1
|
Das D, Huang SH, Weng CL, Yu CH, Hsu CK, Lee YC, Cheng HC, Chuang HS. Detachable acoustofluidic droplet-sorter. Anal Chim Acta 2024; 1321:343043. [PMID: 39155105 DOI: 10.1016/j.aca.2024.343043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Cell sorting is crucial in isolating specific cell populations. It enables detailed analysis of their functions and characteristics and plays a vital role in disease diagnosis, drug discovery, and regenerative medicine. Fluorescence-activated cell sorting (FACS) is considered the gold standard for high-speed single-cell sorting. However, its high cost, complex instrumentation, and lack of portability are significant limitations. Additionally, the high pressure and electric fields used in FACS can harm cell integrity. In this work, an acoustofluidic device was developed in combination with surface acoustic wave (SAW) and droplet microfluidics to isolate single-cell droplets with high purity while maintaining high cell viability. RESULT Human embryonic kidney cells, transfected with fluorescent reporter plasmids, were used to demonstrate the targeted droplet sorting containing single cells. The acoustofluidic sorter achieved a recovery rate of 81 % and an accuracy rate higher than 97 %. The device maintained a cell viability rate of 95 % and demonstrated repeatability over 20 consecutive trials without compromising efficiency, thus underscoring its reliability. Thermal image analysis revealed that the temperature of the interdigital transducer (IDT) during SAW operation remained within the permissible range for maintaining cell viability. SIGNIFICANCE The findings highlighted the sensitivity and effectiveness of the developed acoustofluidic device as a tool for single-cell sorting. The detachable microfluidic chip design enables the reusability of the expensive IDT, making it cost-effective and reducing the risk of cross-contamination between different biological samples. The results underscore its capability to accurately isolate individual cells on the basis of specific criteria, showcasing its potential to advance research and clinical applications requiring precise cell sorting methodologies.
Collapse
Affiliation(s)
- Dhrubajyoti Das
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Shih-Hong Huang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Choa-Li Weng
- Department of Mechanical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chien-Hung Yu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chao-Kai Hsu
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Yung-Chun Lee
- Department of Mechanical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Hui-Ching Cheng
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Han-Sheng Chuang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
2
|
Hale AT, Liu S, Huang F, Song Y, Crowley MR, Crossman DK, Caudill C, Arynchyna-Smith A, Chapman L, Feldman MJ, Saccomano BW, Rocque BG, Rozzelle CJ, Blount JP, Johnston JM, Chong Z, Jones JG. Endoluminal Biopsy for Vein of Galen Malformation. Neurosurgery 2024; 95:00006123-990000000-01166. [PMID: 38747605 PMCID: PMC11449423 DOI: 10.1227/neu.0000000000002986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/11/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Vein of Galen malformation (VOGM), the result of arteriovenous shunting between choroidal and/or subependymal arteries and the embryologic prosencephalic vein, is among the most severe cerebrovascular disorders of childhood. We hypothesized that in situ analysis of the VOGM lesion using endoluminal tissue sampling (ETS) is feasible and may advance our understanding of VOGM genetics, pathogenesis, and maintenance. METHODS We collected germline DNA (cheek swab) from patients and their families for genetic analysis. In situ VOGM "endothelial" cells (ECs), defined as CD31+ and CD45-, were obtained from coils through ETS during routine endovascular treatment. Autologous peripheral femoral ECs were also collected from the access sheath. Single-cell RNA sequencing of both VOGM and peripheral ECs was performed to demonstrate feasibility to define the transcriptional architecture. Comparison was also made with a published normative cerebrovascular transcriptome atlas. A subset of VOGM ECs was reserved for future DNA sequencing to assess for somatic and second-hit mutations. RESULTS Our cohort contains 6 patients who underwent 10 ETS procedures from arterial and/or venous access during routine VOGM treatment (aged 12 days to ∼6 years). No periprocedural complications attributable to ETS occurred. Six unique coil types were used. ETS captured 98 ± 88 (mean ± SD; range 17-256) experimental ECs (CD31+ and CD45-). There was no discernible correlation between cell yield and coil type or route of access. Single-cell RNA sequencing demonstrated hierarchical clustering and unique cell populations within the VOGM EC compartment compared with peripheral EC controls when annotated using a publicly available cerebrovascular cell atlas. CONCLUSION ETS may supplement investigations aimed at development of a molecular-genetic taxonomic classification scheme for VOGM. Moreover, results may eventually inform the selection of personalized pharmacologic or genetic therapies for VOGM and cerebrovascular disorders more broadly.
Collapse
Affiliation(s)
- Andrew T. Hale
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Shanrun Liu
- Single Cell and Flow Cytometry Core, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Fengyuan Huang
- Heflin Genetics Center and Genetics Research Division, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yuwei Song
- Heflin Genetics Center and Genetics Research Division, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael R. Crowley
- Heflin Genetics Center and Genetics Research Division, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - David K. Crossman
- Heflin Genetics Center and Genetics Research Division, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Caroline Caudill
- Division of Pediatric Neurosurgery, Children's of Alabama, Birmingham, Alabama, USA
| | - Anastasia Arynchyna-Smith
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Division of Pediatric Neurosurgery, Children's of Alabama, Birmingham, Alabama, USA
| | - Lindsey Chapman
- Division of Pediatric Neurosurgery, Children's of Alabama, Birmingham, Alabama, USA
| | - Michael J. Feldman
- Division of Pediatric Neurosurgery, Children's of Alabama, Birmingham, Alabama, USA
| | - Benjamin W. Saccomano
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Brandon G. Rocque
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Division of Pediatric Neurosurgery, Children's of Alabama, Birmingham, Alabama, USA
| | - Curtis J. Rozzelle
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Division of Pediatric Neurosurgery, Children's of Alabama, Birmingham, Alabama, USA
| | - Jeffrey P. Blount
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Division of Pediatric Neurosurgery, Children's of Alabama, Birmingham, Alabama, USA
| | - James M. Johnston
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Division of Pediatric Neurosurgery, Children's of Alabama, Birmingham, Alabama, USA
| | - Zechen Chong
- Heflin Genetics Center and Genetics Research Division, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jesse G. Jones
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Division of Pediatric Neurosurgery, Children's of Alabama, Birmingham, Alabama, USA
| |
Collapse
|
3
|
Shekhtman O, Sioutas GS, Piavchenko G, Bhalla S, Cooke DL, Winkler E, Burkhardt JK, Srinivasan VM. Endovascular biopsy in neurointerventional surgery: A systematic review. Interv Neuroradiol 2024:15910199241240508. [PMID: 38515364 DOI: 10.1177/15910199241240508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024] Open
Abstract
INTRODUCTION Endothelial cells (ECs) continuously line the cerebrovasculature. Molecular aberrations in the ECs are hallmarks and contributory factors to the development of cerebrovascular diseases, including intracranial aneurysms and arteriovenous malformations (AVMs). Endovascular biopsy has been introduced as a method to harvest ECs and obtain relevant biologic information. We aimed to summarize the literature on endovascular biopsy in neurointerventional surgery. METHODS We conducted a comprehensive literature search in multiple databases, identifying eligible studies focusing on neurosurgical applications of endovascular biopsy. The systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. The relevant information was collected, including study characteristics, biopsy techniques, and key findings. RESULTS Nine studies met the inclusion criteria and were included. The studies involved the collection of ECs using various endovascular devices including coils, guide wires, different stents, and forceps. Endothelial-enrichment techniques, such fluorescence-activated cell sorting (FACS), collected ECs and facilitated downstream applications of bulk or single-cell RNA sequencing (scRNAseq). The studies provided insights into gene expression profiles and identified potential biomarkers associated with intracranial aneurysms. However, challenges were observed in obtaining an adequate number of ECs and identifying consistent biomarkers. CONCLUSION Endovascular biopsy of endothelial cells (ECs) in cerebrovascular pathologies shows promise for gene expression profiling. However, many studies have been limited in sample size and underpowered to identify "signature genes" for aneurysm growth or rupture. Advancements in minimally invasive biopsy methods have potential to facilitate applications of precision medicine in the treatment of cerebrovascular disorders.
Collapse
Affiliation(s)
- Oleg Shekhtman
- Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Georgios S Sioutas
- Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Gennadii Piavchenko
- Department of Human Anatomy and Histology, Sechenov University, Moscow, Russia
| | - Shubhang Bhalla
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Daniel L Cooke
- Department of Interventional Radiology, University of California San Francisco, San Francisco, CA, USA
| | - Ethan Winkler
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Jan-Karl Burkhardt
- Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Visish M Srinivasan
- Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
4
|
Yang L, Zhang T, Tan R, Yang X, Guo D, Feng Y, Ren H, Tang Y, Shang W, Shen Y. Functionalized Spiral-Rolling Millirobot for Upstream Swimming in Blood Vessel. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200342. [PMID: 35355442 PMCID: PMC9165508 DOI: 10.1002/advs.202200342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/24/2022] [Indexed: 05/11/2023]
Abstract
Untethered small robots with multiple functions show considerable potential as next-generation catheter-free systems for biomedical applications. However, owing to dynamic blood flow, even effective upstream swimming in blood vessels remains a challenge for the robot, let alone performing medical tasks. This paper presents an untethered millirobot with a streamlined shape that integrates the engine, delivery, and biopsy modules. Based on the proposed spiral-rolling strategy, this robot can move upstream at a record-breaking speed of ≈14 mm s-1 against a blood phantom flow of 136 mm s-1 . Moreover, benefiting from the bioinspired self-sealing orifice and easy-open auto-closed biopsy needle sheath, this robot facilitates several biomedical tasks in blood vessels, such as in vivo drug delivery, tissue and liquid biopsy, and cell transportation in rabbit arteries. This study will benefit the development of wireless millirobots for controllable, minimally invasive, highly integrated, and multifunctional endovascular interventions and will inspire new designs of miniature devices for biomedical applications.
Collapse
Affiliation(s)
- Liu Yang
- Department of Biomedical EngineeringCity University of Hong KongTat Chee AvenueKowloonHong KongChina
| | - Tieshan Zhang
- Department of Biomedical EngineeringCity University of Hong KongTat Chee AvenueKowloonHong KongChina
| | - Rong Tan
- Department of Biomedical EngineeringCity University of Hong KongTat Chee AvenueKowloonHong KongChina
| | - Xiong Yang
- Department of Biomedical EngineeringCity University of Hong KongTat Chee AvenueKowloonHong KongChina
| | - Dong Guo
- Department of Biomedical EngineeringCity University of Hong KongTat Chee AvenueKowloonHong KongChina
| | - Yu Feng
- Department of Biomedical EngineeringCity University of Hong KongTat Chee AvenueKowloonHong KongChina
| | - Hao Ren
- Department of Biomedical EngineeringCity University of Hong KongTat Chee AvenueKowloonHong KongChina
| | - Yifeng Tang
- Department of Biomedical EngineeringCity University of Hong KongTat Chee AvenueKowloonHong KongChina
| | - Wanfeng Shang
- CAS Key Laboratory of Human‐Machine Intelligence‐Synergy SystemsShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518057China
- Guangdong Provincial Key Laboratory of Robotics and Intelligent SystemShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518057China
| | - Yajing Shen
- Department of Biomedical EngineeringCity University of Hong KongTat Chee AvenueKowloonHong KongChina
- Shenzhen Research InstituteCity University of Hong KongShenzhen518057China
| |
Collapse
|
5
|
Development overview of Raman-activated cell sorting devoted to bacterial detection at single-cell level. Appl Microbiol Biotechnol 2021; 105:1315-1331. [PMID: 33481066 DOI: 10.1007/s00253-020-11081-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/17/2020] [Accepted: 12/27/2020] [Indexed: 12/14/2022]
Abstract
Understanding the metabolic interactions between bacteria in natural habitat at the single-cell level and the contribution of individual cell to their functions is essential for exploring the dark matter of uncultured bacteria. The combination of Raman-activated cell sorting (RACS) and single-cell Raman spectra (SCRS) with unique fingerprint characteristics makes it possible for research in the field of microbiology to enter the single cell era. This review presents an overview of current knowledge about the research progress of recognition and assessment of single bacterium cell based on RACS and further research perspectives. We first systematically summarize the label-free and non-destructive RACS strategies based on microfluidics, microdroplets, optical tweezers, and specially made substrates. The importance of RACS platforms in linking target cell genotype and phenotype is highlighted and the approaches mentioned in this paper for distinguishing single-cell phenotype include surface-enhanced Raman scattering (SERS), biomarkers, stable isotope probing (SIP), and machine learning. Finally, the prospects and challenges of RACS in exploring the world of unknown microorganisms are discussed. KEY POINTS: • Analysis of single bacteria is essential for further understanding of the microbiological world. • Raman-activated cell sorting (RACS) systems are significant protocol for characterizing phenotypes and genotypes of individual bacteria.
Collapse
|
6
|
Grant D, Wanner N, Frimel M, Erzurum S, Asosingh K. Comprehensive phenotyping of endothelial cells using flow cytometry 2: Human. Cytometry A 2020; 99:257-264. [PMID: 33369145 DOI: 10.1002/cyto.a.24293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In vascular research, clinical samples and samples from animal models are often used together to foster translation of preclinical findings to humans. General concepts of endothelia and murine-specific endothelial phenotypes were discussed in part 1 of this two part series. Here, in part 2, we present a comprehensive overview of human-specific endothelial phenotypes. Pan-endothelial cell markers, organ specific endothelial antigens, and flow cytometric immunophenotyping of blood-borne endothelial cells are reviewed.
Collapse
Affiliation(s)
- Dillon Grant
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Nicholas Wanner
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Matthew Frimel
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Serpil Erzurum
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Kewal Asosingh
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA.,Flow Cytometry Core Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
7
|
Assessment of cell yield among different devices for endovascular biopsy to harvest vascular endothelial cells. Biotechniques 2019; 66:34-36. [PMID: 30730206 DOI: 10.2144/btn-2018-0099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Endovascular biopsy can increase understanding of vascular disease by granting access to epigenetic data that are not normally attainable. This study compares biopsy yields among multiple devices used, examining differences in cell counts according to species, device type, sampling location and disease state. Chi-square analysis compared means of cells harvested with respect to these variables. Assessment of samples in 38 rabbits and 32 humans found no differences for species, location or pathology. Phenox clot retriever devices and retrievable stents yielded more cells (LR 64.2; p < 0.001) than other devices. Phenox clot retrievers and retrievable stents yield more cells than other device types. Further study of these devices for endovascular sampling is warranted to refine its use for this purpose.
Collapse
|
8
|
Endovascular Biopsy and Endothelial Cell Gene Expression Analysis of Dialysis Arteriovenous Fistulas: A Feasibility Study. J Vasc Interv Radiol 2018; 29:1403-1409.e2. [PMID: 30174159 DOI: 10.1016/j.jvir.2018.04.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/10/2018] [Accepted: 04/22/2018] [Indexed: 02/07/2023] Open
Abstract
PURPOSE To demonstrate feasibility of endothelial cell (EC) biopsy from dialysis arteriovenous fistulas (AVFs) with the use of guidewires and to characterize gene expression differences between ECs from stenotic and nonstenotic outflow vein segments. MATERIALS AND METHODS Nine consecutive patients undergoing fistulography for AVF dysfunction from June to August 2016 were enrolled. ECs were biopsied with the use of guidewires from venous outflow stenoses and control outflow veins central to the stenoses. ECs were sorted with the use of flow cytometry, and the Fluidigm Biomark HD system was used for single-cell quantitative polymerase chain reaction (qPCR) analysis of gene expression. Forty-eight genes were assessed and were selected based on different cellular functions and previous literature. Linear mixed models (LMMs) were used to identify differential gene expression between the groups, and self-organizing maps (SOMs) were used to identify cell clusters based on gene coexpression profiles. RESULTS A total of 219 and 213 ECs were sampled from venous outflow stenoses and control vein segments, respectively. There were no immediate biopsy-related complications. Forty-eight cells per patient were sorted for qPCR analysis. LMM identified 7 genes with different levels of expression at stenotic segments (P < .05), including AGTR-2, HMOX-2, MTHFR, SERPINC-1, SERPINE-1, SMAD-4, and VWF. SOM analysis identified 4 cell clusters with unique gene expression profiles, each containing stenotic and control ECs. CONCLUSIONS EC biopsy from dialysis AVFs with the use of guidewires is feasible. Gene expression data suggest that genes involved in multiple cellular functions are dysregulated in stenotic areas. SOMs identified 4 unique clusters of cells, indicating EC phenotypic heterogeneity in outflow veins.
Collapse
|
9
|
Jaff N, Grankvist R, Muhl L, Chireh A, Sandell M, Jonsson S, Arnberg F, Eriksson U, Holmin S. Transcriptomic analysis of the harvested endothelial cells in a swine model of mechanical thrombectomy. Neuroradiology 2018; 60:759-768. [PMID: 29761220 PMCID: PMC5995995 DOI: 10.1007/s00234-018-2033-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/04/2018] [Indexed: 01/03/2023]
Abstract
Purpose In mechanical thrombectomy (MT) for ischemic stroke, endothelial cells (ECs) from intracranial blood vessels adhere to the stent retriever device and can be harvested. However, understanding the molecular biology and the role of the endothelium in different pathological conditions remains insufficient. The purpose of the study was to characterize and analyze the molecular aspect of harvested ECs using cell culture and transcriptomic techniques in an MT swine model relevant to clinical ischemic stroke. Methods In swine, preformed thrombi were injected into the external carotid and subclavian arteries to occlude their branches. MT was performed according to clinical routine. The stent retriever device and thrombus were treated with cell dissociation buffer. The resulting cell suspension was analyzed by immunohistochemistry and was cultured. Cultured cells were analyzed using single-cell RNA sequencing (scRNA-seq) after fluorescence-activated cell sorting (FACS). Results A total number of 37 samples were obtained containing CD31-positive cells. Cell culture was successful in 90% of samples, and the cells expressed multiple typical EC protein markers. Eighty-nine percent of the sorted cells yielded high-quality transcriptomes, and single-cell transcriptomes from cultured cells showed that they expressed typical endothelial gene patterns. Gene expression analysis of ECs from an occluded artery did not show distinctive clustering into subtypes. Conclusion ECs harvested during MT can be cultured and analyzed using single-cell transcriptomic techniques. This analysis can be implemented in clinical practice to study the EC gene expression of comorbidities, such as hypertension, diabetes mellitus, and metabolic syndrome, in patients suffering from acute ischemic stroke.
Collapse
Affiliation(s)
- Nasren Jaff
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 76, Stockholm, Sweden.
| | - Rikard Grankvist
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | - Lars Muhl
- Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, Stockholm, Sweden
| | - Arvin Chireh
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | - Mikael Sandell
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | - Stefan Jonsson
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 76, Stockholm, Sweden
- Department of Materials Science, Royal Institute of Technology, Stockholm, Sweden
| | - Fabian Arnberg
- Department of Neuroradiology, Karolinska University Hospital, Solna, SE-171 76, Stockholm, Sweden
| | - Ulf Eriksson
- Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, Stockholm, Sweden
| | - Staffan Holmin
- Department of Clinical Neuroscience, Karolinska Institutet, SE-171 76, Stockholm, Sweden.
- Department of Neuroradiology, Karolinska University Hospital, Solna, SE-171 76, Stockholm, Sweden.
| |
Collapse
|
10
|
Sheth SA, Verma A, Malhotra K, Tang X, Tateshima S, Jahan R, Hinman JD. Human Endothelial Cell Collection from the Middle Cerebral Artery in Acute Ischemic Stroke. J Stroke Cerebrovasc Dis 2018; 27:669-672. [DOI: 10.1016/j.jstrokecerebrovasdis.2017.09.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 09/26/2017] [Indexed: 12/22/2022] Open
|
11
|
Cooke DL, Bauer D, Sun Z, Stillson C, Nelson J, Barry D, Hetts SW, Higashida RT, Dowd CF, Halbach VV, Su H, Saeed MM. Endovascular biopsy: Technical feasibility of novel endothelial cell harvesting devices assessed in a rabbit aneurysm model. Interv Neuroradiol 2018; 21:120-8. [PMID: 25934786 DOI: 10.15274/inr-2014-10103] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The lack of safe and reliable methods to sample vascular tissue in situ limits discovery of the underlying genetic and pathophysiological mechanisms of many vascular disorders, including aneurysms. We investigated the feasibility and comparable efficacy of in vivo vascular endothelial cell sampling using a spectrum of endovascular devices. Using the rabbit elastase carotid aneurysm model we evaluated the performance of existing aneurysmal coils, intracranial stents, and stent-like devices to collect vascular endothelial cells. Additionally, we modified a subset of devices to assess the effects of alterations to coil pitch, coil wire contour, and stent surface finishing. Device performance was evaluated by (1) the number of viable endothelial cells harvested, (2) the degree of vascular wall damage analyzed using digital subtraction angiography and histopathological analysis, and (3) the ease of device navigability and retrieval. Isolated cells underwent immunohistochemical analysis to confirm cell type and viability. Coil and stent specifications, technique, and endothelial cell counts were tabulated and statistical analysis performed. Using conventional detachable-type and modified aneurysm coils 11 of 14 (78.6%) harvested endothelial cells with a mean of 7.93 (±8.33) cells/coil, while 15 of 15 (100%) conventional stents, stent-like devices and modified stents harvested endothelial cells with a mean of 831.33 (±887.73) cells/device. Coil stiffness was significantly associated with endothelial cell count in univariate analysis (p = 0.044). For stents and stent-like devices univariate analysis demonstrated stent-to-aorta diameter ratios (p = 0.001), stent length (p = 0.049), and the use of a pulling retrieval technique (p = 0.019) significantly predictive of endothelial cell counts, though a multivariate model using these variables demonstrated only the stent-to-aorta diameter ratio (p = 0.029) predictive of endothelial cell counts. Modified devices did not significantly impact harvesting. The efficacy and safety of existing aneurysm coils, intracranial stents and stent-like devices in collecting viable endothelial cells was confirmed. The technique is reproducible and the quantity and quality of collected endothelial cells is adequate for targeted genetic analysis.
Collapse
Affiliation(s)
- Daniel L Cooke
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Diana Bauer
- Laboratory Animal Resource Center, University of California, San Francisco, CA, USA
| | - Zhengda Sun
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Carol Stillson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Jeffrey Nelson
- Department of Anesthesiology and Perioperative Care, University of California, San Francisco, CA, USA
| | | | - Steven W Hetts
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Randall T Higashida
- Department of Radiology, Neurology, and Neurological Surgery, University of California, San Francisco, CA, USA
| | - Christopher F Dowd
- Department of Radiology, Neurology, and Neurological Surgery, University of California, San Francisco, CA, USA
| | - Van V Halbach
- Department of Radiology, Neurology, and Neurological Surgery, University of California, San Francisco, CA, USA
| | - Hua Su
- Department of Anesthesiology and Perioperative Care, University of California, San Francisco, CA, USA
| | - Maythem M Saeed
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| |
Collapse
|
12
|
Endovascular Biopsy: In Vivo Cerebral Aneurysm Endothelial Cell Sampling and Gene Expression Analysis. Transl Stroke Res 2017; 9:20-33. [PMID: 28900857 DOI: 10.1007/s12975-017-0560-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/31/2017] [Accepted: 08/01/2017] [Indexed: 10/18/2022]
Abstract
There is limited data describing endothelial cell (EC) gene expression between aneurysms and arteries partly because of risks associated with surgical tissue collection. Endovascular biopsy (EB) is a lower risk alternative to conventional surgical methods, though no such efforts have been attempted for aneurysms. We sought (1) to establish the feasibility of EB to isolate viable ECs by fluorescence-activated cell sorting (FACS), (2) to characterize the differences in gene expression by anatomic location and rupture status using single-cell qPCR, and (3) to demonstrate the utility of unsupervised clustering algorithms to identify cell subpopulations. EB was performed in 10 patients (5 ruptured, 5 non-ruptured). FACS was used to isolate the ECs and single-cell qPCR was used to quantify the expression of 48 genes. Linear mixed models and exploratory multilevel component analysis (MCA) and self-organizing maps (SOMs) were performed to identify possible subpopulations of cells. ECs were collected from all aneurysms and there were no adverse events. A total of 437 ECs was collected, 94 (22%) of which were aneurysmal cells and 319 (73%) demonstrated EC-specific gene expression. Ruptured aneurysm cells, relative controls, yielded a median p value of 0.40 with five genes (10%) with p values < 0.05. The five genes (TIE1, ENG, VEGFA, MMP2, and VWF) demonstrated uniformly reduced expression relative the remaining ECs. MCA and SOM analyses identified a population of outlying cells characterized by cell marker gene expression profiles different from endothelial cells. After removal of these cells, no cell clustering based on genetic co-expressivity was found to differentiate aneurysm cells from control cells. Endovascular sampling is a reliable method for cell collection for brain aneurysm gene analysis and may serve as a technique to further vascular molecular research. There is utility in combining mixed and clustering methods, despite no specific subpopulation identified in this trial.
Collapse
|
13
|
Sun Z, Lawson DA, Sinclair E, Wang CY, Lai MD, Hetts SW, Higashida RT, Dowd CF, Halbach VV, Werb Z, Su H, Cooke DL. Endovascular biopsy: Strategy for analyzing gene expression profiles of individual endothelial cells obtained from human vessels ✩. ACTA ACUST UNITED AC 2015; 7:157-165. [PMID: 26989654 PMCID: PMC4792280 DOI: 10.1016/j.btre.2015.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The combination of guide wire sampling, FACS and high throughput microfluidic single-cell quantitative RT-PCR, is an effective strategy for analyzing molecular changes of ECs in vascular lesions. Although heterogeneous, the ECs in normal iliac artery fall into two classes.
Purpose To develop a strategy of achieving targeted collection of endothelial cells (ECs) by endovascular methods and analyzing the gene expression profiles of collected single ECs. Methods and results 134 ECs and 37 leukocytes were collected from four patients' intra-iliac artery endovascular guide wires by fluorescence activated cell sorting (FACS) and analyzed by single-cell quantitative RT-PCR for expression profile of 48 genes. Compared to CD45+ leukocytes, the ECs expressed higher levels (p < 0.05) of EC surface markers used on FACS and other EC related genes. The gene expression profile showed that these isolated ECs fell into two clusters, A and B, that differentially expressed 19 genes related to angiogenesis, inflammation and extracellular matrix remodeling, with cluster B ECs have demonstrating similarities to senescent or aging ECs. Conclusion Combination of endovascular device sampling, FACS and single-cell quantitative RT-PCR is a feasible method for analyzing EC gene expression profile in vascular lesions.
Collapse
Affiliation(s)
- Zhengda Sun
- Division of Neurointerventional Radiology, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Devon A Lawson
- Department of Anatomy, University of California, San Francisco, CA, USA
| | - Elizabeth Sinclair
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Chih-Yang Wang
- Department of Anatomy, University of California, San Francisco, CA, USA; Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Derg Lai
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Steven W Hetts
- Division of Neurointerventional Radiology, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Randall T Higashida
- Division of Neurointerventional Radiology, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Christopher F Dowd
- Division of Neurointerventional Radiology, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Van V Halbach
- Division of Neurointerventional Radiology, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Zena Werb
- Department of Anatomy, University of California, San Francisco, CA, USA
| | - Hua Su
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Daniel L Cooke
- Division of Neurointerventional Radiology, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| |
Collapse
|
14
|
Cooke DL, Bauer D, Sun Z, Stillson C, Nelson J, Barry D, Hetts SW, Higashida RT, Dowd CF, Halbach VV, Su H, Saeed MM. Endovascular biopsy: Technical feasibility of novel endothelial cell harvesting devices assessed in a rabbit aneurysm model. Interv Neuroradiol 2015. [DOI: 10.1177/inr-2014-10103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
15
|
Cooke DL, Bauer D, Sun Z, Stillson C, Nelson J, Barry D, Hetts SW, Higashida RT, Dowd CF, Halbach VV, Su H, Saeed MM. Endovascular Biopsy: Technical Feasibility of Novel Endothelial Cell Harvesting Devices Assessed in a Rabbit Aneurysm Model. Interv Neuroradiol 2015. [DOI: 10.15274/inr-2015-10103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|