1
|
Ryan K, Rose RE, Jones DR, Lopez PA. Sheath fluid impacts the depletion of cellular metabolites in cells afflicted by sorting induced cellular stress (SICS). Cytometry A 2021; 99:921-929. [PMID: 34031988 PMCID: PMC9543443 DOI: 10.1002/cyto.a.24361] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/07/2021] [Accepted: 04/26/2021] [Indexed: 01/21/2023]
Abstract
Flow cytometrists have long observed a spectrum of cell‐type‐specific changes ranging from minor functional defects to outright cell destruction after purification of cells using conventional droplet cell sorters. We have described this spectrum of cell perturbations as sorter induced cellular stress, or SICS (Lopez and Hulspas, Cytometry, 2020, 97, 105–106). Despite the potential impact of this issue and ubiquitous anecdotes, little has been reported about this phenomenon in the literature, and the underlying mechanism has been elusive. Inspired by others' observations (Llufrio et al., Redox Biology, 2018, 16, 381–387 and Binek et al., Journal of Proteome Research, 2019, 18, 169–181), we set out to examine SICS at the metabolic level and use this information to propose a working model. Using representative suspension (Jurkat) and adherent (NIH/3T3) cell lines we observed broad and consistent metabolic perturbations after sorting using a high‐speed droplet cell sorter. Our results suggest that the SICS metabolic phenotype is a common cell‐type‐independent manifestation and may be the harbinger of a wide‐range of functional defects either directly related to metabolism, or cell stress response pathways. We further demonstrate a proof of concept that a modification to the fluidic environment (complete media used as sheath fluid) in a droplet cell sorter can largely rescue the intracellular markers of SICS, and that this rescue is not due to a contribution of metabolites found in media. Future studies will focus on characterizing the potential electro‐physical mechanisms inherent to the droplet cell sorting process to determine the major contributors to the SICS mechanism.
Collapse
Affiliation(s)
- Kamilah Ryan
- Cytometry and Cell Sorting Laboratory, NYU Langone Health, New York City, New York, USA
| | - Rebecca E Rose
- Metabolomics Core Resource Laboratory, NYU Langone Health, New York City, New York, USA
| | - Drew R Jones
- Metabolomics Core Resource Laboratory, NYU Langone Health, New York City, New York, USA
| | - Peter A Lopez
- Cytometry and Cell Sorting Laboratory, NYU Langone Health, New York City, New York, USA
| |
Collapse
|
2
|
Dias MM, Vidigal J, Sequeira DP, Alves PM, Teixeira AP, Roldão A. Insect High FiveTM cell line development using site-specific flipase recombination technology. G3-GENES GENOMES GENETICS 2021; 11:6274903. [PMID: 33982066 PMCID: PMC8763235 DOI: 10.1093/g3journal/jkab166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 05/24/2021] [Indexed: 11/14/2022]
Abstract
Insect Trichoplusia ni High FiveTM (Hi5) cells have been widely explored for production of heterologous proteins, traditionally mostly using the lytic baculovirus expression vector system (BEVS), and more recently using virus-free transient gene expression systems. Stable expression in such host cells would circumvent the drawbacks associated with both systems when it comes to scale-up and implementation of more efficient high-cell density process modes for the manufacturing of biologics. In this work, we combined Flipase (Flp) recombinase-mediated cassette exchange (RMCE) with fluorescence-activated cell sorting (FACS) for generating a stable master clonal Hi5 cell line with the flexibility to express single or multiple proteins of interest from a tagged genomic locus. The 3-step protocol herein implemented consisted of (i) introducing the RMCE docking cassette into the cell genome by random integration followed by selection in Hygromycin B and FACS (Hi5-tagging population), (ii) eliminating cells tagged in loci with low recombination efficiency by transfecting the tagging population with an eGFP-containing target cassette followed by selection in G418 and FACS (Hi5-RMCE population), and (iii) isolation of pure eGFP-expressing cells by FACS and expansion to suspension cultures (Hi5-RMCE master clone). Exchangeability of the locus in the master clone was demonstrated in small-scale suspension cultures by replacing the target cassette by one containing a single protein (i.e. iCherry, as an intracellular protein model) or two proteins (i.e. influenza HA and M1 for virus-like particles production, as an extracellular protein model). Overall, the stable insect Hi5 cell platform herein assembled has the potential to assist and accelerate biologics development.
Collapse
Affiliation(s)
- Mafalda M Dias
- IBET, Instituto de Biologia Experimental e Tecnológica, 2780-901 Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-901 Oeiras, Portugal
| | - João Vidigal
- IBET, Instituto de Biologia Experimental e Tecnológica, 2780-901 Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-901 Oeiras, Portugal
| | - Daniela P Sequeira
- IBET, Instituto de Biologia Experimental e Tecnológica, 2780-901 Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-901 Oeiras, Portugal.,Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Paula M Alves
- IBET, Instituto de Biologia Experimental e Tecnológica, 2780-901 Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-901 Oeiras, Portugal
| | - Ana P Teixeira
- IBET, Instituto de Biologia Experimental e Tecnológica, 2780-901 Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-901 Oeiras, Portugal.,ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058 - Basel, Switzerland
| | - António Roldão
- IBET, Instituto de Biologia Experimental e Tecnológica, 2780-901 Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-901 Oeiras, Portugal
| |
Collapse
|
3
|
Puente-Massaguer E, Grau-Garcia P, Strobl F, Grabherr R, Striedner G, Lecina M, Gòdia F. Accelerating HIV-1 VLP production using stable High Five insect cell pools. Biotechnol J 2020; 16:e2000391. [PMID: 33247883 DOI: 10.1002/biot.202000391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/21/2020] [Indexed: 12/25/2022]
Abstract
Stable cell pools are receiving a renewed interest as a potential alternative system to clonal cell lines. The shorter development timelines and the capacity to achieve high product yields make them an interesting approach for recombinant protein production. In this study, stable High Five cell pools are assessed for the production of a simple protein, mCherry, and the more complex HIV-1 Gag-eGFP virus-like particles (VLPs). Random integration coupled to fluorescence-activated cell sorting (FACS) in suspension conditions is applied to accelerate the stable cell pool generation process and enrich it with high producer cells. This methodology is successfully transferred to a bioreactor for VLP production, resulting in a 2-fold increase in VLP yields with respect to shake flask cultures. In these conditions, maximum viable cell concentration improves by 1.5-fold, and by-product formation is significantly reduced. Remarkably, a global increase in the uptake of amino acids in the Gag-eGFP stable cell pool is observed when compared with parental High Five cells, reflecting the additional metabolic burden associated with VLP production. These results suggest that stable High Five cell pools are a robust and powerful approach to produce VLPs and other recombinant proteins, and put the basis for future studies aiming to scale up this system.
Collapse
Affiliation(s)
- Eduard Puente-Massaguer
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, 08193, Spain
| | - Paula Grau-Garcia
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, 08193, Spain
| | - Florian Strobl
- Austrian Centre of Industrial Biotechnology (acib GmbH), Vienna, 1010, Austria.,Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, 1190, Austria
| | - Reingard Grabherr
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, 1190, Austria
| | - Gerald Striedner
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, 1190, Austria
| | - Martí Lecina
- IQS School of Engineering, Universitat Ramón Llull, Barcelona, 08017, Spain
| | - Francesc Gòdia
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, 08193, Spain
| |
Collapse
|
4
|
Tamminga M, Andree KC, Hiltermann TJN, Jayat M, Schuuring E, van den Bos H, Spierings DCJ, Lansdorp PM, Timens W, Terstappen LWMM, Groen HJM. Detection of Circulating Tumor Cells in the Diagnostic Leukapheresis Product of Non-Small-Cell Lung Cancer Patients Comparing CellSearch ® and ISET. Cancers (Basel) 2020; 12:E896. [PMID: 32272669 PMCID: PMC7226321 DOI: 10.3390/cancers12040896] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/25/2020] [Accepted: 04/03/2020] [Indexed: 01/04/2023] Open
Abstract
Circulating tumor cells (CTCs) detected by CellSearch are prognostic in non-small-cell lung cancer (NSCLC), but rarely found. CTCs can be extracted from the blood together with mononuclear cell populations by diagnostic leukapheresis (DLA), therefore concentrating them. However, CellSearch can only process limited DLA volumes (≈2 mL). Therefore, we established a protocol to enumerate CTCs in DLA products with Isolation by SizE of Tumor cells (ISET), and compared CTC counts between CellSearch® and ISET. DLA was performed in NSCLC patients who started a new therapy. With an adapted protocol, ISET could process 10 mL of DLA. CellSearch detected CTCs in a volume equaling 2 × 108 leukocytes (mean 2 mL). CTC counts per mL were compared. Furthermore, the live cell protocol of ISET was tested in eight patients. ISET successfully processed all DLA products-16 with the fixed cell protocol and 8 with the live cell protocol. In total, 10-20 mL of DLA was processed. ISET detected CTCs in 88% (14/16), compared to 69% (11/16, p < 0.05) with CellSearch. ISET also detected higher number of CTCs (ISET median CTC/mL = 4, interquartile range [IQR] = 2-6, CellSearch median CTC/mL = 0.9, IQR = 0-1.8, p < 0.01). Cells positive for the epithelial cell adhesion molecule (EpCAM+) per mL were detected in similar counts by both methods. Eight patients were processed with the live cell protocol. All had EpCAM+, CD45-, CD235- cells isolated by fluorescence-activated cell sorting (FACS). Overall, ISET processed larger volumes and detected higher CTC counts compared to CellSearch. EpCAM+ CTCs were detected in comparable rates.
Collapse
Affiliation(s)
- Menno Tamminga
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (M.T.); (T.J.N.H.)
| | - Kiki C. Andree
- Department of Medical Cell BioPhysics, Faculty of Sciences and Technology, University of Twente, 7522 NB Enschede, The Netherlands; (K.C.A.); (L.W.M.M.T.)
| | - T. Jeroen N. Hiltermann
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (M.T.); (T.J.N.H.)
| | | | - Ed Schuuring
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (E.S.); (W.T.)
| | - Hilda van den Bos
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands; (H.v.d.B.); (D.C.J.S.); (P.M.L.)
| | - Diana C. J. Spierings
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands; (H.v.d.B.); (D.C.J.S.); (P.M.L.)
| | - Peter M. Lansdorp
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands; (H.v.d.B.); (D.C.J.S.); (P.M.L.)
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Wim Timens
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (E.S.); (W.T.)
| | - Leon W. M. M. Terstappen
- Department of Medical Cell BioPhysics, Faculty of Sciences and Technology, University of Twente, 7522 NB Enschede, The Netherlands; (K.C.A.); (L.W.M.M.T.)
| | - Harry J. M. Groen
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (M.T.); (T.J.N.H.)
| |
Collapse
|
5
|
Wu Y, Mei T, Jiang L, Han Z, Dong R, Yang T, Xu F. Development of Versatile and Flexible Sf9 Packaging Cell Line-Dependent OneBac System for Large-Scale Recombinant Adeno-Associated Virus Production. Hum Gene Ther Methods 2020; 30:172-183. [PMID: 31566024 PMCID: PMC6834060 DOI: 10.1089/hgtb.2019.123] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Recombinant adeno-associated viruses (rAAVs) are excellent vectors for gene delivery. However, current Sf9/Cap-Rep packaging cell line-dependent OneBac systems still lack versatility and flexibility for large-scale production of rAAVs. In this study, we developed an improved OneBac system that includes a novel dual-function baculovirus expression vector (BEV) termed BEV/Cap-(ITR-GOI) that carries both the AAV Cap gene and rAAV genome inverted terminal repeat (ITR) sequences flanking the gene of interest (GOI), a versatile Sf9-GFP/Rep packaging cell line that harbors silent copies of the AAV2 Rep gene that can be expressed after BEV infection, and constitutively expressed green fluorescent protein (GFP) reporter genes to facilitate cell line screening. The BEV/Cap-(ITR-GOI) construct allows flexibility to switch among different Cap gene serotypes using simple BEV reconstruction, and is stable for at least five serial passages. Furthermore, the Sf9-GFP/Rep stable cell line is versatile for production of different rAAV serotypes. The yield levels for rAAV2, rAAV8, and rAAV9 exceeded 105 vector genomes (VG) per cell, which is similar to other currently available large-scale rAAV production systems. The new Bac system-derived rAAVs have biophysical properties similar to HEK293 cell-derived rAAVs, as well as high quality and activity. In summary, the novel Sf9-GFP/Rep packaging cell line-dependent OneBac system can facilitate large-scale rAAV production and rAAV-based gene therapy.
Collapse
Affiliation(s)
- Yang Wu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Brain Research Center, Wuhan Institute of Physics and Mathematics, Center for Excellence in Brain Science and Intelligent Technology, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Ting Mei
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Brain Research Center, Wuhan Institute of Physics and Mathematics, Center for Excellence in Brain Science and Intelligent Technology, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Liangyu Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Brain Research Center, Wuhan Institute of Physics and Mathematics, Center for Excellence in Brain Science and Intelligent Technology, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Zengpeng Han
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Brain Research Center, Wuhan Institute of Physics and Mathematics, Center for Excellence in Brain Science and Intelligent Technology, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Ruping Dong
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Brain Research Center, Wuhan Institute of Physics and Mathematics, Center for Excellence in Brain Science and Intelligent Technology, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Tian Yang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Brain Research Center, Wuhan Institute of Physics and Mathematics, Center for Excellence in Brain Science and Intelligent Technology, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Fuqiang Xu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Brain Research Center, Wuhan Institute of Physics and Mathematics, Center for Excellence in Brain Science and Intelligent Technology, Chinese Academy of Sciences, Wuhan, P.R. China
| |
Collapse
|
6
|
Zitzmann J, Schreiber C, Eichmann J, Bilz RO, Salzig D, Weidner T, Czermak P. Single-cell cloning enables the selection of more productive Drosophila melanogaster S2 cells for recombinant protein expression. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2018; 19:e00272. [PMID: 29998071 PMCID: PMC6037645 DOI: 10.1016/j.btre.2018.e00272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/18/2018] [Accepted: 06/22/2018] [Indexed: 11/16/2022]
Abstract
The generation of monoclonal cell lines is an important early process development step for recombinant protein production. Although single-cell cloning is an established method in mammalian cell lines, straightforward protocols are not yet available for insect cells. We describe a new method for the generation of monoclonal insect cells without using fetal bovine serum and/or feeder cells pretreated by irradiation or exposure to mitomycin. Highly productive clones of Drosophila melanogaster S2 cells were prepared in a two-step procedure, comprising the establishment of a polyclonal population and subsequent single cell isolation by limiting dilution. Necessary growth factors were provided by co-cultivation of single transformants with untransfected feeder cells, which were later removed by antibiotic selection. Enhanced expression of EGFP and two target peptides was confirmed by flow cytometry and dot/western blotting. Highly productive clones were stable, showed a uniform expression profile and typically a sixfold to tenfold increase in cell-specific productivity.
Collapse
Key Words
- AMP, antimicrobial peptide/protein
- BR021, Harmonia axyridis antimicrobial peptide BR021
- BSA, bovine serum albumin
- D. melanogaster S2 cells
- DMSO, dimethyl sulfoxide
- EGFP, enhanced green fluorescent protein
- FACS, fluorescence activated cell sorting
- FBS, fetal bovine serum
- GMP, good manufacturing practice
- GmGlv, Galleria mellonella antimicrobial peptide Gloverin
- Insect cell culture
- Monoclonal cell line
- OD600, optical density at 600nm
- PBS, phosphate-buffered saline
- PCR, polymerase chain reaction
- PVDF, polyvinylidene difluoride
- RMCE, recombinase mediated cassette exchange
- Recombinant protein expression
- SDS-PAGE, sodium dodecylsulfate polyacrylamide gel electrophoresis
- SFM, serum free medium
- Sf9, clonal isolate of Spodoptera frugiperda Sf21 cells
- Single-cell cloning
- Stably transformed
- rS2, recombinant Drosophila melanogaster Schneider 2 cells
Collapse
Affiliation(s)
- Jan Zitzmann
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Christine Schreiber
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Joel Eichmann
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Roberto Otmar Bilz
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Denise Salzig
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Tobias Weidner
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Peter Czermak
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
- Department of Chemical Engineering, Kansas State University, Manhattan KS, USA
- Faculty of Biology and Chemistry, Justus-Liebig University of Giessen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Project group Bioresources, Giessen, Germany
| |
Collapse
|
7
|
Site-specific chromosomal gene insertion: Flp recombinase versus Cas9 nuclease. Sci Rep 2017; 7:17771. [PMID: 29259215 PMCID: PMC5736728 DOI: 10.1038/s41598-017-17651-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 11/24/2017] [Indexed: 12/16/2022] Open
Abstract
Site-specific recombination systems like those based on the Flp recombinase proved themselves as efficient tools for cell line engineering. The recent emergence of designer nucleases, especially RNA guided endonucleases like Cas9, has considerably broadened the available toolbox for applications like targeted transgene insertions. Here we established a recombinase-mediated cassette exchange (RMCE) protocol for the fast and effective, drug-free isolation of recombinant cells. Distinct fluorescent protein patterns identified the recombination status of individual cells. In derivatives of a CHO master cell line the expression of the introduced transgene of interest could be dramatically increased almost 20-fold by subsequent deletion of the fluorescent protein gene that provided the initial isolation principle. The same master cell line was employed in a comparative analysis using CRISPR/Cas9 for transgene integration in identical loci. Even though the overall targeting efficacy was comparable, multi-loci targeting was considerably more effective for Cas9-mediated transgene insertion when compared to RMCE. While Cas9 is inherently more flexible, our results also alert to the risk of aberrant recombination events around the cut site. Together, this study points at the individual strengths in performance of both systems and provides guidance for their appropriate use.
Collapse
|
8
|
Vidigal J, Fernandes B, Dias MM, Patrone M, Roldão A, Carrondo MJT, Alves PM, Teixeira AP. RMCE-based insect cell platform to produce membrane proteins captured on HIV-1 Gag virus-like particles. Appl Microbiol Biotechnol 2017; 102:655-666. [DOI: 10.1007/s00253-017-8628-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/03/2017] [Accepted: 11/05/2017] [Indexed: 12/20/2022]
|
9
|
Büssow K. Stable mammalian producer cell lines for structural biology. Curr Opin Struct Biol 2015; 32:81-90. [DOI: 10.1016/j.sbi.2015.03.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/11/2015] [Accepted: 03/03/2015] [Indexed: 11/28/2022]
|
10
|
|
11
|
Production of rotavirus core-like particles in Sf9 cells using recombinase-mediated cassette exchange. J Biotechnol 2014; 171:34-8. [DOI: 10.1016/j.jbiotec.2013.11.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 11/20/2013] [Accepted: 11/25/2013] [Indexed: 11/16/2022]
|