Sa MF. Employing in vitro directed molecular evolution for the selection of α-amylase variant inhibitors with activity toward cotton boll weevil enzyme. J Biotechnol 2013; 167:377-85. [PMID: 23892157 DOI: 10.1016/j.jbiotec.2013.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 07/09/2013] [Accepted: 07/11/2013] [Indexed: 01/30/2023]
Abstract
Numerous species of insect pests attack cotton plants, out of which the cotton boll weevil (Anthonomus grandis) is the main insect in Brazil and must be controlled to avert large economic losses. Like other insect pests, A. grandis secretes a high level of α-amylases in the midgut lumen, which are required for digestion of carbohydrates. Thus, α-amylase inhibitors (α-AIs) represent a powerful tool to apply in the control of insect pests. Here, we applied DNA shuffling and phage display techniques and obtained a combinatorial library containing 10⁸ α-AI variant forms. From this library, variants were selected exhibiting in vitro affinity for cotton boll weevil α-amylases. Twenty-six variant sequences were cloned into plant expression vectors and expressed in Arabidopsis thaliana. Transformed plant extracts were assayed in vitro to select specific and potent α-amylase inhibitors against boll weevil amylases. While the wild type inhibitors, used to create the shuffled library, did not inhibit the A. grandis α-amylases, three α-AI mutants, named α-AIC3, α-AIA11 and α-AIG4 revealed high inhibitory activities against A. grandis α-amylases in an in vitro assay. In summary, data reported here shown the potential biotechnology of new α-AI variant genes for cotton boll weevil control.
Collapse
Affiliation(s)
- Maria Cristina Mattar da Silva
- Embrapa Recursos Genéticos e Biotecnologia, Laboratório Interação Molecular Planta Praga, Asa Norte, Brasília, DF 70770-917, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Fujii Y, Tanaka S, Otsuki M, Hoshino Y, Endo H, Sato R. Affinity Maturation of Cry1Aa Toxin to the Bombyx mori Cadherin-Like Receptor by Directed Evolution. Mol Biotechnol 2012; 54:888-99. [DOI: 10.1007/s12033-012-9638-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
16
|
Bravo A, Gómez I, Porta H, García-Gómez BI, Rodriguez-Almazan C, Pardo L, Soberón M. Evolution of Bacillus thuringiensis Cry toxins insecticidal activity. Microb Biotechnol 2012; 6:17-26. [PMID: 22463726 PMCID: PMC3815381 DOI: 10.1111/j.1751-7915.2012.00342.x] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Insecticidal Cry proteins produced by Bacillus thuringiensis are use worldwide in transgenic crops for efficient pest control. Among the family of Cry toxins, the three domain Cry family is the better characterized regarding their natural evolution leading to a large number of Cry proteins with similar structure, mode of action but different insect specificity. Also, this group is the better characterized regarding the study of their mode of action and the molecular basis of insect specificity. In this review we discuss how Cry toxins have evolved insect specificity in nature and analyse several cases of improvement of Cry toxin action by genetic engineering, some of these examples are currently used in transgenic crops. We believe that the success in the improvement of insecticidal activity by genetic evolution of Cry toxins will depend on the knowledge of the rate-limiting steps of Cry toxicity in different insect pests, the mapping of the specificity binding regions in the Cry toxins, as well as the improvement of mutagenesis strategies and selection procedures.
Collapse
Affiliation(s)
- Alejandra Bravo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México. Apdo. postal 510-3, Cuernavaca 62250, Morelos, Mexico
| | | | | | | | | | | | | |
Collapse
|
17
|
Oliveira GR, Silva MCM, Lucena WA, Nakasu EYT, Firmino AAP, Beneventi MA, Souza DSL, Gomes JE, de Souza JDA, Rigden DJ, Ramos HB, Soccol CR, Grossi-de-Sa MF. Improving Cry8Ka toxin activity towards the cotton boll weevil (Anthonomus grandis). BMC Biotechnol 2011; 11:85. [PMID: 21906288 PMCID: PMC3179717 DOI: 10.1186/1472-6750-11-85] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 09/09/2011] [Indexed: 11/13/2022] Open
Abstract
Background The cotton boll weevil (Anthonomus grandis) is a serious insect-pest in the Americas, particularly in Brazil. The use of chemical or biological insect control is not effective against the cotton boll weevil because of its endophytic life style. Therefore, the use of biotechnological tools to produce insect-resistant transgenic plants represents an important strategy to reduce the damage to cotton plants caused by the boll weevil. The present study focuses on the identification of novel molecules that show improved toxicity against the cotton boll weevil. In vitro directed molecular evolution through DNA shuffling and phage display screening was applied to enhance the insecticidal activity of variants of the Cry8Ka1 protein of Bacillus thuringiensis. Results Bioassays carried out with A. grandis larvae revealed that the LC50 of the screened mutant Cry8Ka5 toxin was 3.15-fold higher than the wild-type Cry8Ka1 toxin. Homology modelling of Cry8Ka1 and the Cry8Ka5 mutant suggested that both proteins retained the typical three-domain Cry family structure. The mutated residues were located mostly in loops and appeared unlikely to interfere with molecular stability. Conclusions The improved toxicity of the Cry8Ka5 mutant obtained in this study will allow the generation of a transgenic cotton event with improved potential to control A. grandis.
Collapse
Affiliation(s)
- Gustavo R Oliveira
- Embrapa Recursos Genéticos e Biotecnologia, PqEB- Final W5 Norte -Brasília, DF, Brasil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Xiong AS, Peng RH, Zhuang J, Davies J, Zhang J, Yao QH. Advances in directed molecular evolution of reporter genes. Crit Rev Biotechnol 2011; 32:133-42. [DOI: 10.3109/07388551.2011.593503] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
19
|
Novel Bacillus thuringiensis δ-endotoxin active against Locusta migratoria manilensis. Appl Environ Microbiol 2011; 77:3227-33. [PMID: 21441319 DOI: 10.1128/aem.02462-10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel δ-endotoxin gene was cloned from a Bacillus thuringiensis strain with activity against Locusta migratoria manilensis by PCR-based genome walking. The sequence of the cry gene was 3,432 bp long, and it encoded a Cry protein of 1,144 amino acid residues with a molecular mass of 129,196.5 kDa, which exhibited 62% homology with Cry7Ba1 in the amino acid sequence. The δ-endotoxin with five conserved sequence blocks in the amino-terminal region was designated Cry7Ca1 (GenBank accession no. EF486523). Protein structure analysis suggested that the activated toxin of Cry7Ca1 has three domains: 227 residues forming 7 α-helices (domain I); 213 residues forming three antiparallel β-sheets (domain II); and 134 residues forming a β-sandwich (domain III). The three domains, respectively, exhibited 47, 44, and 34% sequence identity with corresponding domains of known Cry toxins. SDS-PAGE and Western blot analysis showed that Cry7Ca1, encoded by the full-length open reading frame of the cry gene, the activated toxin 1, which included three domains but without the N-terminal 54 amino acid residues and the C terminus, and the activated toxin 2, which included three domains and N-terminal 54 amino acid residues but without the C terminus, could be expressed in Escherichia coli. Bioassay results indicated that the expressed proteins of Cry7Ca1 and the activated toxins (toxins 1 and 2) showed significant activity against 2nd instar locusts, and after 7 days of infection, the estimated 50% lethal concentrations (LC₅₀s) were 8.98 μg/ml for the expressed Cry7Ca1, 0.87 μg/ml for the activated toxin 1, and 4.43 μg/ml for the activated toxin 2. The δ-endotoxin also induced histopathological changes in midgut epithelial cells of adult L. migratoria manilensis.
Collapse
|
20
|
Vasconcelos EAR, Santana CG, Godoy CV, Seixas CDS, Silva MS, Moreira LRS, Oliveira-Neto OB, Price D, Fitches E, Filho EXF, Mehta A, Gatehouse JA, Grossi-De-Sa MF. A new chitinase-like xylanase inhibitor protein (XIP) from coffee (Coffea arabica) affects Soybean Asian rust (Phakopsora pachyrhizi) spore germination. BMC Biotechnol 2011; 11:14. [PMID: 21299880 PMCID: PMC3045311 DOI: 10.1186/1472-6750-11-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 02/07/2011] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Asian rust (Phakopsora pachyrhizi) is a common disease in Brazilian soybean fields and it is difficult to control. To identify a biochemical candidate with potential to combat this disease, a new chitinase-like xylanase inhibitor protein (XIP) from coffee (Coffea arabica) (CaclXIP) leaves was cloned into the pGAPZα-B vector for expression in Pichia pastoris. RESULTS A cDNA encoding a chitinase-like xylanase inhibitor protein (XIP) from coffee (Coffea arabica) (CaclXIP), was isolated from leaves. The amino acid sequence predicts a (β/α)8 topology common to Class III Chitinases (glycoside hydrolase family 18 proteins; GH18), and shares similarity with other GH18 members, although it lacks the glutamic acid residue essential for catalysis, which is replaced by glutamine. CaclXIP was expressed as a recombinant protein in Pichia pastoris. Enzymatic assay showed that purified recombinant CaclXIP had only residual chitinolytic activity. However, it inhibited xylanases from Acrophialophora nainiana by approx. 60% when present at 12:1 (w/w) enzyme:inhibitor ratio. Additionally, CaclXIP at 1.5 μg/μL inhibited the germination of spores of Phakopsora pachyrhizi by 45%. CONCLUSIONS Our data suggests that CaclXIP belongs to a class of naturally inactive chitinases that have evolved to act in plant cell defence as xylanase inhibitors. Its role on inhibiting germination of fungal spores makes it an eligible candidate gene for the control of Asian rust.
Collapse
Affiliation(s)
- Erico AR Vasconcelos
- Embrapa Recursos Genéticos e Biotecnologia. Parque Estação Biológica - PqEB - Av. W5 Norte (final). Postal box 02372 - Brasília, DF- 70770-917 - Brasil
| | - Celso G Santana
- Embrapa Recursos Genéticos e Biotecnologia. Parque Estação Biológica - PqEB - Av. W5 Norte (final). Postal box 02372 - Brasília, DF- 70770-917 - Brasil
| | - Claudia V Godoy
- Embrapa Soja. Rod. Carlos João Strass - Distrito de Warta. Postal box 231 - Londrina, PR- 86001-970 - Brasil
| | - Claudine DS Seixas
- Embrapa Soja. Rod. Carlos João Strass - Distrito de Warta. Postal box 231 - Londrina, PR- 86001-970 - Brasil
| | - Marilia S Silva
- Embrapa Cerrados. BR 020 Km 18. Postal box: 08223 - Planaltina, DF- 73310-970 - Brasil
| | - Leonora RS Moreira
- Laboratório de Enzimologia, Departamento de Biologia Celular, Universidade de Brasília (UnB). Campus Universitário Darcy Ribeiro, DF - 70910-900, Brasília
| | - Osmundo B Oliveira-Neto
- Embrapa Recursos Genéticos e Biotecnologia. Parque Estação Biológica - PqEB - Av. W5 Norte (final). Postal box 02372 - Brasília, DF- 70770-917 - Brasil
| | - Daniel Price
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Elaine Fitches
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Edivaldo XF Filho
- Laboratório de Enzimologia, Departamento de Biologia Celular, Universidade de Brasília (UnB). Campus Universitário Darcy Ribeiro, DF - 70910-900, Brasília
| | - Angela Mehta
- Embrapa Recursos Genéticos e Biotecnologia. Parque Estação Biológica - PqEB - Av. W5 Norte (final). Postal box 02372 - Brasília, DF- 70770-917 - Brasil
| | - John A Gatehouse
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Maria F Grossi-De-Sa
- Embrapa Recursos Genéticos e Biotecnologia. Parque Estação Biológica - PqEB - Av. W5 Norte (final). Postal box 02372 - Brasília, DF- 70770-917 - Brasil
| |
Collapse
|
21
|
Morandini P. Inactivation of allergens and toxins. N Biotechnol 2010; 27:482-93. [DOI: 10.1016/j.nbt.2010.06.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 06/20/2010] [Indexed: 02/06/2023]
|
22
|
A Cry1Ac toxin variant generated by directed evolution has enhanced toxicity against Lepidopteran insects. Curr Microbiol 2010; 62:358-65. [PMID: 20669019 DOI: 10.1007/s00284-010-9714-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 07/05/2010] [Indexed: 01/19/2023]
Abstract
Cry1Ac insecticidal crystal proteins produced by Bacillus thuringiensis (Bt) have become an important natural biological agent for the control of lepidopteran insects. In this study, a cry1Ac toxin gene from Bacillus thuringiensis 4.0718 was modified by using error-prone PCR, staggered extension process (StEP) shuffling combined with Red/ET homologous recombination to investigate the insecticidal activity of delta-endotoxin Cry1Ac. A Cry1Ac toxin variant (designated as T524N) screened by insect bioassay showed increased insecticidal activity against Spodoptera exigua larvae while its original insecticidal activity against Helicoverpa armigera larvae was still retained. The mutant toxin T524N had one amino acid substitution at position 524 relative to the original Cry1Ac toxin, and it can accumulate within the acrystalliferous strain Cry-B and form more but a little smaller bipyramidal crystals than the original Cry1Ac toxin. Analysis of theoretical molecular models of mutant and original Cry1Ac proteins indicated that the mutation T524N located in the loop linking β16-β17 of domain III in Cry1Ac toxin happens in the fourth conserved block which is an arginine-rich region to form a highly hydrophobic surface involving interaction with receptor molecules. This study showed for the first time that single mutation T524N played an essential role in the insecticidal activity. This finding provides the biological evidence of the structural function of domain III in insecticidal activity of the Cry1Ac toxin, which probably leads to a deep understanding between the interaction of toxic proteins and receptor macromolecules.
Collapse
|