1
|
Zhu B, Cen Z, Chen Y, Shang K, Zhai J, Han M, Wang J, Chen Z, Wei T, Han Z. α-Pyrone mediates quorum sensing through the conservon system in Nocardiopsis sp. Microbiol Res 2024; 285:127767. [PMID: 38776619 DOI: 10.1016/j.micres.2024.127767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Actinobacteria produce a plethora of bioactive secondary metabolites that are often regulated by quorum-sensing signaling molecules via specific binding to their cognate TetR-type receptors. Here, we identified monocyclic α-pyrone as a new class of actinobacterial signaling molecules influencing quorum sensing process in Nocardiopsis sp. LDBS0036, primarily evidenced by a significant reduction in the production of phenazines in the pyrone-null mutant compared to the wild-type strain. Exogenous addition of the α-pyrone can partially restore the expression of some pathways to the wild strain level. Moreover, a unique multicomponent system referred to as a conservon, which is widespread in actinobacteria and generally contains four or five functionally conserved proteins, may play an important role in detecting and transmitting α-pyrone signals in LDBS0036. We found the biosynthetic gene clusters of α-pyrone and their associated conservon genes are highly conserved in Nocardiopsis, indicating the widespread prevalence and significant function of this regulate mechanism within Nocardiopsis genus. Furthermore, homologous α-pyrones from different actinobacterial species were also found to mediate interspecies communication. Our results thus provide insights into a novel quorum-sensing signaling system and imply that various modes of bacterial communication remain undiscovered.
Collapse
Affiliation(s)
- Boyu Zhu
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan 572000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziyun Cen
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan 572000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiqiu Chen
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan 572000, China; Hainan University, Haikou, Hainan 570100, China
| | - Kun Shang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan 572000, China
| | - Ji'an Zhai
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan 572000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meigui Han
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan 572000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiawei Wang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan 572000, China; Hainan University, Haikou, Hainan 570100, China
| | - Zhiyong Chen
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan 572000, China
| | - Taoshu Wei
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan 572000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuang Han
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan 572000, China.
| |
Collapse
|
2
|
Shi R, Gong P, Liu Y, Luo Q, Chen W, Wang C. Linoleic acid functions as a quorum-sensing molecule in Monascus purpureus-Saccharomyces cerevisiae co-culture. Yeast 2023; 40:42-52. [PMID: 36514193 DOI: 10.1002/yea.3831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/10/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
When Monascus purpureus was co-cultured with Saccharomyces cerevisiae, we noted significant changes in the secondary metabolism and morphological development of Monascus. In yeast co-culture, although the pH was not different from that of a control, the Monascus mycelial biomass increased during fermentation, and the Monacolin K yield was significantly enhanced (up to 58.87% higher). However, pigment production did not increase. Co-culture with S. cerevisiae significantly increased the expression levels of genes related to Monacolin K production (mokA-mokI), especially mokE, mokF, and mokG. Linoleic acid, that has been implicated in playing a regulating role in the secondary metabolism and morphology of Monascus, was hypothesized to be the effector. Linoleic acid was detected in the co-culture, and its levels changed during fermentation. Addition of linoleic acid increased Monacolin K production and caused similar morphological changes in Monascus spores and mycelia. Exogenous linoleic acid also significantly upregulated the transcription levels of all nine genes involved in the biosynthesis of Monacolin K (up to 69.50% higher), consistent with the enhanced Monacolin K yield. Taken together, our results showed the effect of S. cerevisiae co-culture on M. purpureus and suggested linoleic acid as a specific quorum-sensing molecule in Saccharomyces-Monascus co-culture.
Collapse
Affiliation(s)
- Ruoyu Shi
- School of Food and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, P.R. China.,Yunnan Plateau Characteristic Agricultural Industry Research Institute, Yunnan Agricultural University, Kunming, China
| | - Pengfei Gong
- School of Food and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, P.R. China
| | - Yutong Liu
- School of Food and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, P.R. China
| | - Qiaoqiao Luo
- School of Food and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, P.R. China
| | - Wei Chen
- School of Food and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, P.R. China
| | - Chengtao Wang
- School of Food and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, P.R. China
| |
Collapse
|
3
|
De Clerck C, Josselin L, Vangoethem V, Lassois L, Fauconnier ML, Jijakli H. Weapons against Themselves: Identification and Use of Quorum Sensing Volatile Molecules to Control Plant Pathogenic Fungi Growth. Microorganisms 2022; 10:microorganisms10122459. [PMID: 36557712 PMCID: PMC9784989 DOI: 10.3390/microorganisms10122459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Quorum sensing (QS) is often defined as a mechanism of microbial communication that can regulate microbial behaviors in accordance with population density. Much is known about QS mechanisms in bacteria, but fungal QS research is still in its infancy. In this study, the molecules constituting the volatolomes of the plant pathogenic fungi Fusarium culmorum and Cochliobolus sativus have been identified during culture conditions involving low and high spore concentrations, with the high concentration imitating overpopulation conditions (for QS stimulation). We determined that volatolomes emitted by these species in conditions of overpopulation have a negative impact on their mycelial growth, with some of the emitted molecules possibly acting as QSM. Candidate VOCs related to QS have then been identified by testing the effect of individual volatile organic compounds (VOCs) on mycelial growth of their emitting species. The antifungal effect observed for the volatolome of F. culmorum in the overpopulation condition could be attributed to ethyl acetate, 2-methylpropan-1-ol, 3-methylbutyl ethanoate, 3-methylbutan-1-ol, and pentan-1-ol, while it could be attributed to longifolene, 3-methylbutan-1-ol, 2-methylpropan-1-ol, and ethyl acetate for C. sativus in the overpopulation condition. This work could pave the way to a sustainable alternative to chemical fungicides.
Collapse
Affiliation(s)
- Caroline De Clerck
- AgricultureIsLife, Gembloux Agro-Bio Tech, Liege University, Passage des Déportés 2, 5030 Gembloux, Belgium
- Correspondence:
| | - Laurie Josselin
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, Liege University, Passage des Déportés 2, 5030 Gembloux, Belgium
| | - Valentine Vangoethem
- Integrated and Urban Plant Pathology Laboratory, Gembloux Agro-Bio Tech, Liege University, Passage des Déportés 2, 5030 Gembloux, Belgium
| | - Ludivine Lassois
- Plant Genetics and Rhizosphere Processes Lab., Gembloux Agro-Bio Tech, Liege University, Passage des Déportés 2, 5030 Gembloux, Belgium
| | - Marie-Laure Fauconnier
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, Liege University, Passage des Déportés 2, 5030 Gembloux, Belgium
| | - Haïssam Jijakli
- Integrated and Urban Plant Pathology Laboratory, Gembloux Agro-Bio Tech, Liege University, Passage des Déportés 2, 5030 Gembloux, Belgium
| |
Collapse
|
4
|
Roik A, Reverter M, Pogoreutz C. A roadmap to understanding diversity and function of coral reef-associated fungi. FEMS Microbiol Rev 2022; 46:fuac028. [PMID: 35746877 PMCID: PMC9629503 DOI: 10.1093/femsre/fuac028] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/01/2022] [Accepted: 06/14/2022] [Indexed: 01/09/2023] Open
Abstract
Tropical coral reefs are hotspots of marine productivity, owing to the association of reef-building corals with endosymbiotic algae and metabolically diverse bacterial communities. However, the functional importance of fungi, well-known for their contribution to shaping terrestrial ecosystems and global nutrient cycles, remains underexplored on coral reefs. We here conceptualize how fungal functional traits may have facilitated the spread, diversification, and ecological adaptation of marine fungi on coral reefs. We propose that functions of reef-associated fungi may be diverse and go beyond their hitherto described roles of pathogens and bioeroders, including but not limited to reef-scale biogeochemical cycles and the structuring of coral-associated and environmental microbiomes via chemical mediation. Recent technological and conceptual advances will allow the elucidation of the physiological, ecological, and chemical contributions of understudied marine fungi to coral holobiont and reef ecosystem functioning and health and may help provide an outlook for reef management actions.
Collapse
Affiliation(s)
- Anna Roik
- Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg, Ammerländer Heerstraße 231, 26129 Oldenburg, Germany
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Wilhelmshaven, 26046, Germany
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Miriam Reverter
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Wilhelmshaven, 26046, Germany
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, United Kingdom
| | - Claudia Pogoreutz
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
5
|
Effect of γ-butyrolactone, a quorum sensing molecule, on morphology and secondary metabolism in Monascus. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Effect of γ-Heptalactone on the Morphology and Production of Monascus Pigments and Monacolin K in Monascus purpureus. J Fungi (Basel) 2022; 8:jof8020179. [PMID: 35205931 PMCID: PMC8880682 DOI: 10.3390/jof8020179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
Monascus is used widely in Asian countries and produces various biologically active metabolites, such as Monascus pigments (MPs) and monacolin K (MK). In this study, the effect of γ-heptalactone on secondary metabolites and mycelial growth during Monascus purpureus M1 fermentation was investigated. After the addition of 50 μM γ-heptalactone, the yields of MPs (yellow, orange, and red) reached maxima, increased by 115.70, 141.52, and 100.88%, respectively. The 25 μM γ-heptalactone groups showed the highest yield of MK was increased by 62.38% compared with that of the control. Gene expression analysis showed that the relative expression levels of MPs synthesis genes (MpPKS5, MpFasA2, mppB, mppC, mppD, mppG, mpp7, and mppR1/R2) were significantly upregulated after γ-heptalactone treatment. The relative expression levels of MK synthesis genes (mokA, mokC, mokE, mokH, and mokI) were significantly affected. The mycelium samples treated with γ-heptalactone exhibited more folds and swelling than that in the samples of the control group. This study confirmed that the addition of γ-heptalactone has the potential to induce yields of MPs and MK, and promote the expression of biosynthesis genes, which may be related to the transformation of mycelial morphology in M. purpureus.
Collapse
|
7
|
Roudbary M, Vahedi-Shahandashti R, Santos ALSD, Roudbar Mohammadi S, Aslani P, Lass-Flörl C, Rodrigues CF. Biofilm formation in clinically relevant filamentous fungi: a therapeutic challenge. Crit Rev Microbiol 2021; 48:197-221. [PMID: 34358430 DOI: 10.1080/1040841x.2021.1950121] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Biofilms are highly-organized microbial communities attached to a biotic or an abiotic surface, surrounded by an extracellular matrix secreted by the biofilm-forming cells. The majority of fungal pathogens contribute to biofilm formation within tissues or biomedical devices, leading to serious and persistent infections. The clinical significance of biofilms relies on the increased resistance to conventional antifungal therapies and suppression of the host immune system, which leads to invasive and recurrent fungal infections. While different features of yeast biofilms are well-described in the literature, the structural and molecular basis of biofilm formation of clinically related filamentous fungi has not been fully addressed. This review aimed to address biofilm formation in clinically relevant filamentous fungi.
Collapse
Affiliation(s)
- Maryam Roudbary
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - André Luis Souza Dos Santos
- Department of General Microbiology, Microbiology Institute Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Brazil
| | | | - Peyman Aslani
- Department of Parasitology and Mycology, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University Innsbruck, Innsbruck, Austria
| | - Célia F Rodrigues
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
8
|
Abstract
Quorum sensing (QS) is one of the most studied cell-cell communication mechanisms in fungi. Research in the last 20 years has explored various fungal QS systems that are involved in a wide range of biological processes, especially eukaryote- or fungus-specific behaviors, mirroring the significant contribution of QS regulation to fungal biology and evolution. Based on recent progress, we summarize in this review fungal QS regulation, with an emphasis on its functional role in behaviors unique to fungi or eukaryotes. We suggest that using fungi as genetically amenable eukaryotic model systems to address why and how QS regulation is integrated into eukaryotic reproductive strategies and molecular or cellular processes could be an important direction for QS research. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Xiuyun Tian
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; .,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Hao Ding
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; .,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Weixin Ke
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; .,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Linqi Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; .,University of Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
9
|
Minerdi D, Maggini V, Fani R. Volatile organic compounds: from figurants to leading actors in fungal symbiosis. FEMS Microbiol Ecol 2021; 97:6261439. [PMID: 33983430 DOI: 10.1093/femsec/fiab067] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 04/29/2021] [Indexed: 12/13/2022] Open
Abstract
Symbiosis involving two (or more) prokaryotic and/or eukaryotic partners is extremely widespread in nature, and it has performed, and is still performing, a key role in the evolution of several biological systems. The interaction between symbiotic partners is based on the emission and perception of a plethora of molecules, including volatile organic compounds (VOCs), synthesized by both prokaryotic and eukaryotic (micro)organisms. VOCs acquire increasing importance since they spread above and below ground and act as infochemicals regulating a very complex network. In this work we review what is known about the VOCs synthesized by fungi prior to and during the interaction(s) with their partners (either prokaryotic or eukaryotic) and their possible role(s) in establishing and maintaining the symbiosis. Lastly, we also describe the potential applications of fungal VOCs from different biotechnological perspectives, including medicinal, pharmaceutical and agronomical.
Collapse
Affiliation(s)
- Daniela Minerdi
- Department of Department of Agricultural, Forestry, and Food Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco (TO), Italy
| | - Valentina Maggini
- Department of Biology, Laboratory of Microbial and Molecular Evolution, University of Florence, Via Madonna del Piano 6, Sesto F.no (FI), Italy
| | - Renato Fani
- Department of Biology, Laboratory of Microbial and Molecular Evolution, University of Florence, Via Madonna del Piano 6, Sesto F.no (FI), Italy
| |
Collapse
|
10
|
Khan MF, Saleem D, Murphy CD. Regulation of Cunninghamella spp. biofilm growth by tryptophol and tyrosol. Biofilm 2021; 3:100046. [PMID: 33898970 PMCID: PMC8058532 DOI: 10.1016/j.bioflm.2021.100046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 11/29/2022] Open
Abstract
Fungi belonging to the genus Cunninghamella are often used as microbial models of mammalian metabolism owing to their ability to transform a range of xenobiotic compounds. Furthermore, under specific growth conditions species such as Cunninghamellaelegans and Cunninghamellaechinulata grow as biofilms enabling a convenient semi-continuous production of valuable drug metabolites. However, the molecular mechanism of biofilm regulation is not understood, thus controlling biofilm thickness limits the productive applications of it. In this paper we describe the identification of two molecules, tyrosol and tryptophol, that were identified in C. blakesleeana cultures, but not in C. elegans and C. echinulata. The molecules are known quorum sensing molecules (QSMs) in yeast and their potential role in Cunninghamella biofilm regulation was explored. Both were present in higher concentrations in C. blakesleeana planktonic cultures compared with biofilms; they inhibited the growth of the fungus on agar plates and selectively inhibited biofilm growth in liquid cultures. The molecules had a comparatively minor impact on the biofilm growth of C. elegans and C. echinulata and on the growth of these fungi on agar plates. Finally, when exogenous tyrosol or tryptophol was added to previously grown C. blakesleeana biofilm, detachment was visible and new additional planktonic culture was measured, confirming that these molecules specifically regulate biofilm growth in this fungus. Tyrosol and tryptophol were identified in culture supernatants of Cunninghamella blakesleeana. Concentrations of the compounds were substantially higher in planktonic cultures compared with biofilms. Bioassays revealed that tyrosol and tryptophol inhibited growth of C. blakesleeana on agar plates. Biofilm growth was inhibited by exogenous addition of the compounds whereas planktonic growth was unaffected. The compounds caused detachment of previously grown biofilms.
Collapse
Affiliation(s)
- Mohd Faheem Khan
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Dua Saleem
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Cormac D Murphy
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
11
|
|
12
|
Khan MF, Murphy CD. 3-Hydroxytyrosol regulates biofilm growth in Cunninghamella elegans. Fungal Biol 2020; 125:211-217. [PMID: 33622537 DOI: 10.1016/j.funbio.2020.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 12/23/2022]
Abstract
In contrast to yeast biofilms, those of filamentous fungi are relatively poorly understood, in particular with respect to their regulation. Cunninghamella elegans is a filamentous fungus that is of biotechnological interest as it catabolises drugs and other xenobiotics in an analogous manner to animals; furthermore, it can grow as a biofilm enabling repeated batch biotransformations. Precisely how the fungus switches from planktonic to biofilm growth is unknown and the aim of this study was to shed light on the possible mechanism of biofilm regulation. In dimorphic yeasts, alcohols such as tyrosol and 2-phenylethanol are known to control the yeast-to-hypha switch, and a similar molecule might be involved in regulating biofilm in C. elegans. Gas chromatography-mass spectrometry analysis of crude ethyl acetate extracts from supernatants of 72 h planktonic and biofilm cultures revealed 3-hydroxytyrosol as a prominent metabolite. Further quantification revealed that the amounts of the compound in planktonic cultures were substantially higher (>10-fold) than in biofilm cultures. In the presence of exogenous 3-hydroxytyrosol the growth of aerial mycelium was inhibited, and there was selective inhibition of biofilm when it was added to culture medium. There was no biotransformation of the compound when it was added to 72 h-old cultures, in contrast to the related compounds tyrosol and 2-phenylethanol, which were oxidised to a number of products. Therefore, we propose that 3-hydroxytyrosol is a new signalling molecule in fungi, which regulates biofilm growth.
Collapse
Affiliation(s)
- Mohd Faheem Khan
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Cormac D Murphy
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
13
|
Asadi F, Barshan-Tashnizi M, Hatamian-Zarmi A, Davoodi-Dehaghani F, Ebrahimi-Hosseinzadeh B. Enhancement of exopolysaccharide production from Ganoderma lucidum using a novel submerged volatile co-culture system. Fungal Biol 2020; 125:25-31. [PMID: 33317773 DOI: 10.1016/j.funbio.2020.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 08/21/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Based on the impact of volatile organic compounds (VOCs) on secondary metabolite pathways, a novel submerged volatile co-culture system was constructed, and the effects of thirteen fungal and bacterial VOCs were investigated on Ganoderma lucidum exopolysaccharides production. The results demonstrated at least a 2.2-fold increase in exopolysaccharide (EPS) specific production yield in 6 days submerged volatile co-culture of G. lucidum with Pleurotus ostreatus. Therefore, P. ostreatus was selected as a variable culture, and the effects of agitation speed, inoculum size, initial pH, and co-culture volume on EPSs production were investigated using a Taguchi L9 orthogonal array. Finally, the highest concentration of EPSs (3.35 ± 0.22 g L-1) was obtained under optimized conditions; initial pH 5.0, inoculum size 10%, 150 rpm, and 3:1 volume ratio of variable culture to main culture.
Collapse
Affiliation(s)
- Fatemeh Asadi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Mohammad Barshan-Tashnizi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| | - Ashrafalsadat Hatamian-Zarmi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Fatemeh Davoodi-Dehaghani
- Department of Biology, Faculty of Basic Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Bahman Ebrahimi-Hosseinzadeh
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| |
Collapse
|
14
|
Kovács R, Majoros L. Fungal Quorum-Sensing Molecules: A Review of Their Antifungal Effect against Candida Biofilms. J Fungi (Basel) 2020; 6:jof6030099. [PMID: 32630687 PMCID: PMC7559060 DOI: 10.3390/jof6030099] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 01/05/2023] Open
Abstract
The number of effective therapeutic strategies against biofilms is limited; development of novel therapies is urgently needed to treat a variety of biofilm-associated infections. Quorum sensing is a special form of microbial cell-to-cell communication that is responsible for the release of numerous extracellular molecules, whose concentration is proportional with cell density. Candida-secreted quorum-sensing molecules (i.e., farnesol and tyrosol) have a pivotal role in morphogenesis, biofilm formation, and virulence. Farnesol can mediate the hyphae-to-yeast transition, while tyrosol has the opposite effect of inducing transition from the yeast to hyphal form. A number of questions regarding Candida quorum sensing remain to be addressed; nevertheless, the literature shows that farnesol and tyrosol possess remarkable antifungal and anti-biofilm effect at supraphysiological concentration. Furthermore, previous in vitro and in vivo data suggest that they may have a potent adjuvant effect in combination with certain traditional antifungal agents. This review discusses the most promising farnesol- and tyrosol-based in vitro and in vivo results, which may be a foundation for future development of novel therapeutic strategies to combat Candida biofilms.
Collapse
Affiliation(s)
- Renátó Kovács
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
- Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary
- Correspondence: ; Tel.: +0036-52-255-425; Fax: +0036-52-255-424
| | - László Majoros
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| |
Collapse
|
15
|
Farnesol and Tyrosol: Secondary Metabolites with a Crucial quorum-sensing Role in Candida Biofilm Development. Genes (Basel) 2020; 11:genes11040444. [PMID: 32325685 PMCID: PMC7231263 DOI: 10.3390/genes11040444] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 02/08/2023] Open
Abstract
When living in biological and interactive communities, microorganisms use quorum-sensing mechanisms for their communication. According to cell density, bacteria and fungi can produce signaling molecules (e.g., secondary metabolites), which participate, for example, in the regulation of gene expression and coordination of collective behavior in their natural niche. The existence of these secondary metabolites plays a main role in competence, colonization of host tissues and surfaces, morphogenesis, and biofilm development. Therefore, for the design of new antibacterials or antifungals and understanding on how these mechanisms occur, to inhibit the secretion of quorum-sensing (e.g., farnesol and tyrosol) molecules leading the progress of microbial infections seems to be an interesting option. In yeasts, farnesol has a main role in the morphological transition, inhibiting hyphae production in a concentration-dependent manner, while tyrosol has a contrary function, stimulating transition from spherical cells to germ tube form. It is beyond doubt that secretion of both molecules by fungi has not been fully described, but specific meaning for their existence has been found. This brief review summarizes the important function of these two compounds as signaling chemicals participating mainly in Candida morphogenesis and regulatory mechanisms.
Collapse
|
16
|
Quorum sensing involvement in response surface methodology for optimisation of sclerotiorin production by Penicillium sclerotiorum in shaken flasks and bioreactors. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01525-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Abstract
Purpose
Sclerotiorin, an azaphilone produced by some filamentous fungi including Penicillium sclerotiorum, is a pigment with variety of biological activities including lipoxygenase inhibition, reduction of cholesterol levels, and anti-cancer properties. Sclerotiorin has potential use in pharmaceutical as well as food industries. In this context, the purpose of this study was to provide a simple and robust procedure for optimised production of sclerotiorin by P. sclerotiorum using a central composite design developed through response surface methodology (RSM) and to identify the molecule(s) involved in the signalling mechanism in P. sclerotiorum.
Methods
The optimisation of sclerotiorin production was carried out using RSM in shaken flasks and the obtained results were then replicated using a 2-L stirred tank bioreactor. Penicillium sclerotiorum ethyl acetate culture extract was analysed using thin layer chromatography (TLC) and potential signalling molecules were identified using Gas chromatography-mass spectrometry (GC-MS).
Results
The experimental studies suggested an increase in the sclerotiorin production by 2.1-fold and 2.2-fold in shaken flasks and stirred tank bioreactors respectively. Further analysis of P. sclerotiorum ethyl acetate culture extract reported the presence of ricinoleic acid, an oxylipin, belonging to a family of signalling molecules tentatively involved in the enhancement of sclerotiorin production.
Conclusion
This paper has highlighted the positive effect of the optimal supplementation of P. sclerotiorum culture extracts for enhanced production of sclerotiorin. It has also examined potential molecules involved in the signalling mechanism in P. sclerotiorum culture extract for the overproduction of sclerotiorin.
Collapse
|
17
|
Mehmood A, Liu G, Wang X, Meng G, Wang C, Liu Y. Fungal Quorum-Sensing Molecules and Inhibitors with Potential Antifungal Activity: A Review. Molecules 2019; 24:E1950. [PMID: 31117232 PMCID: PMC6571750 DOI: 10.3390/molecules24101950] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 12/16/2022] Open
Abstract
The theory of persisting independent and isolated regarding microorganisms is no longer accepted. To survive and reproduce they have developed several communication platforms within the cells which facilitates them to adapt the surrounding environmental changes. This cell-to-cell communication is termed as quorum sensing; it relies upon the cell density and can stimulate several traits of microbes including biofilm formation, competence, and virulence factors secretion. Initially, this sophisticated mode of communication was discovered in bacteria; later, it was also confirmed in eukaryotes (fungi). As a consequence, many quorum-sensing molecules and inhibitors have been identified and characterized in various fungal species. In this review article, we will primarily focus on fungal quorum-sensing molecules and the production of inhibitors from fungal species with potential applications for combating fungal infections.
Collapse
Affiliation(s)
- Arshad Mehmood
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Guorong Liu
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Xin Wang
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Guannan Meng
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Chengtao Wang
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Ya Liu
- R&D Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming 650202, China.
| |
Collapse
|
18
|
Jiang H, Hwang HW, Ge T, Cole B, Perkins B, Hao J. Leucine Regulates Zoosporic Germination and Infection by Phytophthora erythroseptica. Front Microbiol 2019; 10:131. [PMID: 30804912 PMCID: PMC6370700 DOI: 10.3389/fmicb.2019.00131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/21/2019] [Indexed: 11/20/2022] Open
Abstract
Pink rot (Phytophthora erythroseptica) of potato is a major concern in many potato production regions. The pathogen produces zoospores that serve as a primary inoculum for infection. To understand how the pink rot incidence is related to pathogen population, qualitative, and quantitative chemical analyses were conducted. It was demonstrated that P. erythroseptica zoospores required a minimal population of 103 zoospores/ml (threshold) for initiating germination and the subsequent infection; the percentage of zoosporic germination was positively correlated with the density of zoospores above the threshold. To elucidate the density-dependent behavior, zoospore exudate (ZE) was extracted from high-density (105/ml) zoospore suspension. Zoosporic inocula of P. erythroseptica at different concentrations were inoculated on potato tubers. Necrotic lesions were caused by inoculum with 100 zoospores per inoculation site; 5 zoospores per site did not cause lesions on the tuber. However, five zoospores did cause lesions when they were placed in ZE, suggesting ZE contained chemical compounds that regulate germination of zoospores. ZE was collected and analyzed using liquid chromatography mass spectroscopy (LC-MS). Results showed that the amino acid leucine was associated with zoosporic germination. Therefore, zoosporic germination and infection of P. erythroseptica were mediated by signaling molecules secreted from zoospores.
Collapse
Affiliation(s)
- He Jiang
- School of Food and Agriculture, The University of Maine, Orono, ME, United States
| | - Hye Weon Hwang
- Department of Chemistry, The University of Maine, Orono, ME, United States
| | - Tongling Ge
- School of Food and Agriculture, The University of Maine, Orono, ME, United States
| | - Barbara Cole
- Department of Chemistry, The University of Maine, Orono, ME, United States
| | - Brian Perkins
- School of Food and Agriculture, The University of Maine, Orono, ME, United States
| | - Jianjun Hao
- School of Food and Agriculture, The University of Maine, Orono, ME, United States
| |
Collapse
|
19
|
Barriuso J, Hogan DA, Keshavarz T, Martínez MJ. Role of quorum sensing and chemical communication in fungal biotechnology and pathogenesis. FEMS Microbiol Rev 2018; 42:627-638. [PMID: 29788231 DOI: 10.1093/femsre/fuy022] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 05/17/2018] [Indexed: 12/18/2022] Open
Abstract
Microbial cells do not live in isolation in their environment, but rather they communicate with each other using chemical signals. This sophisticated mode of cell-to-cell signalling, known as quorum sensing, was first discovered in bacteria, and coordinates the behaviour of microbial population behaviour in a cell-density-dependent manner. More recently, these mechanisms have been described in eukaryotes, particularly in fungi, where they regulate processes such as pathogenesis, morphological differentiation, secondary metabolite production and biofilm formation. In this manuscript, we review the information available to date on these processes in yeast, dimorphic fungi and filamentous fungi. We analyse the diverse chemical 'languages' used by different groups of fungi, their possible cross-talk and interkingdom interactions with other organisms. We discuss the existence of these mechanisms in multicellular organisms, the ecophysiological role of QS in fungal colonisation and the potential applications of these mechanisms in biotechnology and pathogenesis.
Collapse
Affiliation(s)
- Jorge Barriuso
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Deborah A Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Tajalli Keshavarz
- Department of Life Sciences, Faculty of Science and Technology, University of Westminster, London W1W 6UW, UK
| | - María Jesús Martínez
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
20
|
Deng YZ, Zhang B, Chang C, Wang Y, Lu S, Sun S, Zhang X, Chen B, Jiang Z. The MAP Kinase SsKpp2 Is Required for Mating/Filamentation in Sporisorium scitamineum. Front Microbiol 2018; 9:2555. [PMID: 30416495 PMCID: PMC6212578 DOI: 10.3389/fmicb.2018.02555] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/08/2018] [Indexed: 02/04/2023] Open
Abstract
In the phytopathogenic fungus Sporisorium scitamineum, sexual mating between two compatible haploid cells and the subsequent formation of dikaryotic hyphae is essential for infection. This process was shown to be commonly regulated by a mitogen-activated protein kinase (MAPK) and a cAMP/PKA signaling pathway in the corn smut fungus Ustilago maydis but remains largely unknown in S. scitamineum. In this study, we identified a conserved putative MAP kinase Kpp2 in S. scitamineum and named it as SsKpp2. The sskpp2Δ mutant displayed significant reduction in mating/filamentation, which could be partially restored by addition of cAMP or tryptophol, a quorum-sensing molecule identified in budding yeast. Transcriptional profiling showed that genes governing S. scitamineum mating or tryptophol biosynthesis were significantly differentially regulated in the sskpp2Δ mutant compared to the WT, under mating condition. Our results demonstrate that the MAP kinase SsKpp2 is required for S. scitamineum mating/filamentation likely through regulating the conserved pheromone signal transduction pathway and tryptophol production.
Collapse
Affiliation(s)
- Yi Zhen Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Bin Zhang
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Changqing Chang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Yixu Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Shan Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Shuquan Sun
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Xiaomeng Zhang
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Zide Jiang
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| |
Collapse
|
21
|
Sobreira ACM, Pinto FDCL, Florêncio KGD, Wilke DV, Staats CC, Streit RDAS, Freire FDCDO, Pessoa ODL, Trindade-Silva AE, Canuto KM. Endophytic fungus Pseudofusicoccum stromaticum produces cyclopeptides and plant-related bioactive rotenoids. RSC Adv 2018; 8:35575-35586. [PMID: 35547902 PMCID: PMC9088075 DOI: 10.1039/c8ra06824k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/07/2018] [Indexed: 01/29/2023] Open
Abstract
In the present study, we integrated liquid chromatography high-resolution mass spectrometry (LC-HRMS) and high-throughput DNA sequencing for prospecting cytotoxic specialized metabolites from Pseudofusicoccum stromaticum, an endophytic fungus associated to the medicinal plant Myracrodruon urundeuva. LC-HRMS profiling allowed identifying putatively eleven compounds in the ethyl acetate extract from P. stromaticum broth. Additionally, a chemical fractionation guided by cytotoxicity combined with spectrometric analysis resulted in the isolation of three compounds: the cyclopeptide cyclo-l-Phe-d-Leu-l-Leu-l-Leu-l-lle along with the known rotenoids rotenolone and tephrosin. MTT assay showed that tephrosin (IC50 0.51 μg mL−1) has strong cytotoxic effect and may be pointed out as the compound responsible for the antiproliferative activity of P. stromaticum. Next Generation Sequencing (NGS) and genome mining of P. stromaticum draft genome revealed 56 contigs codifying specialized metabolites biosynthesis-related enzymes. Nearly half of such genes (44.6%) could be mapped to orphan Biosynthetic Gene Clusters (BGCs) of related plant pathogens belonging to family Botryosphaeriaceae. Also, screening for rotenoids biosynthetic enzymes led to characterization of a putative chalcone isomerase-like (CHI-like) protein. This is the first report of rotenoids biosynthesized by a fungus, unveiling a unique ability of P. stromaticum. Pseudofusicoccum stromaticum produces cyclopeptides and plant-related rotenoids, which are responsible for its antiproliferative effect.![]()
Collapse
Affiliation(s)
- Aline C. M. Sobreira
- Departamento de Química Orgânica e Inorgânica
- Universidade Federal do Ceará
- Fortaleza
- Brazil
| | | | | | - Diego V. Wilke
- Núcleo de Pesquisa e Desenvolvimento de Medicamentos
- Universidade Federal do Ceará
- Fortaleza
- Brazil
| | - Charley C. Staats
- Centro de Biotecnologia
- Universidade Federal do Rio Grande do Sul
- Porto Alegre
- Brazil
| | | | | | - Otília D. L. Pessoa
- Departamento de Química Orgânica e Inorgânica
- Universidade Federal do Ceará
- Fortaleza
- Brazil
| | - Amaro E. Trindade-Silva
- Núcleo de Pesquisa e Desenvolvimento de Medicamentos
- Universidade Federal do Ceará
- Fortaleza
- Brazil
| | | |
Collapse
|
22
|
Bacon CW, Hinton DM, Mitchell TR. Is Quorum Signaling by Mycotoxins a New Risk-Mitigating Strategy for Bacterial Biocontrol of Fusarium verticillioides and Other Endophytic Fungal Species? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7071-7080. [PMID: 27958725 DOI: 10.1021/acs.jafc.6b03861] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Bacterial endophytes are used as biocontrol organisms for plant pathogens such as the maize endophyte Fusarium verticillioides and its production of fumonisin mycotoxins. However, such applications are not always predictable and efficient. In this work, we hypothesize and review work that quorum sensing inhibitors are produced either by fungi or by pathogenic bacteria for competitive purposes, altering the efficiency of the biocontrol organisms. Recently, quorum sensing inhibitors have been isolated from several fungi, including Fusarium species, three of which are mycotoxins. Thus, we further postulate that other mycotoxins are inhibitors or quenching metabolites that prevent the protective abilities and activities of endophytic biocontrol bacteria within intercellular spaces. To test the aforementioned suppositions, we review work detailing the use of bioassay bacteria for several mycotoxins for quorum activity. We specifically focus on the quorum use of endophytic bacteria as biocontrols for mycotoxic fungal endophytes, such as the Fusarium species and the fumonisin mycotoxins.
Collapse
Affiliation(s)
- Charles W Bacon
- U.S. National Poultry Research Center, Toxicology & Mycotoxin Research Unit, Russell Research Center, Agricultural Research Service, U.S. Department of Agriculture , Athens, Georgia 30605, United States
| | - Dorothy M Hinton
- U.S. National Poultry Research Center, Toxicology & Mycotoxin Research Unit, Russell Research Center, Agricultural Research Service, U.S. Department of Agriculture , Athens, Georgia 30605, United States
| | - Trevor R Mitchell
- U.S. National Poultry Research Center, Toxicology & Mycotoxin Research Unit, Russell Research Center, Agricultural Research Service, U.S. Department of Agriculture , Athens, Georgia 30605, United States
| |
Collapse
|
23
|
Hu H, He J, Yu H, Liu J, Zhang J. A strategy to speed up formation and strengthen activity of biofilms at low temperature. RSC Adv 2017. [DOI: 10.1039/c7ra02223a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The start-up period of biofilm reactors often takes a long time to obtain a mature and stable biofilm, especially at low temperature.
Collapse
Affiliation(s)
- Huizhi Hu
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin
- China
| | - Junguo He
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin
- China
| | - Huarong Yu
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin
- China
| | - Jian Liu
- Central and Southern China Municipal Engineering Design and Research Institute Co., Ltd
- Wuhan
- China
| | - Jie Zhang
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin
- China
| |
Collapse
|
24
|
Macheleidt J, Mattern DJ, Fischer J, Netzker T, Weber J, Schroeckh V, Valiante V, Brakhage AA. Regulation and Role of Fungal Secondary Metabolites. Annu Rev Genet 2016; 50:371-392. [DOI: 10.1146/annurev-genet-120215-035203] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Juliane Macheleidt
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany; , , , , , ,
| | - Derek J. Mattern
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany; , , , , , ,
- Institute for Microbiology, Friedrich Schiller University Jena, 07737 Jena, Germany
| | - Juliane Fischer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany; , , , , , ,
- Institute for Microbiology, Friedrich Schiller University Jena, 07737 Jena, Germany
| | - Tina Netzker
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany; , , , , , ,
- Institute for Microbiology, Friedrich Schiller University Jena, 07737 Jena, Germany
| | - Jakob Weber
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany; , , , , , ,
- Institute for Microbiology, Friedrich Schiller University Jena, 07737 Jena, Germany
| | - Volker Schroeckh
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany; , , , , , ,
| | - Vito Valiante
- Research Group Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology (HKI), 07745 Jena, Germany;
| | - Axel A. Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745 Jena, Germany; , , , , , ,
- Institute for Microbiology, Friedrich Schiller University Jena, 07737 Jena, Germany
| |
Collapse
|
25
|
Functions, mechanisms and regulation of endophytic and epiphytic microbial communities of plants. Symbiosis 2015. [DOI: 10.1007/s13199-015-0350-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Li AJ, Hou BL, Li MX. Cell adhesion, ammonia removal and granulation of autotrophic nitrifying sludge facilitated by N-acyl-homoserine lactones. BIORESOURCE TECHNOLOGY 2015; 196:550-558. [PMID: 26295441 DOI: 10.1016/j.biortech.2015.08.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/05/2015] [Accepted: 08/08/2015] [Indexed: 06/04/2023]
Abstract
In this study, six N-acyl-homoserine lactone (AHL) molecules (C6-HSL, C8-HSL, C10-HSL, 3-oxo-C6-HSL, 3-oxo-C8-HSL and 3-oxo-C10-HSL) were each dosed into a bioreactor and seeded using autotrophic nitrifying sludge (ANS). The effects of the AHLs on cell adhesion, nitrification and sludge granulation were investigated. The results indicated that the efficiencies of cell adhesion and ammonia removal both had a close correlation with the side chain length and β position substituent group of the AHLs. The best-performing AHL in terms of accelerating bacterial attached-growth was 3-oxo-C6-HSL, whereas C6-HSL outperformed the others in terms of the ammonia degradation rate. The addition of 3-oxo-C6-HSL or C6-HSL increased the biomass growth rate, microbial activity, extracellular proteins and nitrifying bacteria, which can accelerate the formation of nitrifying granules. Consequently, selecting AHL molecules that could improve bacteria in attached-growth mode and nitrification efficiency simultaneously will most likely facilitate the rapid granulation of nitrifying sludge.
Collapse
Affiliation(s)
- An-Jie Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education/State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China.
| | - Bao-Lian Hou
- Key Laboratory of Water and Sediment Sciences of Ministry of Education/State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Mei-Xi Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education/State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| |
Collapse
|
27
|
Quorum-Sensing Mechanisms Mediated by Farnesol in Ophiostoma piceae: Effect on Secretion of Sterol Esterase. Appl Environ Microbiol 2015; 81:4351-7. [PMID: 25888179 DOI: 10.1128/aem.00079-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 04/15/2015] [Indexed: 01/04/2023] Open
Abstract
Ophiostoma piceae CECT 20416 is a dimorphic wood-staining fungus able to produce an extracellular sterol-esterase/lipase (OPE) that is of great biotechnological interest. In this work, we have studied the morphological change of this fungus from yeast to hyphae, which is associated with the cell density-related mechanism known as quorum sensing (QS), and how this affects the secretion of OPE. The data presented here confirm that the molecule E,E-farnesol accumulates as the cell number is growing within the population. The exogenous addition of this molecule or spent medium to the cultures increased the extracellular activity of OPE 2.5 times. This fact was related not to an increase in microbial biomass or in the expression of the gene coding for OPE but to a marked morphological transition in the cultures. Moreover, the morphological transition also occurred when a high cell density was inoculated into the medium. The results suggest that E,E-farnesol regulates through QS mechanisms the morphological transition in the dimorphic fungus O. piceae and that it is associated with a higher extracellular esterase activity. Furthermore, identification and transcriptional analysis of genes tup1 and cyr1, which are involved in the response, was carried out. Here we report enhanced production of a sterol-esterase/lipase of biotechnological interest by means of QS mechanisms. These results may be useful in increasing the production of secreted enzymes of other dimorphic fungi of biotechnological interest.
Collapse
|
28
|
|
29
|
Lenartowicz P, Kafarski P, Lipok J. The overproduction of 2,4-DTBP accompanying to the lack of available form of phosphorus during the biodegradative utilization of aminophosphonates by Aspergillus terreus. Biodegradation 2014; 26:65-76. [PMID: 25385070 DOI: 10.1007/s10532-014-9716-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 11/06/2014] [Indexed: 10/24/2022]
Abstract
Although information about the ability of some filamentous fungi to biodegrade organophosphonates is available, the knowledge about accompanying changes in fungal metabolism is very limited. The aim of our study was to determine the utilization of the chosen, structurally diverse aminophosphonates by Aspergillus terreus (Thom), in the context of the behaviour of this fungus while growing in unfavourable conditions, namely the lack of easily available phosphates. We found that all the studied compounds were utilized by fungus as nutritive sources of phosphorus, however, their effect on the production of fungal biomass depended on their structure. We also observed an interesting change in the metabolism of A. terreus; namely the overproduction of 2,4-di-tert-butylphenol (2,4-DTBP), which is known to possess fungistatic activity. In the case of our study, the biosynthesis of this compound was induced by phosphorus starvation, caused either by the lack of that element in the medium, or the poor degradation of phosphonate.
Collapse
Affiliation(s)
- Paweł Lenartowicz
- Faculty of Chemistry, Opole University, Oleska 48, 45-052, Opole, Poland
| | | | | |
Collapse
|
30
|
Microbial metabolism of quorum-sensing molecules acyl-homoserine lactones, γ-heptalactone and other lactones. Appl Microbiol Biotechnol 2014; 98:3401-12. [DOI: 10.1007/s00253-014-5518-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 12/30/2013] [Accepted: 01/03/2014] [Indexed: 10/25/2022]
|
31
|
Ren TT, Li XY, Yu HQ. Effect of N-acy-l-homoserine lactones-like molecules from aerobic granules on biofilm formation by Escherichia coli K12. BIORESOURCE TECHNOLOGY 2013; 129:655-658. [PMID: 23305896 DOI: 10.1016/j.biortech.2012.12.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Revised: 12/06/2012] [Accepted: 12/08/2012] [Indexed: 06/01/2023]
Abstract
A laboratory study was conducted to investigate the production of quorum sensing (QS) molecules by aerobic granules in membrane-partitioned bioreactor. Flow-chamber (FC) tests with Escherichia coli K12 demonstrated that granules induced more attached growth of E. coli cells than activated sludge flocs, leading to more cell adhesion and biofilm formation on the FC cover slide. Using the thin-layer chromatography, N-acy-l-homoserine lactones (AHLs) with acyl chains shorter than 10 carbons were detected in the liquid phase of granular sludge. Organic substances extracted with acidified ethyl acetate from the supernatant of granular sludge promoted the adhesion and growth of E. coli cells on the glass surface. AHL-like signal molecules were apparently produced by granules and might be involved in the formation of granules and the maintenance of granular structures during wastewater treatment.
Collapse
Affiliation(s)
- Ting-ting Ren
- Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | | | | |
Collapse
|
32
|
Raina S, De Vizio D, Palonen EK, Odell M, Brandt AM, Soini JT, Keshavarz T. Is quorum sensing involved in lovastatin production in the filamentous fungus Aspergillus terreus? Process Biochem 2012. [DOI: 10.1016/j.procbio.2012.02.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
33
|
Williams HE, Steele JCP, Clements MO, Keshavarz T. γ-Heptalactone is an endogenously produced quorum-sensing molecule regulating growth and secondary metabolite production by Aspergillus nidulans. Appl Microbiol Biotechnol 2012; 96:773-81. [DOI: 10.1007/s00253-012-4065-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/28/2012] [Accepted: 03/29/2012] [Indexed: 11/24/2022]
|
34
|
Abstract
Aspergillus flavus is saprophytic soil fungus that infects and contaminates preharvest and postharvest seed crops with the carcinogenic secondary metabolite aflatoxin. The fungus is also an opportunistic animal and human pathogen causing aspergillosis diseases with incidence increasing in the immunocompromised population. Whole genome sequences of A. flavus have been released and reveal 55 secondary metabolite clusters that are regulated by different environmental regimes and the global secondary metabolite regulators LaeA and VeA. Characteristics of A. flavus associated with pathogenicity and niche specialization include secondary metabolite production, enzyme elaboration, and a sophisticated oxylipin host crosstalk associated with a quorum-like development program. One of the more promising strategies in field control involves the use of atoxic strains of A. flavus in competitive exclusion studies. In this review, we discuss A. flavus as an agricultural and medical threat and summarize recent research advances in genomics, elucidation of parameters of pathogenicity, and control measures.
Collapse
Affiliation(s)
- Saori Amaike
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
35
|
|