1
|
Avsar B. Effective Strategies for Heterologous Expression of Plant Heterotrimeric
G-protein γ Subunits without Gβ Subunit Partners. Protein Pept Lett 2022; 29:429-439. [DOI: 10.2174/0929866529666220203094448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/27/2021] [Accepted: 12/13/2021] [Indexed: 11/22/2022]
Abstract
Background:
In plants, heterotrimeric G-protein (Gγ) subunits are diverse, and they have
structural plasticity to provide functional selectivity to the heterotrimer. Although the Gβ and Gγ
subunits dimerize to function in the signaling pathway, the interaction mechanism of various Gγ
subunits with the Gβ subunit partners is still elusive.
Objective:
To better understand the interaction mechanism, one approach is to separate the subunits
for the re-assembly in vitro. Hence, developing a reliable method for achieving the efficient
production and purification of these proteins has become necessary.
Method:
In this study, Gγ1 and Gγ2 proteins from Oryza sativa and Arabidopsis thaliana were
successfully identified, cloned, expressed in bacteria, and purified as recombinant proteins with the
fusion tags. Highly expressed recombinant Gγ subunits in E. coli were digested by proteases, which
were also produced in the presented study.
Results:
Preliminary structural characterization studies without the Gβ partners showed that Gγ1
proteins have disordered structures with coiled-coil, α-helix extensions, and loops, whereas the Gγ2
protein has a more dominant β-sheet and turns structure. Finally, computational analyses performed
on Gγ genes have laid the foundation of new targets for biotechnological purposes.
Conclusion:
The proposed optimized expression and purification protocol can contribute to
investigations on the Gβγ binding mechanism in plant G-protein signaling. The investigations on
selective binding are critical to shed light on the role(s) of different plant Gγ subunit types in
biological processes.
Collapse
Affiliation(s)
- Bihter Avsar
- Department of Molecular Biology, Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Sabanci
University, Istanbul, Turkey
| |
Collapse
|
2
|
Nascimento KS, Andrade MLL, Silva IB, Domingues DL, Chicas LS, Silva MTL, Bringel PHSF, Marques GFO, Martins MGQ, Lóssio CF, Nascimento APM, Wolin IAV, Leal RB, Assreuy AMS, Cavada BS. Heterologous production of α-chain of Dioclea sclerocarpa lectin: Enhancing the biological effects of a wild-type lectin. Int J Biol Macromol 2020; 156:1-9. [PMID: 32275993 DOI: 10.1016/j.ijbiomac.2020.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 10/24/2022]
Abstract
Lectins from Diocleinae subtribe species (family Leguminosae) are of special interest since they present a wide spectrum of biological activities, despite their high structural similarity. During their synthesis in plant cells, these proteins undergo post-translational processing resulting in the formation of three chains (α, β, γ), which constitute the lectins' subunits. Furthermore, such wild-type proteins are presented as isolectins or with different combinations of these chains, which undermine their biotechnological potential. Thus, the present study aimed to produce a recombinant form of the lectin from Dioclea sclerocarpa seeds (DSL), exclusively constituted by α-chain. The recombinant DSL (rDSL) was successfully expressed in E. coli BL21 (DE3) and purified by affinity chromatography (Sephadex G-50), showing a final yield of 74 mg of protein per liter of culture medium and specificity for D-mannose, α-methyl-mannoside and melibiose, unlike the wild-type protein. rDSL presented an effective vasorelaxant effect in rat aortas up to 100% and also interacted with glioma cells C6 and U87. Our results demonstrated an efficient recombinant production of rDSL in a bacterial system that retained some biochemical properties of the wild-type protein, showing wider versatility in sugar specificities and better efficacy in its activity in the biological models evaluated in this work.
Collapse
Affiliation(s)
- Kyria S Nascimento
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, 60440970 Fortaleza, Ceará, Brazil
| | - Maria L L Andrade
- Universidade Federal do Rio Grande do Norte, Escola Agrícola de Jundiaí, Distrito de Jundiaí, 59280000 Macaíba, Rio Grande do Norte, Brazil
| | - Ivanice B Silva
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, 60440970 Fortaleza, Ceará, Brazil
| | - Daniel L Domingues
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, 60440970 Fortaleza, Ceará, Brazil
| | - Larissa S Chicas
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, 60440970 Fortaleza, Ceará, Brazil
| | - Mayara T L Silva
- Departamento de Bioquímica e Programa de Pós-graduação em Bioquímica, Universidade Federal de Santa Catarina, Campus Universitário, 88040900 Florianópolis, Santa Catarina, Brazil
| | - Pedro H S F Bringel
- Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Campus do Itaperi, 60714903 Fortaleza, Ceará, Brazil
| | - Gabriela F O Marques
- Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Campus do Itaperi, 60714903 Fortaleza, Ceará, Brazil
| | - Maria G Q Martins
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, 60440970 Fortaleza, Ceará, Brazil; Centro Universitário INTA, Programa de pós-graduação em Biotecnologia, Sobral, Ceará, Brazil
| | - Claudia F Lóssio
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, 60440970 Fortaleza, Ceará, Brazil
| | - Ana Paula M Nascimento
- Departamento de Bioquímica e Programa de Pós-graduação em Bioquímica, Universidade Federal de Santa Catarina, Campus Universitário, 88040900 Florianópolis, Santa Catarina, Brazil
| | - Ingrid A V Wolin
- Departamento de Bioquímica e Programa de Pós-graduação em Bioquímica, Universidade Federal de Santa Catarina, Campus Universitário, 88040900 Florianópolis, Santa Catarina, Brazil
| | - Rodrigo B Leal
- Departamento de Bioquímica e Programa de Pós-graduação em Bioquímica, Universidade Federal de Santa Catarina, Campus Universitário, 88040900 Florianópolis, Santa Catarina, Brazil
| | - Ana M S Assreuy
- Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Campus do Itaperi, 60714903 Fortaleza, Ceará, Brazil.
| | - Benildo S Cavada
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, 60440970 Fortaleza, Ceará, Brazil.
| |
Collapse
|
3
|
Genomic dissection and transcriptional profiling of Cysteine-rich receptor-like kinases in five cereals and functional characterization of TaCRK68-A. Int J Biol Macromol 2019; 134:316-329. [PMID: 31078592 DOI: 10.1016/j.ijbiomac.2019.05.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/03/2019] [Accepted: 05/03/2019] [Indexed: 12/23/2022]
Abstract
Cysteine-rich receptor-like kinases (CRK) constitute one of the largest subfamily of receptor-like kinases, which play crucial roles in plant development and stress response. In total, 43, 37, 36, 38 and 170 CRK genes including duplicated genes were identified in the genome of Brachypodium distachyon, Hordeum vulgare, Oryza sativa, Sorghum bicolor and Triticum aestivum, respectively. These CRK proteins were tightly clustered into four phylogenetic groups and exhibited close syntenic relationship among orthologous genes. Majority of CRK proteins contain a transmembrane domain for plasma membrane localization. The organization of exon/intron, domains and motifs were variably conserved. Tissue-specific expression suggested the involvement of certain CRK genes in plant development. Modulated expression revealed their specific stress-responsive functions. Co-expression and interaction analysis indicated their role in signaling. Ks value and divergence time analysis suggested duplication of TaCRK genes before the hybridization of T. aestivum sub-genomes. Expression comparison of duplicated TaCRK genes revealed functional retention, neofunctionalization or pseudo-functionalization. Recombinant expression of a stress-responsive gene TaCRK68-A in Escherichia coli and Saccharomyces cerevisiae displayed enhanced tolerance against heat, drought, cold and salinity stresses. The study suggested vital functions of CRKs during development and stresses, and provides the basis for functional characterization of each gene in future studies.
Collapse
|
4
|
|
5
|
Martínez-Alarcón D, Blanco-Labra A, García-Gasca T. Expression of Lectins in Heterologous Systems. Int J Mol Sci 2018; 19:E616. [PMID: 29466298 PMCID: PMC5855838 DOI: 10.3390/ijms19020616] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 12/24/2017] [Accepted: 12/27/2017] [Indexed: 01/24/2023] Open
Abstract
Lectins are proteins that have the ability to recognize and bind in a reversible and specific way to free carbohydrates or glycoconjugates of cell membranes. For these reasons, they have been extensively used in a wide range of industrial and pharmacological applications. Currently, there is great interest in their production on a large scale. Unfortunately, conventional techniques do not provide the appropriate platform for this purpose and therefore, the heterologous production of lectins in different organisms has become the preferred method in many cases. Such systems have the advantage of providing better yields as well as more homogeneous and better-defined properties for the resultant products. However, an inappropriate choice of the expression system can cause important structural alterations that have repercussions on their biological activity since the specificity may lay in their post-translational processing, which depends largely on the producing organism. The present review aims to examine the most representative studies in the area, exposing the four most frequently used systems (bacteria, yeasts, plants and animal cells), with the intention of providing the necessary information to determine the strategy to follow in each case as well as their respective advantages and disadvantages.
Collapse
Affiliation(s)
- Dania Martínez-Alarcón
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y Estudios Avanzados del IPN, Km. 9.6 Libramiento Norte, Carretera Irapuato-León, Irapuato 36824, Guanajuato, Mexico.
| | - Alejandro Blanco-Labra
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y Estudios Avanzados del IPN, Km. 9.6 Libramiento Norte, Carretera Irapuato-León, Irapuato 36824, Guanajuato, Mexico.
| | - Teresa García-Gasca
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias s/n, Juriquilla, Santiago de Querétaro 76230, Querétaro, Mexico.
| |
Collapse
|
6
|
Hwang HJ, Han JW, Kim GH, Han JW. Functional Expression and Characterization of the Recombinant N-Acetyl-Glucosamine/N-Acetyl-Galactosamine-Specific Marine Algal Lectin BPL3. Mar Drugs 2018; 16:E13. [PMID: 29303968 PMCID: PMC5793061 DOI: 10.3390/md16010013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/16/2017] [Accepted: 12/28/2017] [Indexed: 01/29/2023] Open
Abstract
Lectins, characterized by their carbohydrate-binding ability, have extensive practical applications. However, their industrial use is limited due to impurity. Thus, quality-controlled production of recombinant lectin is necessary. In this study, the algal lectin BPL3 (Bryopsis plumosa lectin 3) was successfully produced using a bacterial expression system, BL21(DE3), with an artificial repeated structure (dimeric construct). Recombinant dimeric BPL3 (rD2BPL3) was confirmed by LC-MS/MS spectrometry. Expression efficiency was greater for the construct with the repeat structure (rD2BPL3) than the monomeric form (rD1BPL3). Optimal conditions for expression were 1 mM IPTG at 20 °C. Recombinant lectin was purified under denaturing conditions and refolded by the flash dilution method. Recombinant BPL3 was solubilized in 1× PBS containing 2 M urea. rD2BPL3 showed strong hemagglutination activity using human erythrocyte. rD2BPL3 had a similar sugar specificity to that of the native protein, i.e., to N-acetyl-glucosamine (GlcNAc) and N-acetyl-galactosamine (GalNAc). Glycan array results showed that recombinant BPL3 and native BPL3 exhibited different binding properties. Both showed weak binding activity to α-Man-Sp. Native BPL3 showed strong binding specificity to the alpha conformation of amino sugars, and rD2BPL3 had binding activity to the beta conformation. The process developed in this study was suitable for the quality-controlled large-scale production of recombinant lectins.
Collapse
Affiliation(s)
- Hyun-Ju Hwang
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea.
| | - Jin-Woo Han
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea.
| | - Gwang Hoon Kim
- Department of Biology, Kongju National University, Kongju 32588, Korea.
| | - Jong Won Han
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea.
| |
Collapse
|
7
|
Zhang J, Sun A, Dong Y, Wei D. Recombinant Production and Characterization of SAC, the Core Domain of Par-4, by SUMO Fusion System. Appl Biochem Biotechnol 2017; 184:1155-1167. [PMID: 28971310 DOI: 10.1007/s12010-017-2599-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 09/06/2017] [Indexed: 11/27/2022]
Abstract
Prostate apoptosis response-4 (Par-4), an anticancer protein that interacts with cell surface receptor GRP78, can selectively suppress proliferation and induce apoptosis of cancer cells. The core domain of Par-4 (aa 137-195), designated as SAC, is sufficient to inhibit tumor growth and metastasis without harming normal tissues and organs. Nevertheless, the anticancer effects of SAC have not been determined in ovarian cancer cells. Here, we developed a novel method for producing native SAC in Escherichia coli using a small ubiquitin-related modifier (SUMO) fusion system. This fusion system not only greatly improved the solubility of target protein but also enhanced the expression level of SUMO-SAC. After purified by Ni-NTA affinity chromatography, SUMO tag was cleaved from SUMO-SAC fusion protein using SUMO protease to obtain recombinant SAC. Furthermore, we simplified the purification process by combining the SUMO-SAC purification and SUMO tag cleavage into one step. Finally, the purity of recombinant SAC reached as high as 95% and the yield was 25 mg/L. Our results demonstrated that recombinant SAC strongly inhibited proliferation and induced apoptosis in ovarian cancer cells SKOV-3. Immunofluorescence analysis and competitive binding reaction showed that recombinant SAC could specifically induce apoptosis of SKOV-3 cells through combination with cell surface receptor, GRP78. Therefore, we have developed an effective strategy for expressing bioactive SAC in prokaryotic cells, which supports the application of SAC in ovarian cancer therapy.
Collapse
Affiliation(s)
- Jian Zhang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Aiyou Sun
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
| | - Yuguo Dong
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
8
|
Abstract
Lectins are carbohydrate binding proteins present in seeds of many plants, especially corals and beans, in fungi and bacteria, and in animals. Apart from their hemagglutinating property, a wide range of functions have been attributed to them. Their importance in the area of immunohematology is immense. They are used to detect specific red cell antigens, to activate different types of lymphocytes, in order to resolve problems related to polyagglutination and so on. The introduction of advanced biotechnological tools generates new opportunities to exploit the properties of lectins, which were not used earlier. Stem cell research is a very important area in transplant medicine. Certain lectins detect surface markers of stem cell. Hence, they are used to understand the developmental biology of stem cells. The role of various lectins in the areas of transfusion and transplant medicine is discussed in detail in this review.
Collapse
Affiliation(s)
- Ajit C Gorakshakar
- Department of Transfusion Medicine, National Institute of Immunohaematology, KEM Hospital Campus, Mumbai, Maharashtra, India
| | - Kanjaksha Ghosh
- Department of Transfusion Medicine, National Institute of Immunohaematology, KEM Hospital Campus, Mumbai, Maharashtra, India
| |
Collapse
|
9
|
Xiao X, He H, Ding X, Yang Q, Liu X, Liu S, Rang J, Wang T, Zuo M, Xia L. Purification and cloning of lectin that induce cell apoptosis from Allium chinense. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:238-244. [PMID: 25765828 DOI: 10.1016/j.phymed.2014.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 10/20/2014] [Accepted: 12/14/2014] [Indexed: 06/04/2023]
Abstract
A 8.7 kDa lectin with high agglutin activity was isolated by affinity chromatography and cloned from Allium chinense in this study. For the MTT assay, approximately 60 µg/ml A. chinense lectin (ACL) inhibited 50% of the human hepatoma Hep-3B cells grown after 48 h. In addition, no antiproliferative effect was observed on normal human umbilical vein endothelial cells (HUVEC) even at 100 µg/ml concentration. After treatments with ACL on Hep-3B cells, morphologic changes in the nucleus and cytoskeleton were observed under laser scanning confocal microscopy with 4',6-diamidino-2-phenylindole and tubulin Alexa Fluor 488 staining; whereas, the mitochondrial membrane potential was observed through Mito Tracker Red CMXRos staining. The results showed that ACL led to cell morphology and structure change (e.g., round cell shrinkage). Moreover, ACL resulted in significant change in the shape of the nucleus, damaged the cytoskeleton when tubulin was degraded, and reduced the mitochondrial transmembrane potential. By contrast, no changes were observed on HUVEC cells under the same treatment conditions. DNA fragmentation analysis was used to detect DNA damage. Western blot showed that ACL upregulated caspase-3 and Bax expression during apoptosis and cloned the structural gene of ACL with an open reading frame of 456 bp encoding 151 amino acid residues. The results showed that ACL is a potential anticancer drug.
Collapse
Affiliation(s)
- Xiuqing Xiao
- College of Life Science, Hunan Normal University, Hunan Provincial Key Laboratory of Microbial Molecular Biology-State Key Laboratory Breeding Base of Microbial Molecular Biology, Changsha 410081, China
| | - Hao He
- College of Life Science, Hunan Normal University, Hunan Provincial Key Laboratory of Microbial Molecular Biology-State Key Laboratory Breeding Base of Microbial Molecular Biology, Changsha 410081, China
| | - Xuezhi Ding
- College of Life Science, Hunan Normal University, Hunan Provincial Key Laboratory of Microbial Molecular Biology-State Key Laboratory Breeding Base of Microbial Molecular Biology, Changsha 410081, China.
| | - Qi Yang
- College of Life Science, Hunan Normal University, Hunan Provincial Key Laboratory of Microbial Molecular Biology-State Key Laboratory Breeding Base of Microbial Molecular Biology, Changsha 410081, China
| | - Xuemei Liu
- College of Life Science, Hunan Normal University, Hunan Provincial Key Laboratory of Microbial Molecular Biology-State Key Laboratory Breeding Base of Microbial Molecular Biology, Changsha 410081, China
| | - Shuang Liu
- College of Life Science, Hunan Normal University, Hunan Provincial Key Laboratory of Microbial Molecular Biology-State Key Laboratory Breeding Base of Microbial Molecular Biology, Changsha 410081, China
| | - Jie Rang
- College of Life Science, Hunan Normal University, Hunan Provincial Key Laboratory of Microbial Molecular Biology-State Key Laboratory Breeding Base of Microbial Molecular Biology, Changsha 410081, China
| | - Ting Wang
- College of Life Science, Hunan Normal University, Hunan Provincial Key Laboratory of Microbial Molecular Biology-State Key Laboratory Breeding Base of Microbial Molecular Biology, Changsha 410081, China
| | - Mingxing Zuo
- College of Life Science, Hunan Normal University, Hunan Provincial Key Laboratory of Microbial Molecular Biology-State Key Laboratory Breeding Base of Microbial Molecular Biology, Changsha 410081, China
| | - Liqiu Xia
- College of Life Science, Hunan Normal University, Hunan Provincial Key Laboratory of Microbial Molecular Biology-State Key Laboratory Breeding Base of Microbial Molecular Biology, Changsha 410081, China.
| |
Collapse
|
10
|
Walski T, Van Damme EJM, Smagghe G. Penetration through the peritrophic matrix is a key to lectin toxicity against Tribolium castaneum. JOURNAL OF INSECT PHYSIOLOGY 2014; 70:94-101. [PMID: 25240534 DOI: 10.1016/j.jinsphys.2014.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 08/29/2014] [Accepted: 09/01/2014] [Indexed: 06/03/2023]
Abstract
In the last decades lectins have received a lot of attention as potential tools in pest control. Despite substantial progress in the field not all the factors determining insecticidal potency and selectivity of these proteins have been described. Recently, three lectins, RSA (Rhizoctonia solani agglutinin), SNA-I and SNA-II (Sambucus nigra agglutinin I and II) have been shown to be toxic to aphids and caterpillars. In this project we investigated if these lectins are also toxic against larvae and a cell line of the red flour beetle, Tribolium castaneum, a model organism and important pest of stored products. Furthermore, we analyzed the stability of the lectins in the larval gut and used confocal microscopy to compare their efficiency in passing through the peritrophic matrix (PM). We observed that all three lectins were toxic against the T. castaneum cell line and their effectiveness in vitro was in decreasing order SNA-II>SNA-I>RSA with the respective EC50 being 0.1, 0.5 and 3.6 μg/ml. Larvae feeding for 16 day on diets containing 2% RSA, 2% SNA-II and 2% SNA-I weighed 0.14 ± 0.07 mg, 0.67 ± 0.44 mg and 1.89 ± 0.38 mg, corresponding to approximately 7%, 36% and 80% of control larvae, respectively. As a consequence, RSA increased the time to adult emergence by over 3-fold, SNA-II by 1.9-fold and SNA-I by 1.2-fold. RSA and SNA-II were stable in the larval gut, while SNA-I was digested and excreted with the feces. Finally, confocal microscopy confirmed that RSA passed through the PM more efficiently than SNA-II. In conclusion, our data suggest that the lectin ability to pass through the PM, governed by molecule dimensions, charge and size of PM pores, is one of the features that determine the toxicity of these insecticidal proteins.
Collapse
Affiliation(s)
- Tomasz Walski
- Department of Crop Protection, Ghent University, Coupure Links 653, Ghent, Belgium; Department of Molecular Biotechnology, Ghent University, Coupure Links 653, Ghent, Belgium
| | - Els J M Van Damme
- Department of Molecular Biotechnology, Ghent University, Coupure Links 653, Ghent, Belgium; NB-Photonics, Ghent University, Ghent, Belgium
| | - Guy Smagghe
- Department of Crop Protection, Ghent University, Coupure Links 653, Ghent, Belgium.
| |
Collapse
|
11
|
Multimodal protein constructs for herbivore insect control. Toxins (Basel) 2012; 4:455-75. [PMID: 22822457 PMCID: PMC3398420 DOI: 10.3390/toxins4060455] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 06/01/2012] [Accepted: 06/05/2012] [Indexed: 01/09/2023] Open
Abstract
Transgenic plants expressing combinations of microbial or plant pesticidal proteins represent a promising tool for the efficient, durable control of herbivorous insects. In this review we describe current strategies devised for the heterologous co-expression of pesticidal proteins in planta, some of which have already shown usefulness in plant protection. Emphasis is placed on protein engineering strategies involving the insertion of single DNA constructs within the host plant genome. Multimodal fusion proteins integrating complementary pesticidal functions along a unique polypeptide are first considered, taking into account the structural constraints associated with protein or protein domain grafting to biologically active proteins. Strategies that allow for the co- or post-translational release of two or more pesticidal proteins are then considered, including polyprotein precursors releasing free proteins upon proteolytic cleavage, and multicistronic transcripts for the parallel translation of single protein-encoding mRNA sequences.
Collapse
|
12
|
Upadhyay SK, Singh PK. Receptors of Garlic (Allium sativum) Lectins and Their Role in Insecticidal Action. Protein J 2012; 31:439-46. [PMID: 22623282 DOI: 10.1007/s10930-012-9423-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
13
|
Oliveira C, Teixeira JA, Domingues L. Recombinant lectins: an array of tailor-made glycan-interaction biosynthetic tools. Crit Rev Biotechnol 2012; 33:66-80. [DOI: 10.3109/07388551.2012.670614] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
14
|
Abstract
Fusion systems are known to increase the expression of difficult to express recombinant proteins in soluble form to facilitate their purification. Rabies glycoprotein was also tough to express at sufficient level in soluble form in both E. coli and plant. The present work was aimed to over-express and purify this membrane protein from soluble extract of E. coli. Fusion of Small Ubiqutin like Modifier (SUMO) with rabies glycoprotein increased ~1.5 fold higher expression and ~3.0 fold solubility in comparison to non-fused in E. coli. The SUMO fusion also simplified the purification process. Previously engineered rabies glycoprotein gene in tobacco plants provides complete protection to mice, but the expression was very low for purification. Our finding demonstrated that the SUMO-fusion was useful for enhancing expression and solubility of the membrane protein and again proves to be a good alternative technology for applications in biomedical and pharmaceutical research.
Collapse
|
15
|
Rachel KV, Solmon KS, Kiranmayi P, Reddy IB, Prasad DS. In silico modeling and docking studies of Soap Nut Trypsin Inhibitor. Process Biochem 2012. [DOI: 10.1016/j.procbio.2011.11.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Upadhyay SK, Saurabh S, Singh R, Rai P, Dubey NK, Chandrashekar K, Negi KS, Tuli R, Singh PK. Purification and characterization of a lectin with high hemagglutination property isolated from Allium altaicum. Protein J 2011; 30:374-83. [PMID: 21732172 DOI: 10.1007/s10930-011-9342-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A lectin was purified from the leaves of Allium altaicum and corresponding gene was cloned. The lectin namely Allium altaicum agglutinin (AAA) was ~24 kDa homodimeric protein and similar to a typical garlic leaf lectin. It was synthesized as 177 amino acid residues pre-proprotein, which consisted of 28 and 43 amino acid long N and C-terminal signal peptides, respectively. The plant expressed this protein more in scapes and flowers in comparison to the bulbs and leaves. Hemagglutination activity (with rabbit erythrocytes) was 1,428 fold higher as compared to Allium sativum leaf agglutinin (ASAL) although, the insecticidal activity against cotton aphid (Aphis gossypii) was relatively low. Glycan array revealed that AAA had higher affinity towards GlcAb1-3Galb as compared to ASAL. Homology analysis showed 57-94% similarity with other Allium lectins. The mature protein was expressed in E. coli as a fusion with SUMO peptide in soluble and biologically active form. Recombinant protein retained high hemagglutination activity.
Collapse
Affiliation(s)
- Santosh Kumar Upadhyay
- Council of Scientific and Industrial Research, National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh, India
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Compatibility of garlic (Allium sativum L.) leaf agglutinin and Cry1Ac δ-endotoxin for gene pyramiding. Appl Microbiol Biotechnol 2011; 93:2365-75. [PMID: 21870043 DOI: 10.1007/s00253-011-3547-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 08/01/2011] [Accepted: 08/13/2011] [Indexed: 02/08/2023]
|
18
|
Upadhyay SK, Mishra M, Singh H, Ranjan A, Chandrashekar K, Verma PC, Singh PK, Tuli R. Interaction of Allium sativum leaf agglutinin with midgut brush border membrane vesicles proteins and its stability in Helicoverpa armigera. Proteomics 2010; 10:4431-40. [PMID: 21136596 DOI: 10.1002/pmic.201000152] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Lam SK, Ng TB. Lectins: production and practical applications. Appl Microbiol Biotechnol 2010; 89:45-55. [PMID: 20890754 PMCID: PMC3016214 DOI: 10.1007/s00253-010-2892-9] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Revised: 09/12/2010] [Accepted: 09/12/2010] [Indexed: 11/26/2022]
Abstract
Lectins are proteins found in a diversity of organisms. They possess the ability to agglutinate erythrocytes with known carbohydrate specificity since they have at least one non-catalytic domain that binds reversibly to specific monosaccharides or oligosaccharides. This articles aims to review the production and practical applications of lectins. Lectins are isolated from their natural sources by chromatographic procedures or produced by recombinant DNA technology. The yields of animal lectins are usually low compared with the yields of plant lectins such as legume lectins. Lectins manifest a diversity of activities including antitumor, immunomodulatory, antifungal, HIV-1 reverse transcriptase inhibitory, and anti-insect activities, which may find practical applications. A small number of lectins demonstrate antibacterial and anti-nematode activities.
Collapse
Affiliation(s)
- Sze Kwan Lam
- Division of Respiratory Medicine, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
20
|
Varejão N, Almeida MDS, De Cicco NNT, Atella GC, Coelho LCBB, Correia MATS, Foguel D. Heterologous expression and purification of a biologically active legume lectin from Cratylia mollis seeds (CRAMOLL 1). BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1917-24. [PMID: 20538076 DOI: 10.1016/j.bbapap.2010.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 05/31/2010] [Accepted: 06/01/2010] [Indexed: 10/19/2022]
Abstract
CRAMOLL 1 is a mannose/glucose isolectin isolated from Cratylia mollis seeds. This lectin has 82% sequence identity with Con A and essentially the same quaternary structure. As with Con A, CRAMOLL 1 seems to undergo complex post-translational processing which makes it difficult to the use of traditional molecular cloning for heterologous expression. Here we report the expression and purification of functional recombinant CRAMOLL 1 (rCRAMOLL 1) in Escherichia coli. This was accomplished by introducing a chemically synthesized DNA encoding the mature CRAMOLL 1 amino acid sequence into a bacterial expression vector under T7 promoter control. Most of the recombinant lectin was found in insoluble aggregates (inclusion bodies), but we were able to recover reasonable amounts of soluble lectin in the active form by decreasing the protein induction temperature. The recombinant lectin was purified to homogeneity with one-step affinity chromatography. The plant CRAMOLL 1 (pCRAMOLL 1) and rCRAMOLL 1 share several physicochemical properties such as molecular mass, charge density and secondary and tertiary structures. However, pCRAMOLL 1 has a lower thermodynamic stability than rCRAMOLL 1 when probed by acidification, high temperature or high hydrostatic pressure, and this is probably caused by the presence of tetramers composed of fragmented monomers, which are formed in the plant cotyledon but absent from the recombinant protein. rCRAMOLL 1 behaves identically to its plant counterpart with respect to its specificity for monosaccharides, and to its agglutinating activities against rabbit erythrocytes and Trypanosoma cruzi epimastigote cells.
Collapse
Affiliation(s)
- Nathalia Varejão
- Instituto de Bioquímica Médica, Programa de Biologia Estrutural, Centro Nacional de Ressonância Magnética Nuclear de Macromoléculas, Universidade Federal do Rio de Janeiro, Av. Bauhínia, 400, 21941-590, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | |
Collapse
|