1
|
Enninful GN, Kuppusamy R, Tiburu EK, Kumar N, Willcox MDP. Non-canonical amino acid bioincorporation into antimicrobial peptides and its challenges. J Pept Sci 2024; 30:e3560. [PMID: 38262069 DOI: 10.1002/psc.3560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/01/2023] [Accepted: 11/14/2023] [Indexed: 01/25/2024]
Abstract
The rise of antimicrobial resistance and multi-drug resistant pathogens has necessitated explorations for novel antibiotic agents as the discovery of conventional antibiotics is becoming economically less viable and technically more challenging for biopharma. Antimicrobial peptides (AMPs) have emerged as a promising alternative because of their particular mode of action, broad spectrum and difficulty that microbes have in becoming resistant to them. The AMPs bacitracin, gramicidin, polymyxins and daptomycin are currently used clinically. However, their susceptibility to proteolytic degradation, toxicity profile, and complexities in large-scale manufacture have hindered their development. To improve their proteolytic stability, methods such as integrating non-canonical amino acids (ncAAs) into their peptide sequence have been adopted, which also improves their potency and spectrum of action. The benefits of ncAA incorporation have been made possible by solid-phase peptide synthesis. However, this method is not always suitable for commercial production of AMPs because of poor yield, scale-up difficulties, and its non-'green' nature. Bioincorporation of ncAA as a method of integration is an emerging field geared towards tackling the challenges of solid-phase synthesis as a green, cheaper, and scalable alternative for commercialisation of AMPs. This review focusses on the bioincorporation of ncAAs; some challenges associated with the methods are outlined, and notes are given on how to overcome these challenges. The review focusses particularly on addressing two key challenges: AMP cytotoxicity towards microbial cell factories and the uptake of ncAAs that are unfavourable to them. Overcoming these challenges will draw us closer to a greater yield and an environmentally friendly and sustainable approach to make AMPs more druggable.
Collapse
Affiliation(s)
| | - Rajesh Kuppusamy
- University of New South Wales, Kensington, New South Wales, Australia
| | | | - Naresh Kumar
- University of New South Wales, Kensington, New South Wales, Australia
| | - Mark D P Willcox
- University of New South Wales, Kensington, New South Wales, Australia
| |
Collapse
|
2
|
Desiderato CK, Müller C, Schretzmeier A, Hasenauer KM, Gnannt B, Süpple B, Reiter A, Steier V, Oldiges M, Eikmanns BJ, Riedel CU. Optimized recombinant production of the bacteriocin garvicin Q by Corynebacterium glutamicum. Front Microbiol 2024; 14:1254882. [PMID: 38260893 PMCID: PMC10800739 DOI: 10.3389/fmicb.2023.1254882] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Bacteriocins are antimicrobial peptides applied in food preservation and are interesting candidates as alternatives to conventional antibiotics or as microbiome modulators. Recently, we established Corynebacterium glutamicum as a suitable production host for various bacteriocins including garvicin Q (GarQ). Here, we establish secretion of GarQ by C. glutamicum via the Sec translocon achieving GarQ titers of about 7 mg L-1 in initial fermentations. At neutral pH, the cationic peptide is efficiently adsorbed to the negatively charged envelope of producer bacteria limiting availability of the bacteriocin in culture supernatants. A combination of CaCl2 and Tween 80 efficiently reduces GarQ adsorption to C. glutamicum. Moreover, cultivation in minimal medium supplemented with CaCl2 and Tween 80 improves GarQ production by C. glutamicum to about 15 mg L-1 but Tween 80 resulted in reduced GarQ activity at later timepoints. Using a reporter strain and proteomic analyses, we identified HtrA, a protease associated with secretion stress, as another potential factor limiting GarQ production. Transferring production to HtrA-deficient C. glutamicum K9 improves GarQ titers to close to 40 mg L-1. Applying conditions of low aeration prevented loss in activity at later timepoints and improved GarQ titers to about 100 mg L-1. This is about 50-fold higher than previously shown with a C. glutamicum strain employing the native GarQ transporter GarCD for secretion and in the range of levels observed with the native producer Lactococcus petauri B1726. Additionally, we tested several synthetic variants of GarQ and were able to show that exchange of the methionine in position 5 to a phenylalanine (GarQM5F) results in markedly increased activity against Lactococcus lactis and Listeria monocytogenes. In summary, our findings shed light on several aspects of recombinant GarQ production that may also be of relevance for production with natural producers and other bacteriocins.
Collapse
Affiliation(s)
- Christian K. Desiderato
- Institute of Molecular Biology and Biotechnology of Prokaryotes, University of Ulm, Ulm, Germany
| | - Carolin Müller
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Alexander Schretzmeier
- Institute of Molecular Biology and Biotechnology of Prokaryotes, University of Ulm, Ulm, Germany
| | - Katharina M. Hasenauer
- Institute of Molecular Biology and Biotechnology of Prokaryotes, University of Ulm, Ulm, Germany
| | - Bruno Gnannt
- Institute of Molecular Biology and Biotechnology of Prokaryotes, University of Ulm, Ulm, Germany
| | - Bastian Süpple
- Institute of Molecular Biology and Biotechnology of Prokaryotes, University of Ulm, Ulm, Germany
| | - Alexander Reiter
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Valentin Steier
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Marco Oldiges
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Bernhard J. Eikmanns
- Institute of Molecular Biology and Biotechnology of Prokaryotes, University of Ulm, Ulm, Germany
| | - Christian U. Riedel
- Institute of Molecular Biology and Biotechnology of Prokaryotes, University of Ulm, Ulm, Germany
| |
Collapse
|
3
|
Sevillano E, Peña N, Lafuente I, Cintas LM, Muñoz-Atienza E, Hernández PE, Borrero J. Nisin S, a Novel Nisin Variant Produced by Ligilactobacillus salivarius P1CEA3. Int J Mol Sci 2023; 24:ijms24076813. [PMID: 37047785 PMCID: PMC10095417 DOI: 10.3390/ijms24076813] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
Recently, the food industry and the animal farming field have been working on different strategies to reduce the use of antibiotics in animal production. The use of probiotic producers of antimicrobial peptides (bacteriocins) is considered to be a potential solution to control bacterial infections and to reduce the use of antibiotics in animal production. In this study, Ligilactobacillus salivarius P1CEA3, isolated from the gastrointestinal tract (GIT) of pigs, was selected for its antagonistic activity against Gram-positive pathogens of relevance in swine production. Whole genome sequencing (WGS) of L. salivarius P1ACE3 revealed the existence of two gene clusters involved in bacteriocin production, one with genes encoding the class II bacteriocins salivaricin B (SalB) and Abp118, and a second cluster encoding a putative nisin variant. Colony MALDI-TOF MS determinations and a targeted proteomics combined with massive peptide analysis (LC-MS/MS) of the antimicrobial peptides encoded by L. salivarius P1CEA3 confirmed the production of a 3347 Da novel nisin variant, termed nisin S, but not the production of the bacteriocins SalB and Abp118, in the supernatants of the producer strain. This is the first report of a nisin variant encoded and produced by L. salivarius, a bacterial species specially recognized for its safety and probiotic potential.
Collapse
Affiliation(s)
- Ester Sevillano
- Departamento de Nutrición y Ciencia de los Alimentos (NUTRYCIAL), Sección Departamental de Nutrición y Ciencia de los Alimentos (SD-NUTRYCIAL), Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - Nuria Peña
- Departamento de Nutrición y Ciencia de los Alimentos (NUTRYCIAL), Sección Departamental de Nutrición y Ciencia de los Alimentos (SD-NUTRYCIAL), Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - Irene Lafuente
- Departamento de Nutrición y Ciencia de los Alimentos (NUTRYCIAL), Sección Departamental de Nutrición y Ciencia de los Alimentos (SD-NUTRYCIAL), Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - Luis M Cintas
- Departamento de Nutrición y Ciencia de los Alimentos (NUTRYCIAL), Sección Departamental de Nutrición y Ciencia de los Alimentos (SD-NUTRYCIAL), Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - Estefanía Muñoz-Atienza
- Departamento de Nutrición y Ciencia de los Alimentos (NUTRYCIAL), Sección Departamental de Nutrición y Ciencia de los Alimentos (SD-NUTRYCIAL), Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - Pablo E Hernández
- Departamento de Nutrición y Ciencia de los Alimentos (NUTRYCIAL), Sección Departamental de Nutrición y Ciencia de los Alimentos (SD-NUTRYCIAL), Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - Juan Borrero
- Departamento de Nutrición y Ciencia de los Alimentos (NUTRYCIAL), Sección Departamental de Nutrición y Ciencia de los Alimentos (SD-NUTRYCIAL), Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040 Madrid, Spain
| |
Collapse
|
4
|
Design of Lactococcus lactis Strains Producing Garvicin A and/or Garvicin Q, Either Alone or Together with Nisin A or Nisin Z and High Antimicrobial Activity against Lactococcus garvieae. Foods 2023; 12:foods12051063. [PMID: 36900581 PMCID: PMC10000435 DOI: 10.3390/foods12051063] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Lactococcus garvieae is a main ichthyopathogen in rainbow trout (Oncorhynchus mykiss, Walbaum) farming, although bacteriocinogenic L. garvieae with antimicrobial activity against virulent strains of this species have also been identified. Some of the bacteriocins characterized, such as garvicin A (GarA) and garvicin Q (GarQ), may show potential for the control of the virulent L. garvieae in food, feed and other biotechnological applications. In this study, we report on the design of Lactococcus lactis strains that produce the bacteriocins GarA and/or GarQ, either alone or together with nisin A (NisA) or nisin Z (NisZ). Synthetic genes encoding the signal peptide of the lactococcal protein Usp45 (SPusp45), fused to mature GarA (lgnA) and/or mature GarQ (garQ) and their associated immunity genes (lgnI and garI, respectively), were cloned into the protein expression vectors pMG36c, which contains the P32 constitutive promoter, and pNZ8048c, which contains the inducible PnisA promoter. The transformation of recombinant vectors into lactococcal cells allowed for the production of GarA and/or GarQ by L. lactis subsp. cremoris NZ9000 and their co-production with NisA by Lactococcus lactis subsp. lactis DPC5598 and L. lactis subsp. lactis BB24. The strains L. lactis subsp. cremoris WA2-67 (pJFQI), a producer of GarQ and NisZ, and L. lactis subsp. cremoris WA2-67 (pJFQIAI), a producer of GarA, GarQ and NisZ, demonstrated the highest antimicrobial activity (5.1- to 10.7-fold and 17.3- to 68.2-fold, respectively) against virulent L. garvieae strains.
Collapse
|
5
|
Chen B, Loo BZL, Cheng YY, Song P, Fan H, Latypov O, Kittelmann S. Genome-wide high-throughput signal peptide screening via plasmid pUC256E improves protease secretion in Lactiplantibacillus plantarum and Pediococcus acidilactici. BMC Genomics 2022; 23:48. [PMID: 35021997 PMCID: PMC8756648 DOI: 10.1186/s12864-022-08292-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 01/03/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Proteases catalyze the hydrolysis of peptide bonds of proteins, thereby improving dietary protein digestibility, nutrient availability, as well as flavor and texture of fermented food and feed products. The lactobacilli Lactiplantibacillus plantarum (formerly Lactobacillus plantarum) and Pediococcus acidilactici are widely used in food and feed fermentations due to their broad metabolic capabilities and safe use. However, extracellular protease activity in these two species is low. Here, we optimized protease expression and secretion in L. plantarum and P. acidilactici via a genetic engineering strategy. RESULTS To this end, we first developed a versatile and stable plasmid, pUC256E, which can propagate in both L. plantarum and P. acidilactici. We then confirmed expression and secretion of protease PepG1 as a functional enzyme in both strains with the aid of the previously described L. plantarum-derived signal peptide LP_0373. To further increase secretion of PepG1, we carried out a genome-wide experimental screening of signal peptide functionality. A total of 155 predicted signal peptides originating from L. plantarum and 110 predicted signal peptides from P. acidilactici were expressed and screened for extracellular proteolytic activity in the two different strains, respectively. We identified 12 L. plantarum signal peptides and eight P. acidilactici signal peptides that resulted in improved yield of secreted PepG1. No significant correlation was found between signal peptide sequence properties and its performance with PepG1. CONCLUSION The vector developed here provides a powerful tool for rapid experimental screening of signal peptides in both L. plantarum and P. acidilactici. Moreover, the set of novel signal peptides identified was widely distributed across strains of the same species and even across some closely related species. This indicates their potential applicability also for the secretion of other proteins of interest in other L. plantarum or P. acidilactici host strains. Our findings demonstrate that screening a library of homologous signal peptides is an attractive strategy to identify the optimal signal peptide for the target protein, resulting in improved protein export.
Collapse
Affiliation(s)
- Binbin Chen
- Wilmar International Limited, WIL@NUS Corporate Laboratory, Centre for Translational Medicine, National University of Singapore, Singapore, Singapore
| | - Bryan Zong Lin Loo
- Wilmar International Limited, WIL@NUS Corporate Laboratory, Centre for Translational Medicine, National University of Singapore, Singapore, Singapore
| | - Ying Ying Cheng
- Wilmar International Limited, WIL@NUS Corporate Laboratory, Centre for Translational Medicine, National University of Singapore, Singapore, Singapore
| | - Peng Song
- Wilmar International Limited, Wilmar (Shanghai) Biotechnology Research and Development Center Co. Ltd., Shanghai, China
| | - Huan Fan
- Wilmar International Limited, WIL@NUS Corporate Laboratory, Centre for Translational Medicine, National University of Singapore, Singapore, Singapore
- Present Address: Huan Fan, Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, People's Republic of China
| | - Oleg Latypov
- Wilmar International Limited, WIL@NUS Corporate Laboratory, Centre for Translational Medicine, National University of Singapore, Singapore, Singapore.
| | - Sandra Kittelmann
- Wilmar International Limited, WIL@NUS Corporate Laboratory, Centre for Translational Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
6
|
Chen K, Liu C, Li H, Lei Y, Zeng C, Xu S, Li J, Savino F. Infantile Colic Treated With Bifidobacterium longum CECT7894 and Pediococcus pentosaceus CECT8330: A Randomized, Double-Blind, Placebo-Controlled Trial. Front Pediatr 2021; 9:635176. [PMID: 34568236 PMCID: PMC8461252 DOI: 10.3389/fped.2021.635176] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Colic is a common condition in infants <4 months of age. Attempts to treat infantile colic with probiotics have shown variable efficacy and overall low evidence of success. In this work, we tested the hypothesis that oral administration of Bifidobacterium longum CECT7894 (KABP042) and Pediococcus pentosaceus CECT8330 (KABP041) mix (1 × 109 colony forming units) would improve the symptoms of infantile colic. Methods: A total of 112 exclusively breastfed or mixed fed infants aged <2 months and meeting the ROME IV criteria for infantile colic were recruited. The infants were randomized in a double-blind, placebo-controlled trial to receive orally administered probiotics (intervention group, IG, n = 48) or placebo (placebo group, PG, n = 42) daily for 21 days. Results: Infants in the IG had significantly shorter crying time (p < 0.001) on day 7 [IG vs. PG, median (25-75th percentile): 38 (3.5-40.5) vs. 62 (40-108) min/day], day 14 [IG vs. PG: 20 (0-40) vs. 50 (30-75) min/day], and day 21 [IG vs. PG: 14 (0-33) vs. 40 (28-62) min/day]. Higher responder ratio and fewer crying/fussing episodes on days 7, 14, and 21 and better stool consistency on day 21 were observed in the IG (p < 0.01) as compared to the PG. Conversely, no significant effects on stool frequency or quality of life were observed. Conclusions: In summary, daily oral administration of B. longum CECT7894 (KABP042) and P. pentosaceus CECT8330 (KABP041) was an effective treatment for shortening crying time due to infantile colic and for improving fecal consistency. This trial was registered retrospectively in December 2019 with a trial number of ISRCTN92431452.
Collapse
Affiliation(s)
- Ke Chen
- Department of Nutrition, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.,Department of Child Health Care, Angel Children's Hospital, Chengdu, China
| | - Changqi Liu
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | - Hua Li
- Department of Child Health Care, Qingbaijiang Maternal and Child Health Hospital, Chengdu, China
| | - Yuehua Lei
- Department of Child Health Care, Qingbaijiang Maternal and Child Health Hospital, Chengdu, China
| | - Chenggui Zeng
- Department of Child Health Care, Chengdu Caojiaxiang Community Healthcare Center, Chengdu, China
| | - Shuhong Xu
- Department of Child Health Care, Huili Maternity and Child Care Center, Huili, China
| | - Jianqiu Li
- Department of Child Health Care, Angel Children's Hospital, Chengdu, China
| | - Francesco Savino
- Department of Paediatrics, S.S.D. Subintensive Neonatal Care, Children Hospital 'Regina Margherita', Turin, Italy
| |
Collapse
|
7
|
Mu Y, Xin Y, Guo T, Kong J. Identification and characterization of a moonlighting protein-enolase for surface display in Streptococcus thermophilus. Microb Cell Fact 2020; 19:132. [PMID: 32552809 PMCID: PMC7301973 DOI: 10.1186/s12934-020-01389-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 06/11/2020] [Indexed: 01/01/2023] Open
Abstract
Background Streptococcus thermophilus is an important food starter and receiving more attention to serve as cell factories for production of high-valued metabolites. However, the low yields of intracellular or extracellular expression of biotechnological and biomedical proteins limit its practical applications. Results Here, an enolase EnoM was identified from S. thermophilus CGMCC7.179 with about 94% identities to the surface-located enolases from other Streptococcus spp. strains. The EnoM was used as an anchor to achieve surface display in S. thermophilus using GFP as a reporter. After respectively mixing the GFP-EnoM fusion protein or GFP with S. thermophilus cells in vitro, the relative fluorescence units (RFU) of the S. thermophilus cells with GFP-EnoM was 80-folds higher than that with purified GFP. The sharp decrease in the RFU of sodium dodecyl sulfate (SDS) pretreated cells compared to those of non-pretreated cells demonstrated that the membrane proteins were the binding ligand of EnoM. Furthermore, an engineered β-galactosidase (β-Gal) was also successfully displayed on the cell surface of S. thermophilus CGMCC7.179 and the relative activity of the immobilized β-Gal remained up to 64% after reused 8 times. Finally, we also demonstrated that EnoM could be used as an anchor for surface display in L. casei, L. bulgaricus, L. lactis and Leuconostoc lactis. Conclusion To our knowledge, EnoM from S. thermophilus was firstly identified as an anchor and successfully achieved surface display in LAB. The EnoM-based surface display system provided a novel strategy for the enzyme immobilization.
Collapse
Affiliation(s)
- Yingli Mu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Dadao, Qingdao, 266237, People's Republic of China
| | - Yongping Xin
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Dadao, Qingdao, 266237, People's Republic of China
| | - Tingting Guo
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Dadao, Qingdao, 266237, People's Republic of China
| | - Jian Kong
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Dadao, Qingdao, 266237, People's Republic of China.
| |
Collapse
|
8
|
Gao J, Qian H, Guo X, Mi Y, Guo J, Zhao J, Xu C, Zheng T, Duan M, Tang Z, Lin C, Shen Z, Jiang Y, Wang X. The signal peptide of Cry1Ia can improve the expression of eGFP or mCherry in Escherichia coli and Bacillus thuringiensis and enhance the host's fluorescent intensity. Microb Cell Fact 2020; 19:112. [PMID: 32448275 PMCID: PMC7247199 DOI: 10.1186/s12934-020-01371-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 05/16/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The signal peptides (SPs) of secretory proteins are frequently used or modified to guide recombinant proteins outside the cytoplasm of prokaryotic cells. In the periplasmic space and extracellular environment, recombinant proteins are kept away from the intracellular proteases and often they can fold correctly and efficiently. Consequently, expression levels of the recombinant protein can be enhanced by the presence of a SP. However, little attention has been paid to the use of SPs with low translocation efficiency for recombinant protein production. In this paper, the function of the signal peptide of Bacillus thuringiensis (Bt) Cry1Ia toxin (Iasp), which is speculated to be a weak translocation signal, on regulation of protein expression was investigated using fluorescent proteins as reporters. RESULTS When fused to the N-terminal of eGFP or mCherry, the Iasp can improve the expression of the fluorescent proteins and as a consequence enhance the fluorescent intensity of both Escherichia coli and Bt host cells. Real-time quantitative PCR analysis revealed the higher transcript levels of Iegfp over those of egfp gene in E. coli TG1 cells. By immunoblot analysis and confocal microscope observation, lower translocation efficiency of IeGFP was demonstrated. The novel fluorescent fusion protein IeGFP was then used to compare the relative strengths of cry1Ia (Pi) and cry1Ac (Pac) gene promoters in Bt strain, the latter promoter proving the stronger. The eGFP reporter, by contrast, cannot indicate unambiguously the regulation pattern of Pi at the same level of sensitivity. The fluorescent signals of E. coli and Bt cells expressing the Iasp fused mCherry (ImCherry) were also enhanced. Importantly, the Iasp can also enhanced the expression of two difficult-to-express proteins, matrix metalloprotease-13 (MMP13) and myostatin (growth differentiating factor-8, GDF8) in E. coli BL21-star (DE3) strain. CONCLUSIONS We identified the positive effects of a weak signal peptide, Iasp, on the expression of fluorescent proteins and other recombinant proteins in bacteria. The produced IeGFP and ImCherry can be used as novel fluorescent protein variants in prokaryotic cells. The results suggested the potential application of Iasp as a novel fusion tag for improving the recombinant protein expression.
Collapse
Affiliation(s)
- Jianhua Gao
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China.
| | - Hongmei Qian
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Xiaoqin Guo
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Yi Mi
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Junpei Guo
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Juanli Zhao
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Chao Xu
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Ting Zheng
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Ming Duan
- Experimental Teaching Center, Shanxi Agricultural University, Taigu, 030801, China
| | - Zhongwei Tang
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Chaoyang Lin
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zhicheng Shen
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yiwei Jiang
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Xingchun Wang
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China.
| |
Collapse
|
9
|
García-Cano I, Rocha-Mendoza D, Kosmerl E, Zhang L, Jiménez-Flores R. Technically relevant enzymes and proteins produced by LAB suitable for industrial and biological activity. Appl Microbiol Biotechnol 2020; 104:1401-1422. [DOI: 10.1007/s00253-019-10322-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/06/2019] [Accepted: 12/15/2019] [Indexed: 12/19/2022]
|
10
|
Efficacy, toxicity study and antioxidant properties of plantaricin E and F recombinants against enteropathogenic Escherichia coli K1.1 (EPEC K1.1). Mol Biol Rep 2019; 46:6501-6512. [PMID: 31583564 DOI: 10.1007/s11033-019-05096-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 09/22/2019] [Indexed: 10/25/2022]
Abstract
Enteropathogenic Escherichia coli (EPEC) is one of the resistance bacteria towards antibiotics and have been raising problem during treatments. Therefore, a new antibiotic candidate is required. Plantaricin E and F recombinant have been successfully produced by a GRAS host Lactococcus lactis. This study was aimed to evaluate the efficacy and toxicity of plantaricin E and F recombinant against EPEC K1.1 infection by in vivo assay. The production of plantaricin E and F recombinants from Lactococcus lactis was conducted and encapsulated. The in vivo study was carried out by inoculating the mice perorally with EPEC K1.1 for 7 days then treated with 100, 250, and 500 mg/kg body weight/day of recombinant plantaricin E and F for another 7 days. The toxicity assay were observed in ddY mice using various concentrations of treatment (50, 100, 1000, and 5000 mg/kg/body weight) doses perorally for 48 h. The result showed that the plantaricin E and F recombinant were successfully produced in Lactococcus lactis expression host with 3.7 kDa and 3.8 kDa in size. The efficacy study revealed the optimal doses of plantaricin E and F recombinant against EPEC K1.1 infection was 250 mg/kgBW for plantaricin E and 500 mg/kgBW for plantaricin F. The plantarisin E and F recombinant treatment showed improvement in leukocyte, hematocrit, and hemoglobin levels as well in decreasing malondialdehyde (MDA) level. Observation of the intestine histopathology showed small amounts of mononuclear inflammatory cell infiltration than the other groups of treatment. The acute toxicity assay showed that there was no mortality observed during the assay, even after 5000 mg/kg body weight of plantarisin E and F recombinant treatment (LD50 > 5000 mg/KgBW). The hematological and biochemical observations showed normal levels in leukocytes, erythrocytes, hematocrit, hemoglobin, platelets, urea, creatinine, and alanine transaminase aspartate transaminase (SGOT and SGPT) while histopathological observation shows a picture of normal liver and kidney cells. This study confirmed the application of bacteriocin for further academic and industrial purposes as a non-toxic substance for food preservative and antibiotic candidate.
Collapse
|
11
|
Gabant P, Borrero J. PARAGEN 1.0: A Standardized Synthetic Gene Library for Fast Cell-Free Bacteriocin Synthesis. Front Bioeng Biotechnol 2019; 7:213. [PMID: 31552239 PMCID: PMC6743375 DOI: 10.3389/fbioe.2019.00213] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023] Open
Abstract
The continuous emergence of microbial resistance to our antibiotic arsenal is widely becoming recognized as an imminent threat to global human health. Bacteriocins are antimicrobial peptides currently under consideration as real alternatives or complements to common antibiotics. These peptides have been much studied, novel bacteriocins are regularly reported and several genomic databases on these peptides are currently updated. Despite this, to our knowledge, a physical collection of bacteriocins that would allow testing and comparing them for different applications does not exist. Rapid advances in synthetic biology in combination with cell-free protein synthesis technologies offer great potential for fast protein production. Based on the amino acid sequences of the mature peptide available in different databases, we have built a bacteriocin gene library, called PARAGEN 1.0, containing all the genetic elements required for in vitro cell-free peptide synthesis. Using PARAGEN 1.0 and a commercial kit for cell-free protein synthesis we have produced 164 different bacteriocins. Of the bacteriocins synthesized, 54% have shown antimicrobial activity against at least one of the indicator strains tested, including Gram-positive and Gram-negative bacteria representing commonly used lab strains, industrially relevant microorganisms, and known pathogens. This bacteriocin collection represents a streamlined pipeline for selection, production, and screening of bacteriocins as well as a reservoir of ready-to-use antimicrobials against virtually any class of relevant bacteria.
Collapse
|
12
|
Guo J, Xie Y, Yu Z, Meng G, Wu Z. Effect of Lactobacillus plantarum expressing multifunctional glycoside hydrolases on the characteristics of alfalfa silage. Appl Microbiol Biotechnol 2019; 103:7983-7995. [PMID: 31468090 DOI: 10.1007/s00253-019-10097-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/31/2019] [Accepted: 08/21/2019] [Indexed: 12/31/2022]
Abstract
For the first time, Lactobacillus plantarum strains carrying heterologous genes encoding multifunctional glycoside hydrolases were constructed and used as additives for alfalfa silage. The chemical characteristics, nonstructural carbohydrate composition, and fermentation quality of alfalfa silage were examined. The supernatant of L. plantarum expressing CbXyn10C and Bgxg1 (LP11AG) showed activities on xylan, Avicel, and carboxymethylcellulose (CMC), while the supernatant of the wild-type L. plantarum showed no activity. When LP11AG was used as silage additive, the water-soluble carbohydrate content of alfalfa silage increased by 72%, 55%, and 155% compared with control when the silage was stored at 20 °C, 30 °C, and 40 °C, respectively. With LP11AG being used as an additive for the alfalfa silage stored at 20 °C, the hemicellulose, cellulose, and acid detergent ligninin (ADL) contents decreased by 17%, 6%, and 14% compared with the control (p < 0.05), respectively. Compared with the corresponding original contents, the contents of glucose, arabinose, galactose, and fructose detected in silage treated with LP11AG after 45 days of ensiling increased by 55%, 1494%, 68%, and 5% , respectively, when stored at 40 °C. Raffinose and stachyose, originally present in alfalfa, disappeared after ensiling. In conclusion, our results suggest that LP11AG provides a substantial benefit as a silage additive.
Collapse
Affiliation(s)
- Jingui Guo
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100094, China
| | - Yixiao Xie
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100094, China
| | - Zhu Yu
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100094, China
| | - Geng Meng
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhe Wu
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100094, China.
| |
Collapse
|
13
|
Arbulu S, Jiménez JJ, Gútiez L, Feito J, Cintas LM, Herranz C, Hernández PE. Cloning and expression of synthetic genes encoding native, hybrid- and bacteriocin-derived chimeras from mature class IIa bacteriocins, by Pichia pastoris (syn. Komagataella spp.). Food Res Int 2019; 121:888-899. [DOI: 10.1016/j.foodres.2019.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 12/19/2018] [Accepted: 01/07/2019] [Indexed: 02/06/2023]
|
14
|
Venegas-Ortega MG, Flores-Gallegos AC, Martínez-Hernández JL, Aguilar CN, Nevárez-Moorillón GV. Production of Bioactive Peptides from Lactic Acid Bacteria: A Sustainable Approach for Healthier Foods. Compr Rev Food Sci Food Saf 2019; 18:1039-1051. [PMID: 33336997 DOI: 10.1111/1541-4337.12455] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/14/2019] [Accepted: 04/28/2019] [Indexed: 12/25/2022]
Abstract
Traditional fermented foods where lactic acid bacteria (LAB) are present have been associated with beneficial effects on human health, and some of those benefits are related to protein-derived products. Peptides produced by LAB have attracted the interest of food industries because of their diverse applications. These peptides include ribosomally produced (bacteriocins) and protein hydrolysates by-products (bioactive peptides), which can participate as natural preservatives and nutraceuticals, respectively. It is essential to understand the biochemical pathways and the effect of growth conditions for the production of bioactive peptides and bacteriocins by LAB, in order to suggest strategies for optimization. LAB is an important food-grade expression system that can be used in the simultaneous production of peptide-based products for the food, animal, cosmetic, and pharmaceutical industries. This review describes the multifunctional proteinaceous compounds generated by LAB metabolism and discusses a strategy to use a single-step production process, using an alternative protein-based media. This strategy will provide economic advantages in fermentation processes and will also provide an environmental alternative to industrial waste valorization. New technologies that can be used to improve production and bioactivity of LAB-derived peptides are also analyzed.
Collapse
Affiliation(s)
- María G Venegas-Ortega
- Research Group of Bioprocesses and Bioproducts, Dept. of Food Research, School of Chemistry, Univ. Autónoma de Coahuila, Saltillo, 25280, Mexico
| | - Adriana C Flores-Gallegos
- Research Group of Bioprocesses and Bioproducts, Dept. of Food Research, School of Chemistry, Univ. Autónoma de Coahuila, Saltillo, 25280, Mexico
| | - José L Martínez-Hernández
- Research Group of Bioprocesses and Bioproducts, Dept. of Food Research, School of Chemistry, Univ. Autónoma de Coahuila, Saltillo, 25280, Mexico
| | - Cristóbal N Aguilar
- Research Group of Bioprocesses and Bioproducts, Dept. of Food Research, School of Chemistry, Univ. Autónoma de Coahuila, Saltillo, 25280, Mexico
| | - Guadalupe V Nevárez-Moorillón
- Facultad de Ciencias Químicas, Univ. Autónoma de Chihuahua, Circuito Universitario S/N, Campus Universitario II, Chihuahua, 31125, Mexico
| |
Collapse
|
15
|
Mahmud H, Ismail A, Abdul Rahim R, Low KO, Md Illias R. Enhanced secretion of cyclodextrin glucanotransferase (CGTase) by Lactococcus lactis using heterologous signal peptides and optimization of cultivation conditions. J Biotechnol 2019; 296:22-31. [PMID: 30878516 DOI: 10.1016/j.jbiotec.2019.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/04/2019] [Accepted: 02/22/2019] [Indexed: 11/18/2022]
Abstract
In previous studies of Lactococcus lactis, the levels of proteins secreted using heterologous signal peptides were observed to be lower than those obtained using the signal peptide from Usp45, the major secreted lactococcal protein. In this study, G1 (the native signal peptide of CGTase) and the signal peptide M5 (mutant of the G1 signal peptide) were introduced into L. lactis to investigate the effect of signal peptides on lactococcal protein secretion to improve secretion efficiency. The effectiveness of these signal peptides were compared to the Usp45 signal peptide. The highest secretion levels were obtained using the G1 signal peptide. Sequence analysis of signal peptide amino acids revealed that a basic N-terminal signal peptide is not absolutely required for efficient protein export in L. lactis. Moreover, the introduction of a helix-breaking residue in the H-region of the M5 signal peptide caused a reduction in the signal peptide hydrophobicity and decreased protein secretion. In addition, the optimization of cultivation conditions for recombinant G1-CGTase production via response surface methodology (RSM) showed that CGTase activity increased approximately 2.92-fold from 5.01 to 16.89 U/ml compared to the unoptimized conditions.
Collapse
Affiliation(s)
- Hafizah Mahmud
- Department of Bioprocess and Polymer Engineering, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Abbas Ismail
- Department of Bioprocess and Polymer Engineering, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Raha Abdul Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Kheng Oon Low
- Institut Genom Malaysia, Jalan Bangi, 43000, Kajang, Selangor, Malaysia
| | - Rosli Md Illias
- Department of Bioprocess and Polymer Engineering, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| |
Collapse
|
16
|
Serrano-Maldonado CE, Quirasco M. Enhancement of the antibacterial activity of an E. faecalis strain by the heterologous expression of enterocin A. J Biotechnol 2018; 283:28-36. [PMID: 30006300 DOI: 10.1016/j.jbiotec.2018.06.346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/31/2018] [Accepted: 06/25/2018] [Indexed: 10/28/2022]
Abstract
The genus Enterococcus occurs as native microbiota of fermented products due to its broad environmental distribution and its resistance to salt concentrations. Enterococcus faecalis F, a non-pathogenic strain isolated from a ripened cheese, has demonstrated useful enzymatic capabilities, a probiotic behavior and antibacterial activity against some food-borne pathogens, mainly due to peptidoglycan hydrolase activity. Its use as a natural pathogen-control agent could be further enhanced through the production of a bacteriocin, e.g. Enterocin A, because of its remarkable antilisterial activity. In this work, a markerless allelic insertion method was used to obtain an enterococcal strain capable of producing a functional enterocin. Agar diffusion tests showed that the recombinant strain was active against Staphylococcus aureus, Listeria monocytogenes and the pathogenic strain E. faecalis V583. When grown in liquid culture together with L. monocytogenes, it attained a two-log reduction of the pathogen counts in lesser time relative to the native strain. Because the DNA construction is integrated into the chromosome, the improved strain avoids the use of antibiotics as selective pressure; besides, it does not require an inductor because of the inclusion of a constitutive promoter in the construction. Its technological and antibacterial capabilities make the improved E. faecalis strain a potential culture for use in the food industry.
Collapse
Affiliation(s)
- Carlos Eduardo Serrano-Maldonado
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Cd. México, 04510, Mexico
| | - Maricarmen Quirasco
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Cd. México, 04510, Mexico.
| |
Collapse
|
17
|
Xu H, Tie K, Zhang Y, Feng X, Cao Y, Han W. Design, expression, and characterization of the hybrid antimicrobial peptide T-catesbeianin-1 based on FyuA. J Pept Sci 2018; 24. [PMID: 29322649 DOI: 10.1002/psc.3059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/25/2017] [Accepted: 11/04/2017] [Indexed: 01/27/2023]
Abstract
The overuse of antibiotics has resulted in the emergence of antibiotic-resistant bacteria, which presents an urgent need for new antimicrobial agents. At present, antimicrobial peptides have attracted a great deal of attention from researchers. However, antimicrobial peptides often affect a broad range of microorganisms, including the normal flora in a host organism. In the present study, we designed a novel hybrid antimicrobial peptide, expressed the hybrid peptide, and studied its specific target. The hybrid peptide, named T-catesbeianin-1, which includes the FyuA-binding domain of pesticin and the peptide catesbeianin-1, was designed and expressed in Pichia pastoris X-33. Then, we determined the antimicrobial activity, cytotoxicity, and specific target of the peptide. T-catesbeianin-1 has strong antimicrobial activity and binds to FyuA to inhibit or kill Escherichia coli present in clinical specimens and mixed-species culture. In summary, these findings suggested that T-catesbeianin-1 might be promising and specific antibiotic agent for therapeutic application against fyuA+ E. coli.
Collapse
Affiliation(s)
- Huihui Xu
- College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Kunyuan Tie
- College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yang Zhang
- College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xin Feng
- College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yuan Cao
- College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Wenyu Han
- College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| |
Collapse
|
18
|
Mustopa AZ, Mariyah S, Fatimah, Budiarti S, Murtiyaningsih H, Alfisyahrin WN. Construction, heterologous expression, partial purification, and in vitro cytotoxicity of the recombinant plantaricin E produced by Lactococcus lactis against Enteropathogenic Escherichia coli K.1.1 and human cervical carcinoma (HeLa) cells. Mol Biol Rep 2018; 45:1235-1244. [PMID: 30066296 DOI: 10.1007/s11033-018-4277-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/21/2018] [Indexed: 10/28/2022]
Abstract
Lactobacillus plantarum produces bacteriocin called plantaricin that can kill or inhibit other bacteria. Plantaricin E (Pln E), a recombinant bacteriocin, has been successfully constructed and produced by a GRAS host, Lactococcus lactis. A polymerase chain reaction (PCR) overlapping technique has been used to construct a ligation of signal peptide gene, Pln A and bacteriocin encoding gene, Pln E. Furthermore, the fusion fragment were cloned into pNZ8148 vector and transformed into L. lactis NZ3900. Molecular expression study shows that recombinant L. lactis NZ3900 is able to express the mature pln E at transcription level with size of 168 bp. Plantaricin E is purified by ammonium sulphate precipitation followed by gel filtration chromatography. Purified fractions were proven to be active against Enteropathogenic Escherichia coli K.1.1. The other fractions of Pln E also have antibacterial activity against several Gram positive and Gram negative bacteria. Purified recombinant plantaricin E is 3.7 kDa in size. The cytotoxicity assay shows purified Pln E inhibits 46.949 ± 3.338% of HeLa cell lines on 10 ppm dose whilst the metabolite inhibits 53.487 ± 2.957% of HeLa cell line on 100 ppm dose. The IC50 calculation of Pln E metabolite is 107.453 ppm, while the purified protein is 11.613 ppm.
Collapse
Affiliation(s)
- Apon Zaenal Mustopa
- Research Center for Biotechnology, Indonesia Institute of Science (LIPI), Raya Bogor Street Km. 46, Cibinong, Bogor, West Java, 16911, Indonesia.
| | - Siti Mariyah
- School of Biotechnology, Bogor Agricultural University, Bogor, Indonesia
| | - Fatimah
- Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development (ICABIOGRAD), Cimanggu, Bogor, Indonesia
| | - Sri Budiarti
- School of Biotechnology, Bogor Agricultural University, Bogor, Indonesia.,Research Center for Bioresources and Biotechnology, Bogor Agricultural University, Bogor, Indonesia
| | - Hidayah Murtiyaningsih
- Research Center for Biotechnology, Indonesia Institute of Science (LIPI), Raya Bogor Street Km. 46, Cibinong, Bogor, West Java, 16911, Indonesia
| | - Wida Nurul Alfisyahrin
- Research Center for Biotechnology, Indonesia Institute of Science (LIPI), Raya Bogor Street Km. 46, Cibinong, Bogor, West Java, 16911, Indonesia
| |
Collapse
|
19
|
In silico analysis of protein toxin and bacteriocins from Lactobacillus paracasei SD1 genome and available online databases. PLoS One 2017; 12:e0183548. [PMID: 28837656 PMCID: PMC5570283 DOI: 10.1371/journal.pone.0183548] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 08/07/2017] [Indexed: 02/08/2023] Open
Abstract
Lactobacillus paracasei SD1 is a potential probiotic strain due to its ability to survive several conditions in human dental cavities. To ascertain its safety for human use, we therefore performed a comprehensive bioinformatics analysis and characterization of the bacterial protein toxins produced by this strain. We report the complete genome of Lactobacillus paracasei SD1 and its comparison to other Lactobacillus genomes. Additionally, we identify and analyze its protein toxins and antimicrobial proteins using reliable online database resources and establish its phylogenetic relationship with other bacterial genomes. Our investigation suggests that this strain is safe for human use and contains several bacteriocins that confer health benefits to the host. An in silico analysis of protein-protein interactions between the target bacteriocins and the microbial proteins gtfB and luxS of Streptococcus mutans was performed and is discussed here.
Collapse
|
20
|
Jiang Y, Yang G, Wang Q, Wang Z, Yang W, Gu W, Shi C, Wang J, Huang H, Wang C. Molecular mechanisms underlying protection against H9N2 influenza virus challenge in mice by recombinant Lactobacillus plantarum with surface displayed HA2-LTB. J Biotechnol 2017; 259:6-14. [PMID: 28811215 DOI: 10.1016/j.jbiotec.2017.08.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/24/2017] [Accepted: 08/09/2017] [Indexed: 12/29/2022]
Abstract
It has been considered that the Avian influenza virus (AIV) causes severe threats to poultry industry. In this study, we constructed a series of recombinant Lactobacillus plantarum (L. plantarum) with surface displayed hemagglutinin subunit 2 (HA2) alone or together with heat-labile toxin B subunit (LTB) from enterotoxigenic Escherichia coli. Balb/c mice were used as model to evaluate the protective effects of recombinant L. plantarum strains against H9N2 subtype challenge. The results showed that the presence of LTB significantly increased the percentages of CD3+CD4+IL-4+, CD3+CD4+IFN-γ+ and CD3+CD4+IL-17+ T cells, as well as CD3+CD8+IFN-γ+ T cells in spleen and MLNs determined by Fluorescence-Activated Cell Sorting assay. Similar increased production of serum IFN-γ was also confirmed by enzyme linked immunosorbent assay (ELISA). The L. plantarum with surface displayed HA2-LTB also dramatically increased the percentages of B220+ IgA+ B cells in peyer patch, in consistent with elevated production of mucosal SIgA antibody determined by ELISA. Finally, the orally administrated HA2-LTB expressing strain efficiently protected mice against H9N2 subtype AIV challenge shown by increased survival percentages, body weight gains and decreased lung lesions in histopathologic analysis. In conclusion, this study provides more detail mechanisms underlying the adjuvant effects of LTB on heterologous antigen produced in recombinant lactic acid bacteria.
Collapse
Affiliation(s)
- Yanlong Jiang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Guilian Yang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Qi Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Zhannan Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Wentao Yang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Wei Gu
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China; Shandong Baolai-Leelai Bio-Tech Co., LTD, Taian, Shandong Province, 171000, China
| | - Chunwei Shi
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Jianzhong Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Haibin Huang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Chunfeng Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
21
|
Controlled functional expression of the bacteriocins pediocin PA-1 and bactofencin A in Escherichia coli. Sci Rep 2017; 7:3069. [PMID: 28596555 PMCID: PMC5465099 DOI: 10.1038/s41598-017-02868-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/19/2017] [Indexed: 12/27/2022] Open
Abstract
The bacteriocins bactofencin A (class IId) and pediocin PA-1 (class IIa) are encoded by operons with a similarly clustered gene organization including a structural peptide, an immunity protein, an ABC transporter and accessory bacteriocin transporter protein. Cloning of these operons in E. coli TunerTM (DE3) on a pETcoco-2 derived vector resulted in successful secretion of both bacteriocins. A corresponding approach, involving the construction of vectors containing different combinations of these genes, revealed that the structural and the transporter genes alone are sufficient to permit heterologous production and secretion in this host. Even though the accessory protein, usually associated with optimal disulfide bond formation, was not required for bacteriocin synthesis, its presence did result in greater pediocin PA-1 production. The simplicity of the system and the fact that the associated bacteriocins could be recovered from the extracellular medium provides an opportunity to facilitate protein engineering and the overproduction of biologically-active bacteriocins at industrial scale. Additionally, this system could enable the characterization of new bacteriocin operons where genetic tools are not available for the native producers.
Collapse
|
22
|
pMPES: A Modular Peptide Expression System for the Delivery of Antimicrobial Peptides to the Site of Gastrointestinal Infections Using Probiotics. Pharmaceuticals (Basel) 2016; 9:ph9040060. [PMID: 27782051 PMCID: PMC5198035 DOI: 10.3390/ph9040060] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/14/2016] [Indexed: 12/18/2022] Open
Abstract
Antimicrobial peptides are a promising alternative to traditional antibiotics, but their utility is limited by high production costs and poor bioavailability profiles. Bacterial production and delivery of antimicrobial peptides (AMPs) directly at the site of infection may offer a path for effective therapeutic application. In this study, we have developed a vector that can be used for the production and secretion of seven antimicrobial peptides from both Escherichia coli MC1061 F' and probiotic E.coli Nissle 1917. The vector pMPES (Modular Peptide Expression System) employs the Microcin V (MccV) secretion system and a powerful synthetic promoter to drive AMP production. Herein, we demonstrate the capacity of pMPES to produce inhibitory levels of MccV, Microcin L (MccL), Microcin N (McnN), Enterocin A (EntA), Enterocin P (EntP), Hiracin JM79 (HirJM79) and Enterocin B (EntB). To our knowledge, this is the first demonstration of such a broadly-applicable secretion system for AMP production. This type of modular expression system could expedite the development of sorely needed antimicrobial technologies.
Collapse
|
23
|
Lin J, Zou Y, Ma C, Liang Y, Ge X, Chen Z, She Q. Construction and characterization of three protein-targeting expression system in Lactobacillus casei. FEMS Microbiol Lett 2016; 363:fnw041. [PMID: 26892019 DOI: 10.1093/femsle/fnw041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2016] [Indexed: 12/28/2022] Open
Abstract
We previously reported that the β-1,4-Mannanase (manB) gene from Bacillus pumilus functions as a good reporter gene in Lactobacillus casei. Two vectors were constructed. One carries the signal peptide of secretion protein Usp45 (SPUsp45) from Lactococcus lactis (pELSH), and the other carries the full-length S-layer protein, SlpA, from L. acidophilus (pELWH). In this work, another vector, pELSPH, was constructed to include the signal peptide of protein SlpA (SPSlpA), and the capacity of all three vectors to drive expression of the manB gene in L. casei was evaluated. The results showed that SPUsp45 is functionally recognized and processed by the L. casei secretion machinery. The SPUsp45-mediated secretion efficiency was ∼87%, and SPSlpA drove the export of secreted ManB with ∼80% efficiency. SPSlpA secretion was highly efficient, and expressed SlpA was anchored to the cell wall by an unknown secretion mechanism. Full-length SlpA drove the cell wall-anchored expression of an SlpA-ManB fusion protein but at a much lower level than that of protein SlpA.
Collapse
Affiliation(s)
- Jinzhong Lin
- State Key Laboratory of Dairy Biotechnology, Technology Center of Bright Dairy and Food Co., Ltd., 1518 Jiangchang Road (W), Shanghai 200436, China
| | - Yexia Zou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengjie Ma
- State Key Laboratory of Dairy Biotechnology, Technology Center of Bright Dairy and Food Co., Ltd., 1518 Jiangchang Road (W), Shanghai 200436, China
| | - Yunxiang Liang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangyang Ge
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhengjun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qunxin She
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China Department of Biology, University of Copenhagen, Biocenter, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
24
|
Arbulu S, Lohans CT, van Belkum MJ, Cintas LM, Herranz C, Vederas JC, Hernández PE. Solution Structure of Enterocin HF, an Antilisterial Bacteriocin Produced by Enterococcus faecium M3K31. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:10689-10695. [PMID: 26585399 DOI: 10.1021/acs.jafc.5b03882] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The solution structure of enterocin HF (EntHF), a class IIa bacteriocin of 43 amino acids produced by Enterococcus faecium M3K31, was evaluated by CD and NMR spectroscopy. Purified EntHF was unstructured in water, but CD analysis supports that EntHF adopts an α-helical conformation when exposed to increasing concentrations of trifluoroethanol. Furthermore, NMR spectroscopy indicates that this bacteriocin adopts an antiparallel β-sheet structure in the N-terminal region (residues 1-17), followed by a well-defined central α-helix (residues 19-30) and a more disordered C-terminal end (residues 31-43). EntHF could be structurally organized into three flexible regions that might act in a coordinated manner. This is in agreement with the absence of long-range nuclear Overhauser effect signals between the β-sheet domain and the C-terminal end of the bacteriocin. The 3D structure recorded for EntHF fits emerging facts regarding target recognition and mode of action of class IIa bacteriocins.
Collapse
Affiliation(s)
- Sara Arbulu
- Departamento de Nutrición, Bromatologı́a y Tecnologı́a de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM) , Avenida Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Christopher T Lohans
- Department of Chemistry, University of Alberta , Edmonton, Alberta, Canada T6G 2G2
| | - Marco J van Belkum
- Department of Chemistry, University of Alberta , Edmonton, Alberta, Canada T6G 2G2
| | - Luis M Cintas
- Departamento de Nutrición, Bromatologı́a y Tecnologı́a de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM) , Avenida Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Carmen Herranz
- Departamento de Nutrición, Bromatologı́a y Tecnologı́a de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM) , Avenida Puerta de Hierro s/n, 28040 Madrid, Spain
| | - John C Vederas
- Department of Chemistry, University of Alberta , Edmonton, Alberta, Canada T6G 2G2
| | - Pablo E Hernández
- Departamento de Nutrición, Bromatologı́a y Tecnologı́a de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM) , Avenida Puerta de Hierro s/n, 28040 Madrid, Spain
| |
Collapse
|
25
|
Jiménez JJ, Diep DB, Borrero J, Gútiez L, Arbulu S, Nes IF, Herranz C, Cintas LM, Hernández PE. Cloning strategies for heterologous expression of the bacteriocin enterocin A by Lactobacillus sakei Lb790, Lb. plantarum NC8 and Lb. casei CECT475. Microb Cell Fact 2015; 14:166. [PMID: 26471395 PMCID: PMC4608264 DOI: 10.1186/s12934-015-0346-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 09/23/2015] [Indexed: 11/10/2022] Open
Abstract
Background Bacteriocins produced by lactic acid bacteria (LAB) attract considerable interest as natural and nontoxic food preservatives and as therapeutics whereas the bacteriocin-producing LAB are considered potential probiotics for food, human and veterinary applications, and in the animal production field. Within LAB the lactobacilli are increasingly used as starter cultures for food preservation and as probiotics. The lactobacilli are also natural inhabitants of the gastrointestinal (GI) tract and attractive vectors for delivery of therapeutic peptides and proteins, and for production of bioactive peptides. Research efforts for production of bacteriocins in heterologous hosts should be performed if the use of bacteriocins and the LAB bacteriocin-producers is ever to meet the high expectations deposited in these antimicrobial peptides. The recombinant production and functional expression of bacteriocins by lactobacilli would have an additive effect on their probiotic functionality. Results The heterologous production of the bacteriocin enterocin A (EntA) was evaluated in different Lactobacillus spp. after fusion of the versatile Sec-dependent signal peptide (SPusp45) to mature EntA plus the EntA immunity gene (entA + entiA) (fragment UAI), and their cloning into plasmid vectors that permitted their inducible (pSIP409 and pSIP411) or constitutive (pMG36c) production. The amount, antimicrobial activity (AA) and specific antimicrobial activity (SAA) of the EntA produced by Lactobacillus sakei Lb790, Lb. plantarum NC8 and Lb. casei CECT475 transformed with the recombinant plasmids pSIP409UAI, pSIP411UAI and pMGUAI varied depending of the expression vector and the host strain. The Lb. casei CECT475 recombinant strains produced the largest amounts of EntA, with the highest AA and SAA. Supernatants from Lb. casei CECT (pSIP411UAI) showed a 4.9-fold higher production of EntA with a 22.8-fold higher AA and 4.7-fold higher SAA than those from Enterococcus faecium T136, the natural producer of EntA. Moreover, supernatants from Lb. casei CECT475 (pSIP411UAI) showed a 15.7- to 59.2-fold higher AA against Listeria spp. than those from E. faecium T136. Conclusion Lb. casei CECT457 (pSIP411UAI) may be considered a promising recombinant host and cell factory for the production and functional expression of the antilisterial bacteriocin EntA.
Collapse
Affiliation(s)
- Juan J Jiménez
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain.
| | - Dzung B Diep
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway.
| | - Juan Borrero
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain.
| | - Loreto Gútiez
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain.
| | - Sara Arbulu
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain.
| | - Ingolf F Nes
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway.
| | - Carmen Herranz
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain.
| | - Luis M Cintas
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain.
| | - Pablo E Hernández
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain.
| |
Collapse
|
26
|
Gupta SK, Shukla P. Advanced technologies for improved expression of recombinant proteins in bacteria: perspectives and applications. Crit Rev Biotechnol 2015; 36:1089-1098. [DOI: 10.3109/07388551.2015.1084264] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Sanjeev K. Gupta
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India and
- Advanced Biotech Lab (Centre for Research & Development), Ipca Laboratories Ltd., Kandivli (west), Mumbai, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India and
| |
Collapse
|
27
|
McClintock MK, Kaznessis YN, Hackel BJ. Enterocin A mutants identified by saturation mutagenesis enhance potency towards vancomycin-resistant Enterococci. Biotechnol Bioeng 2015; 113:414-23. [PMID: 26191783 DOI: 10.1002/bit.25710] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/06/2015] [Accepted: 07/13/2015] [Indexed: 12/31/2022]
Abstract
Vancomycin-resistant Enterococci infections are a significant clinical problem. One proposed solution is to use probiotics, such as lactic acid bacteria, to produce antimicrobial peptides at the site of infection. Enterocin A, a class 2a bacteriocin, exhibits inhibitory activity against E. faecium and E. faecalis, which account for 86% of vancomycin-resistant Enterococci infections. In this study, we aimed to engineer enterocin A mutants with enhanced potency within a lactic acid bacterial production system. Peptide mutants resulting from saturation mutagenesis at sites A24 and T27 were efficiently screened in a 96-well plate assay for inhibition of pathogen growth. Several mutants exhibit increased potency relative to wild-type enterocin A in both liquid- and solid-medium growth assays. In particular, A24P and T27G exhibit enhanced inhibition of multiple strains of E. faecium and E. faecalis, including clinically isolated vancomycin-resistant strains. A24P and T27G enhance killing of E. faecium 8 by 13 ± 3- and 18 ± 4-fold, respectively. The engineered enterocin A/lactic acid bacteria systems offer significant potential to combat antibiotic-resistant infections.
Collapse
Affiliation(s)
- Maria K McClintock
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, Minneapolis, Minnesota, 55455
| | - Yiannis N Kaznessis
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, Minneapolis, Minnesota, 55455
| | - Benjamin J Hackel
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, Minneapolis, Minnesota, 55455.
| |
Collapse
|
28
|
Back A, Borges F, Mangavel C, Paris C, Rondags E, Kapel R, Aymes A, Rogniaux H, Pavlović M, van Heel AJ, Kuipers OP, Revol-Junelles AM, Cailliez-Grimal C. Recombinant pediocin in Lactococcus lactis: increased production by propeptide fusion and improved potency by co-production with PedC. Microb Biotechnol 2015; 9:466-77. [PMID: 26147827 PMCID: PMC4919988 DOI: 10.1111/1751-7915.12285] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 02/18/2015] [Accepted: 03/11/2015] [Indexed: 11/29/2022] Open
Abstract
We describe the impact of two propeptides and PedC on the production yield and the potency of recombinant pediocins produced in Lactococcus lactis. On the one hand, the sequences encoding the propeptides SD or LEISSTCDA were inserted between the sequence encoding the signal peptide of Usp45 and the structural gene of the mature pediocin PA‐1. On the other hand, the putative thiol‐disulfide oxidoreductase PedC was coexpressed with pediocin. The concentration of recombinant pediocins produced in supernatants was determined by enzyme‐linked immunosorbent assay. The potency of recombinant pediocins was investigated by measuring the minimal inhibitory concentration by agar well diffusion assay. The results show that propeptides SD or LEISSTCDA lead to an improved secretion of recombinant pediocins with apparently no effect on the antibacterial potency and that PedC increases the potency of recombinant pediocin. To our knowledge, this study reveals for the first time that pediocin tolerates fusions at the N‐terminal end. Furthermore, it reveals that only expressing the pediocin structural gene in a heterologous host is not sufficient to get an optimal potency and requires the accessory protein PedC. In addition, it can be speculated that PedC catalyses the correct formation of disulfide bonds in pediocin.
Collapse
Affiliation(s)
- Alexandre Back
- Laboratoire d'Ingénierie des Biomolécules (LIBio), ENSAIA, Université de Lorraine, 2 Avenue de la Forêt de Haye, Vandœuvre-lès-Nancy, 54518, France
| | - Frédéric Borges
- Laboratoire d'Ingénierie des Biomolécules (LIBio), ENSAIA, Université de Lorraine, 2 Avenue de la Forêt de Haye, Vandœuvre-lès-Nancy, 54518, France
| | - Cécile Mangavel
- Laboratoire d'Ingénierie des Biomolécules (LIBio), ENSAIA, Université de Lorraine, 2 Avenue de la Forêt de Haye, Vandœuvre-lès-Nancy, 54518, France
| | - Cédric Paris
- Laboratoire d'Ingénierie des Biomolécules (LIBio), ENSAIA, Université de Lorraine, 2 Avenue de la Forêt de Haye, Vandœuvre-lès-Nancy, 54518, France
| | - Emmanuel Rondags
- Laboratoire Réactions et Génie des Procédés (LRGP), CNRS-UMR 7274, Université de Lorraine, 2 Avenue de la Forêt de Haye, Vandœuvre-lès-Nancy, 54518, France
| | - Romain Kapel
- Laboratoire Réactions et Génie des Procédés (LRGP), CNRS-UMR 7274, Université de Lorraine, 2 Avenue de la Forêt de Haye, Vandœuvre-lès-Nancy, 54518, France
| | - Arnaud Aymes
- Laboratoire Réactions et Génie des Procédés (LRGP), CNRS-UMR 7274, Université de Lorraine, 2 Avenue de la Forêt de Haye, Vandœuvre-lès-Nancy, 54518, France
| | - Hélène Rogniaux
- INRA Unité Biopolymères Interactions Assemblages (UR1268), Rue de la Géraudière, Nantes, 44316, France
| | - Marija Pavlović
- INRA Unité Biopolymères Interactions Assemblages (UR1268), Rue de la Géraudière, Nantes, 44316, France
| | - Auke J van Heel
- Department of Molecular Genetics, GBB Institute, University of Gronningen, Nijenborgh 7, 9747AG, Groningen, The Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, GBB Institute, University of Gronningen, Nijenborgh 7, 9747AG, Groningen, The Netherlands
| | - Anne-Marie Revol-Junelles
- Laboratoire d'Ingénierie des Biomolécules (LIBio), ENSAIA, Université de Lorraine, 2 Avenue de la Forêt de Haye, Vandœuvre-lès-Nancy, 54518, France
| | - Catherine Cailliez-Grimal
- Laboratoire d'Ingénierie des Biomolécules (LIBio), ENSAIA, Université de Lorraine, 2 Avenue de la Forêt de Haye, Vandœuvre-lès-Nancy, 54518, France
| |
Collapse
|
29
|
Borrero J, Chen Y, Dunny GM, Kaznessis YN. Modified lactic acid bacteria detect and inhibit multiresistant enterococci. ACS Synth Biol 2015; 4:299-306. [PMID: 24896372 PMCID: PMC4384838 DOI: 10.1021/sb500090b] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We designed Lactococcus lactis to detect Enterococcus faecalis. Upon detection, L. lactis produce and secrete antienterococcal peptides. The peptides inhibit enterococcal growth and reduce viability of enterococci in the vicinity of L. lactis. The enterococcal sex pheromone cCF10 serves as the signal for detection. Expression vectors derived from pCF10, a cCF10-responsive E. faecalis sex-pheromone conjugative plasmid, were engineered in L. lactis for the detection system. Recombinant host strains were engineered to express genes for three bacteriocins, enterocin A, hiracin JM79 and enterocin P, each with potent antimicrobial activity against E. faecalis. Sensitive detection and specific inhibition occur both in agar and liquid media. The engineered L. lactis also inhibited growth of multidrug-resistant E. faecium strains, when induced by cCF10. The presented vectors and strains can be components of a toolbox for the development of alternative antibiotic technologies targeting enterococci at the site of infection.
Collapse
Affiliation(s)
- Juan Borrero
- Department of Chemical Engineering and Materials Science, ‡Department of Microbiology, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yuqing Chen
- Department of Chemical Engineering and Materials Science, ‡Department of Microbiology, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Gary M. Dunny
- Department of Chemical Engineering and Materials Science, ‡Department of Microbiology, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yiannis N. Kaznessis
- Department of Chemical Engineering and Materials Science, ‡Department of Microbiology, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
30
|
Cloning and expression of synthetic genes encoding the broad antimicrobial spectrum bacteriocins SRCAM 602, OR-7, E-760, and L-1077, by recombinant Pichia pastoris. BIOMED RESEARCH INTERNATIONAL 2015; 2015:767183. [PMID: 25821820 PMCID: PMC4363639 DOI: 10.1155/2015/767183] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 11/02/2014] [Indexed: 02/07/2023]
Abstract
We have evaluated the cloning and functional expression of previously described broad antimicrobial spectrum bacteriocins SRCAM 602, OR-7, E-760, and L-1077, by recombinant Pichia pastoris. Synthetic genes, matching the codon usage of P. pastoris, were designed from the known mature amino acid sequence of these bacteriocins and cloned into the protein expression vector pPICZαA. The recombinant derived plasmids were linearized and transformed into competent P. pastoris X-33, and the presence of integrated plasmids into the transformed cells was confirmed by PCR and sequencing of the inserts. The antimicrobial activity, expected in supernatants of the recombinant P. pastoris producers, was purified using a multistep chromatographic procedure including ammonium sulfate precipitation, desalting by gel filtration, cation exchange-, hydrophobic interaction-, and reverse phase-chromatography (RP-FPLC). However, a measurable antimicrobial activity was only detected after the hydrophobic interaction and RP-FPLC steps of the purified supernatants. MALDI-TOF MS analysis of the antimicrobial fractions eluted from RP-FPLC revealed the existence of peptide fragments of lower and higher molecular mass than expected. MALDI-TOF/TOF MS analysis of selected peptides from eluted RP-FPLC samples with antimicrobial activity indicated the presence of peptide fragments not related to the amino acid sequence of the cloned bacteriocins.
Collapse
|
31
|
Jiménez JJ, Borrero J, Gútiez L, Arbulu S, Herranz C, Cintas LM, Hernández PE. Use of synthetic genes for cloning, production and functional expression of the bacteriocins enterocin A and bacteriocin E 50-52 by Pichia pastoris and Kluyveromyces lactis. Mol Biotechnol 2014; 56:571-83. [PMID: 24510220 DOI: 10.1007/s12033-014-9731-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The use of synthetic genes may constitute a successful approach for the heterologous production and functional expression of bacterial antimicrobial peptides (bacteriocins) by recombinant yeasts. In this work, synthetic genes with adapted codon usage designed from the mature amino acid sequence of the bacteriocin enterocin A (EntA), produced by Enterococcus faecium T136, and the mature bacteriocin E 50-52 (BacE50-52), produced by E. faecium NRRL B-32746, were synthesized. The synthetic entA and bacE50-52 were cloned into the protein expression vectors pPICZαA and pKLAC2 for transformation of derived vectors into Pichia pastoris X-33 and Kluyveromyces lactis GG799, respectively. The recombinant vectors were linearized and transformed into competent cells selecting for P. pastoris X-33EAS (entA), P. pastoris X-33BE50-52S (bacE50-52), K. lactis GG799EAS (entA), and K. lactis GG799BE50-52S (bacE50-52). P. pastoris X-33EAS and K. lactis GG799EAS, but not P. pastoris X-33BE50-52S and K. lactis GG799BE50-52S, showed antimicrobial activity in their supernatants. However, purification of the supernatants of the producer yeasts permitted recovery of the bacteriocins EntA and BacE50-52. Both purified bacteriocins were active against Gram-positive bacteria such as Listeria monocytogenes but not against Gram-negative bacteria, including Campylobacter jejuni.
Collapse
Affiliation(s)
- Juan J Jiménez
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
32
|
Hu X, Mao R, Zhang Y, Teng D, Wang X, Xi D, Huang J, Wang J. Biotechnical paving of recombinant enterocin A as the candidate of anti-Listeria agent. BMC Microbiol 2014; 14:220. [PMID: 25163588 PMCID: PMC4160546 DOI: 10.1186/s12866-014-0220-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 08/12/2014] [Indexed: 12/29/2022] Open
Abstract
Background Enterocin A is a classic IIa bacteriocin isolated firstly from Enterococcus faecium CTC492 with selective antimicrobial activity against Listeria strains. However, the application of enterocin A as an anti-Listeria agent has been limited due to its very low native yield. The present work describes high production of enterocin A through codon optimization strategy and its character study. Results The gene sequence of enterocin A was optimized based on preferential codon usage in Pichia pastoris to increase its expression efficiency. The highest anti-Listeria activity reached 51,200 AU/ml from 180 mg/l of total protein after 24 h of induction in a 5-L fermenter. Recombinant enterocin A (rEntA), purified by gel filtration chromatography, showed very strong activity against Listeria ivanovii ATCC 19119 with a low MIC of 20 ng/ml. In addition, the rEntA killed over 99% of tested L. ivanovii ATCC19119 within 4 h when exposed to 4 × MIC (80 ng/ml). Moreover, it showed high stability under a wide pH range (2–10) and maintained full activity after 1 h of treatment at 80°C within a pH range of 2–8. Its antimicrobial activity was enhanced at 25 and 50 mM NaCl, while 100–400 mM NaCl had little effect on the bactericidal ability of rEntA. Conclusion The EntA was successfully expressed in P. pastoris, and this feasible system could pave the pre-industrial technological path of rEntA as a competent candidate as an anti-Listeria agent. Furthermore, it showed high stability under wide ranges of conditions, which could be potential as the new candidate of anti-Listeria agent.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jianzhong Huang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing 100081, China.
| | | |
Collapse
|
33
|
Gútiez L, Borrero J, Jiménez JJ, Gómez-Sala B, Recio I, Cintas LM, Herranz C, Hernández PE. Genetic and biochemical evidence that recombinant Enterococcus spp. strains expressing gelatinase (GelE) produce bovine milk-derived hydrolysates with high angiotensin converting enzyme-inhibitory activity (ACE-IA). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:5555-5564. [PMID: 24877744 DOI: 10.1021/jf5006269] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this work, genes encoding gelatinase (gelE) and serine proteinase (sprE), two extracellular proteases produced by Enterococcus faecalis DBH18, were cloned in the protein expression vector pMG36c, containing the constitutive P32 promoter, generating the recombinant plasmids pCG, pCSP, and pCGSP encoding gelE, sprE, and gelE-sprE, respectively. Transformation of noncaseinolytic E. faecalis P36, E. faecalis JH2-2, E. faecium AR24, and E. hirae AR14 strains with these plasmids permitted detection of caseinolytic activity only in the strains transformed with pCG or pCGSP. Complementation of a deletion (knockout) mutant of E. faecalis V583 for production of gelatinase (GelE) with pCG unequivocally supported that gelE is responsible for the caseinolytic activity of the transformed strain grown in bovine skim milk (BSM). RP-HPLC-MS/MS analysis of hydrolysates of transformed Enterococcus spp. strains grown in BSM permitted the identification of 38 major peptide fragments including peptides with previously reported angiotensin converting enzyme-inhibitory activity (ACE-IA), antihypertensive activity, and antioxidant activity.
Collapse
Affiliation(s)
- Loreto Gútiez
- Departamento de Nutrición, Bromatologı́a y Tecnologı́a de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM) , 28040 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Controlled enterolysin A-mediated lysis and production of angiotensin converting enzyme-inhibitory bovine skim milk hydrolysates by recombinant Lactococcus lactis. Int Dairy J 2014. [DOI: 10.1016/j.idairyj.2013.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
35
|
Volzing K, Borrero J, Sadowsky MJ, Kaznessis YN. Antimicrobial peptides targeting Gram-negative pathogens, produced and delivered by lactic acid bacteria. ACS Synth Biol 2013; 2:643-50. [PMID: 23808914 DOI: 10.1021/sb4000367] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present results of tests with recombinant Lactococcus lactis that produce and secrete heterologous antimicrobial peptides with activity against Gram-negative pathogenic Escherichia coli and Salmonella . In an initial screening, the activities of numerous candidate antimicrobial peptides, made by solid state synthesis, were assessed against several indicator pathogenic E. coli and Salmonella strains. Peptides A3APO and Alyteserin were selected as top performers based on high antimicrobial activity against the pathogens tested and on significantly lower antimicrobial activity against L. lactis . Expression cassettes containing the signal peptide of the protein Usp45 fused to the codon-optimized sequence of mature A3APO and Alyteserin were cloned under the control of a nisin-inducible promoter PnisA and transformed into L. lactis IL1403. The resulting recombinant strains were induced to express and secrete both peptides. A3APO- and Alyteserin-containing supernatants from these recombinant L. lactis inhibited the growth of pathogenic E. coli and Salmonella by up to 20-fold, while maintaining the host's viability. This system may serve as a model for the production and delivery of antimicrobial peptides by lactic acid bacteria to target Gram-negative pathogenic bacteria populations.
Collapse
Affiliation(s)
- Katherine Volzing
- Department of Chemical
Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Juan Borrero
- Department of Chemical
Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Michael J. Sadowsky
- Department of Soil,
Water, and Climate, University of Minnesota, St. Paul, Minnesota 55108, United States
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota 55108,
United States
| | - Yiannis N. Kaznessis
- Department of Chemical
Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota 55108,
United States
| |
Collapse
|
36
|
Gútiez L, Gómez-Sala B, Recio I, del Campo R, Cintas LM, Herranz C, Hernández PE. Enterococcus faecalis strains from food, environmental, and clinical origin produce ACE-inhibitory peptides and other bioactive peptides during growth in bovine skim milk. Int J Food Microbiol 2013; 166:93-101. [DOI: 10.1016/j.ijfoodmicro.2013.06.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 06/10/2013] [Accepted: 06/16/2013] [Indexed: 01/27/2023]
|
37
|
Jiménez JJ, Borrero J, Diep DB, Gútiez L, Nes IF, Herranz C, Cintas LM, Hernández PE. Cloning, production, and functional expression of the bacteriocin sakacin A (SakA) and two SakA-derived chimeras in lactic acid bacteria (LAB) and the yeasts Pichia pastoris and Kluyveromyces lactis. J Ind Microbiol Biotechnol 2013; 40:977-93. [PMID: 23794087 DOI: 10.1007/s10295-013-1302-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 05/30/2013] [Indexed: 11/25/2022]
Abstract
Mature sakacin A (SakA, encoded by sapA) and its cognate immunity protein (SakI, encoded by sapiA), and two SakA-derived chimeras mimicking the N-terminal end of mature enterocin P (EntP/SakA) and mature enterocin A (EntA/SakA) together with SakI, were fused to different signal peptides (SP) and cloned into the protein expression vectors pNZ8048 and pMG36c for evaluation of their production and functional expression by different lactic acid bacteria. The amount, antimicrobial activity, and specific antimicrobial activity of SakA and its chimeras produced by Lactococcus lactis subsp. cremoris NZ9000 depended on the SP and the expression vector. Only L. lactis NZ9000 (pNUPS), producing EntP/SakA, showed higher bacteriocin production and antimicrobial activity than the natural SakA-producer Lactobacillus sakei Lb706. The lower antimicrobial activity of the SakA-producer L. lactis NZ9000 (pNUS) and that of the EntA/SakA-producer L. lactis NZ9000 (pNUAS) could be ascribed to secretion of truncated bacteriocins. On the other hand, of the Lb. sakei Lb706 cultures transformed with the pMG36c-derived vectors only Lb. sakei Lb706 (pGUS) overproducing SakA showed a higher antimicrobial activity than Lb. sakei Lb706. Finally, cloning of SakA and EntP/SakA into pPICZαA and pKLAC2 permitted the production of SakA and EntP/SakA by recombinant Pichia pastoris X-33 and Kluyveromyces lactis GG799 derivatives although their antimicrobial activity was lower than expected from their production.
Collapse
Affiliation(s)
- Juan J Jiménez
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
38
|
O' Shea EF, Cotter PD, Ross RP, Hill C. Strategies to improve the bacteriocin protection provided by lactic acid bacteria. Curr Opin Biotechnol 2013; 24:130-4. [PMID: 23337424 DOI: 10.1016/j.copbio.2012.12.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 12/18/2012] [Accepted: 12/19/2012] [Indexed: 01/04/2023]
Abstract
Lactic acid bacteria (LAB) produce a wide variety of antimicrobial peptides (bacteriocins) which contribute to the safety and preservation of fermented foods. This review discusses strategies that have been or could be employed to further enhance the commercial application of bacteriocins and/or bacteriocin-producing LAB for food use.
Collapse
Affiliation(s)
- Eileen F O' Shea
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | | | | | | |
Collapse
|
39
|
Klatt S, Rohe M, Alagesan K, Kolarich D, Konthur Z, Hartl D. Production of Glycosylated Soluble Amyloid Precursor Protein Alpha (sAPPalpha) in Leishmania tarentolae. J Proteome Res 2012; 12:396-403. [DOI: 10.1021/pr300693f] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Stephan Klatt
- Max Planck Institute for Molecular Genetics, 14195
Berlin, Germany
- Faculty
of Biology, Chemistry and Pharmacy, Free University Berlin, 14195 Berlin, Germany
| | - Michael Rohe
- Max-Delbrueck-Center for Molecular Medicine, 13092 Berlin, Germany
| | | | - Daniel Kolarich
- Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Zoltán Konthur
- Max Planck Institute for Molecular Genetics, 14195
Berlin, Germany
| | - Daniela Hartl
- Charité, Institute for Medical
Genetics and Human Genetics, 13353 Berlin, Germany
| |
Collapse
|
40
|
Secretory signal peptide modification for optimized antibody-fragment expression-secretion in Leishmania tarentolae. Microb Cell Fact 2012; 11:97. [PMID: 22830363 PMCID: PMC3416730 DOI: 10.1186/1475-2859-11-97] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 07/01/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Secretory signal peptides (SPs) are well-known sequence motifs targeting proteins for translocation across the endoplasmic reticulum membrane. After passing through the secretory pathway, most proteins are secreted to the environment. Here, we describe the modification of an expression vector containing the SP from secreted acid phosphatase 1 (SAP1) of Leishmania mexicana for optimized protein expression-secretion in the eukaryotic parasite Leishmania tarentolae with regard to recombinant antibody fragments. For experimental design the online tool SignalP was used, which predicts the presence and location of SPs and their cleavage sites in polypeptides. To evaluate the signal peptide cleavage site as well as changes of expression, SPs were N-terminally linked to single-chain Fragment variables (scFv's). The ability of L. tarentolae to express complex eukaryotic proteins with highly diverse post-translational modifications and its easy bacteria-like handling, makes the parasite a promising expression system for secretory proteins. RESULTS We generated four vectors with different SP-sequence modifications based on in-silico analyses with SignalP in respect to cleavage probability and location, named pLTEX-2 to pLTEX-5. To evaluate their functionality, we cloned four individual scFv-fragments into the vectors and transfected all 16 constructs into L. tarentolae. Independently from the expressed scFv, pLTEX-5 derived constructs showed the highest expression rate, followed by pLTEX-4 and pLTEX-2, whereas only low amounts of protein could be obtained from pLTEX-3 clones, indicating dysfunction of the SP. Next, we analysed the SP cleavage sites by Edman degradation. For pLTEX-2, -4, and -5 derived scFv's, the results corresponded to in-silico predictions, whereas pLTEX-3 derived scFv's contained one additional amino-acid (AA). CONCLUSIONS The obtained results demonstrate the importance of SP-sequence optimization for efficient expression-secretion of scFv's. We could successfully demonstrate that minor modifications in the AA-sequence in the c-region of the natural SP from SAP1, based on in-silico predictions following the (-3, -1) rule, resulted in different expression-secretion rates of the protein of interest. The yield of scFv production could be improved close to one order of magnitude. Therefore, SP-sequence optimization is a viable option to increase the overall yield of recombinant protein production.
Collapse
|
41
|
Cloning, production, and functional expression of the bacteriocin enterocin A, produced by Enterococcus faecium T136, by the yeasts Pichia pastoris, Kluyveromyces lactis, Hansenula polymorpha, and Arxula adeninivorans. Appl Environ Microbiol 2012; 78:5956-61. [PMID: 22685156 DOI: 10.1128/aem.00530-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacteriocin enterocin A (EntA) produced by Enterococcus faecium T136 has been successfully cloned and produced by the yeasts Pichia pastoris X-33EA, Kluyveromyces lactis GG799EA, Hansenula polymorpha KL8-1EA, and Arxula adeninivorans G1212EA. Moreover, P. pastoris X-33EA and K. lactis GG799EA produced EntA in larger amounts and with higher antimicrobial and specific antimicrobial activities than the EntA produced by E. faecium T136.
Collapse
|