1
|
Ahad S, Lin C, Reppert M. PigmentHunter: A point-and-click application for automated chlorophyll-protein simulations. J Chem Phys 2024; 160:154111. [PMID: 38639311 DOI: 10.1063/5.0198443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/21/2024] [Indexed: 04/20/2024] Open
Abstract
Chlorophyll proteins (CPs) are the workhorses of biological photosynthesis, working together to absorb solar energy, transfer it to chemically active reaction centers, and control the charge-separation process that drives its storage as chemical energy. Yet predicting CP optical and electronic properties remains a serious challenge, driven by the computational difficulty of treating large, electronically coupled molecular pigments embedded in a dynamically structured protein environment. To address this challenge, we introduce here an analysis tool called PigmentHunter, which automates the process of preparing CP structures for molecular dynamics (MD), running short MD simulations on the nanoHUB.org science gateway, and then using electrostatic and steric analysis routines to predict optical absorption, fluorescence, and circular dichroism spectra within a Frenkel exciton model. Inter-pigment couplings are evaluated using point-dipole or transition-charge coupling models, while site energies can be estimated using both electrostatic and ring-deformation approaches. The package is built in a Jupyter Notebook environment, with a point-and-click interface that can be used either to manually prepare individual structures or to batch-process many structures at once. We illustrate PigmentHunter's capabilities with example simulations on spectral line shapes in the light harvesting 2 complex, site energies in the Fenna-Matthews-Olson protein, and ring deformation in photosystems I and II.
Collapse
Affiliation(s)
- S Ahad
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - C Lin
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - M Reppert
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
2
|
Salman JM, Majrashi N, Hassan FM, Al-Sabri A, Abdul-Adel Jabar E, Ameen F. Cultivation of blue green algae (Arthrospira platensis Gomont, 1892) in wastewater for biodiesel production. CHEMOSPHERE 2023; 335:139107. [PMID: 37270039 DOI: 10.1016/j.chemosphere.2023.139107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
The production of biodiesel has become an important issue in the effort to reduce gas emissions due to the climate change crisis; therefore, algae have widely used to produce biodiesel for energy sustainability. The present study represented an effort to assess the ability of the alga Arthrospira platensis to produce fatty acids involved in biofuel (diesel) by cultivation in Zarrouk media enriched with different municipal wastewater concentrations. Wastewater was used in different concentrations (5, 15, 25, 35 and 100% [control]). Five fatty acids from the alga were determined and included in the present study. These were inoleic acid, palmitic acid, oleic acid, gamma-linolenic acid, and docosahexaenoic acid. Impact of different cultivation conditions were studied in terms of observed changes in growth rate, doubling time, total carbohydrate, total protein, chlorophyll a, carotenoids, phycocyanin, allophycocyanin, and phycobiliproteins. Results showed an increase in the values of growth rate, total protein content, chlorophyll a, and levels of carotenoids at all treatments except for carbohydrate content, which decreased with an increasing concentration of wastewater. The high value of doubling time (11.605 days) was recorded at treatment 5%. Fatty acids yields were increased at treatment 5% and 15%. The highest concentrations of fatty acids were 3.108 mg/g for oleic acid, gamma-linolenic acid (28.401 mg/g), docosahexaenoic acid (41.707 mg/g), palmitic acid (1.305 mg/g), and linoleic acid (0.296 mg/g). Moreover, the range of phycocyanin (0.017-0.084 mg/l), allophycocyanin (0.023-0.095 mg/l), and phycobiliproteins (0.041-0.180 mg/l) were obtained in treatment with 15-100%, respectively. Cultivation with municipal wastewater reduced the values of nitrate, phosphate, and electrical conductivity as well as increased dissolved oxygen. Maximum electrical conductivity was recorded in untreated wastewater with algae, while the highest level of dissolved oxygen was noted at 35% concentration. The use of the household wastewater is more environmentally friendly as an alternative of the traditional cultivation techniques used for long-term for biofuel production.
Collapse
Affiliation(s)
| | - Najwa Majrashi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Fikrat M Hassan
- Department of Biology, College of Science for Woman, University of Baghdad, Iraq
| | - Ahmed Al-Sabri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | | | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
3
|
Boisset ND, Favoino G, Meloni M, Jomat L, Cassier-Chauvat C, Zaffagnini M, Lemaire SD, Crozet P. Phosphoribulokinase abundance is not limiting the Calvin-Benson-Bassham cycle in Chlamydomonas reinhardtii. FRONTIERS IN PLANT SCIENCE 2023; 14:1230723. [PMID: 37719215 PMCID: PMC10501310 DOI: 10.3389/fpls.2023.1230723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/21/2023] [Indexed: 09/19/2023]
Abstract
Improving photosynthetic efficiency in plants and microalgae is of utmost importance to support the growing world population and to enable the bioproduction of energy and chemicals. Limitations in photosynthetic light conversion efficiency can be directly attributed to kinetic bottlenecks within the Calvin-Benson-Bassham cycle (CBBC) responsible for carbon fixation. A better understanding of these bottlenecks in vivo is crucial to overcome these limiting factors through bio-engineering. The present study is focused on the analysis of phosphoribulokinase (PRK) in the unicellular green alga Chlamydomonas reinhardtii. We have characterized a PRK knock-out mutant strain and showed that in the absence of PRK, Chlamydomonas cannot grow photoautotrophically while functional complementation with a synthetic construct allowed restoration of photoautotrophy. Nevertheless, using standard genetic elements, the expression of PRK was limited to 40% of the reference level in complemented strains and could not restore normal growth in photoautotrophic conditions suggesting that the CBBC is limited. We were subsequently able to overcome this initial limitation by improving the design of the transcriptional unit expressing PRK using diverse combinations of DNA parts including PRK endogenous promoter and introns. This enabled us to obtain strains with PRK levels comparable to the reference strain and even overexpressing strains. A collection of strains with PRK levels between 16% and 250% of WT PRK levels was generated and characterized. Immunoblot and growth assays revealed that a PRK content of ≈86% is sufficient to fully restore photoautotrophic growth. This result suggests that PRK is present in moderate excess in Chlamydomonas. Consistently, the overexpression of PRK did not increase photosynthetic growth indicating that that the endogenous level of PRK in Chlamydomonas is not limiting the Calvin-Benson-Bassham cycle under optimal conditions.
Collapse
Affiliation(s)
- Nicolas D. Boisset
- Laboratoire de Biologie Computationnelle et Quantitative, Institut de Biologie Parie-Seine, Sorbonne Université, CNRS, UMR 7238, Paris, France
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, Sorbonne Université, CNRS, UMR 8226, Paris, France
- Doctoral School of Plant Sciences, Université Paris-Saclay, Saint-Aubin, France
| | - Giusi Favoino
- Laboratoire de Biologie Computationnelle et Quantitative, Institut de Biologie Parie-Seine, Sorbonne Université, CNRS, UMR 7238, Paris, France
| | - Maria Meloni
- Department of Pharmacy and Biotechnologies, University of Bologna, Bologna, Italy
| | - Lucile Jomat
- Laboratoire de Biologie Computationnelle et Quantitative, Institut de Biologie Parie-Seine, Sorbonne Université, CNRS, UMR 7238, Paris, France
| | - Corinne Cassier-Chauvat
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), UMR 9198, Gif-sur-Yvette, France
| | - Mirko Zaffagnini
- Department of Pharmacy and Biotechnologies, University of Bologna, Bologna, Italy
| | - Stéphane D. Lemaire
- Laboratoire de Biologie Computationnelle et Quantitative, Institut de Biologie Parie-Seine, Sorbonne Université, CNRS, UMR 7238, Paris, France
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, Sorbonne Université, CNRS, UMR 8226, Paris, France
| | - Pierre Crozet
- Laboratoire de Biologie Computationnelle et Quantitative, Institut de Biologie Parie-Seine, Sorbonne Université, CNRS, UMR 7238, Paris, France
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, Sorbonne Université, CNRS, UMR 8226, Paris, France
- Polytech-Sorbonne, Sorbonne Université, Paris, France
| |
Collapse
|
4
|
Abstract
Biological pigment-protein complexes (PPCs) exhibit a remarkable ability to tune the optical properties of biological excitons (bioexcitons) through specific pigment-protein interactions. While such fine-tuning allows natural systems (e.g., photosynthetic proteins) to carry out their native functions with near-optimal performance, native function itself is often suboptimal for applications such as biofuel production or quantum technology development. This perspective offers a look at near-term prospects for the rational reoptimization of PPC bioexcitons for new functions using site-directed mutagenesis. The primary focus is on the "structure-spectrum" challenge of understanding the relationships between structural features and spectroscopic properties. While recent examples demonstrate that site-directed mutagenesis can be used to tune nearly all key bioexciton parameters (e.g., site energies, interpigment couplings, and electronic-vibrational interactions), critical challenges remain before we achieve truly rational design of bioexciton properties.
Collapse
Affiliation(s)
- Mike Reppert
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
5
|
Advances in Genetic Engineering in Improving Photosynthesis and Microalgal Productivity. Int J Mol Sci 2023; 24:ijms24031898. [PMID: 36768215 PMCID: PMC9915242 DOI: 10.3390/ijms24031898] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Even though sunlight energy far outweighs the energy required by human activities, its utilization is a key goal in the field of renewable energies. Microalgae have emerged as a promising new and sustainable feedstock for meeting rising food and feed demand. Because traditional methods of microalgal improvement are likely to have reached their limits, genetic engineering is expected to allow for further increases in the photosynthesis and productivity of microalgae. Understanding the mechanisms that control photosynthesis will enable researchers to identify targets for genetic engineering and, in the end, increase biomass yield, offsetting the costs of cultivation systems and downstream biomass processing. This review describes the molecular events that happen during photosynthesis and microalgal productivity through genetic engineering and discusses future strategies and the limitations of genetic engineering in microalgal productivity. We highlight the major achievements in manipulating the fundamental mechanisms of microalgal photosynthesis and biomass production, as well as promising approaches for making significant contributions to upcoming microalgal-based biotechnology.
Collapse
|
6
|
Huang G, Han Y, Li W, Xue Z, He D, He H. Rapid screening of microalgae by a 96-hole air-flowing device. Bioprocess Biosyst Eng 2022; 45:943-953. [PMID: 35246721 DOI: 10.1007/s00449-022-02714-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/18/2022] [Indexed: 11/29/2022]
Abstract
In this study, a 96-hole air-flowing device (96HAFD) was established for high-throughput screening of three mutant Chlorella strains under air aeration. 96HAFD was first tested for the confirmation of homogeneous air aeration cultivation environment at 1.2 L min-1 for algal screening based on the results of t test (p < 0.05) in the verification of consistency experiment. Then the data of dynamic growth characteristics of three mutant Chlorella strains indicated the good agreement in three screening devices including 96HAFD, flask and tube air-flowing cultivation devices by linear regression analysis between the 96HAFD and tube (R2 = 0.9904), 96HAFD and flask (R2 = 0.9904). At last, the 96HAFD was verified more efficient and reliable in fast screening single algal colony strains when compared with flask and tube air-flowing cultivation devices, because 96HAFD was confirmed have better performances in adaptation to the aeration cultivation circumstance and growing faster in a short period, in addition, 96HAFD had the less percentage of water loss per day (0.11%) than that of flask aeration device (2-3%) and tube aeration device (5-6.5%), which reduced negative effect caused by the water evaporation in the aeration cultivation to make the whole growing system more stable.
Collapse
Affiliation(s)
- Guanhua Huang
- Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, China University of Mining and Technology, XuZhou, 221116, China.
| | - Yanyan Han
- Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, China University of Mining and Technology, XuZhou, 221116, China
| | - Wei Li
- Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, China University of Mining and Technology, XuZhou, 221116, China
| | - Zhen Xue
- Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, China University of Mining and Technology, XuZhou, 221116, China
| | - Dengling He
- Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, China University of Mining and Technology, XuZhou, 221116, China
| | - Huan He
- Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, China University of Mining and Technology, XuZhou, 221116, China
| |
Collapse
|
7
|
Chandrasekhar K, Raj T, Ramanaiah SV, Kumar G, Banu JR, Varjani S, Sharma P, Pandey A, Kumar S, Kim SH. Algae biorefinery: a promising approach to promote microalgae industry and waste utilization. J Biotechnol 2021; 345:1-16. [PMID: 34954289 DOI: 10.1016/j.jbiotec.2021.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 01/17/2023]
Abstract
Microalgae have a number of intriguing characteristics that make them a viable raw material aimed at usage in a variety of applications when refined using a bio-refining process. They offer unique capabilities that allow them to be used in biotechnology-related applications. As a result, this review explores how to increase the extent to which microalgae may be integrated with various additional biorefinery uses in order to improve their maintainability. In this study, the use of microalgae as potential animal feed, manure, medicinal, cosmeceutical, ecological, and other biotechnological uses is examined in its entirety. It also includes information on the boundaries, openings, and improvements of microalgae and the possibilities of increasing the range of microalgae through techno-economic analysis. According to the findings of this review, financing supported research and shifting the focus of microalgal investigations from biofuels production to biorefinery co-products can help guarantee that they remain a viable resource. Furthermore, innovation collaboration is unavoidable if one wishes to avoid the high cost of microalgae biomass handling. This review is expected to be useful in identifying the possible role of microalgae in biorefinery applications in the future.
Collapse
Affiliation(s)
- K Chandrasekhar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Tirath Raj
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - S V Ramanaiah
- Food and Biotechnology Research Lab, South Ural State University (National Research University), 454080 Chelyabinsk, Russian Federation
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, 4036 Stavanger, Norway
| | - J Rajesh Banu
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382 010, India
| | - Pooja Sharma
- CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur-440020, India
| | - Ashok Pandey
- Centre for Innovation and TranslationalResearch, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur-440020, India
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
8
|
Srivastava A, Ahad S, Wat JH, Reppert M. Accurate prediction of mutation-induced frequency shifts in chlorophyll proteins with a simple electrostatic model. J Chem Phys 2021; 155:151102. [PMID: 34686046 DOI: 10.1063/5.0064567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Photosynthetic pigment-protein complexes control local chlorophyll (Chl) transition frequencies through a variety of electrostatic and steric forces. Site-directed mutations can modify this local spectroscopic tuning, providing critical insight into native photosynthetic functions and offering the tantalizing prospect of creating rationally designed Chl proteins with customized optical properties. Unfortunately, at present, no proven methods exist for reliably predicting mutation-induced frequency shifts in advance, limiting the method's utility for quantitative applications. Here, we address this challenge by constructing a series of point mutants in the water-soluble chlorophyll protein of Lepidium virginicum and using them to test the reliability of a simple computational protocol for mutation-induced site energy shifts. The protocol uses molecular dynamics to prepare mutant protein structures and the charge density coupling model of Adolphs et al. [Photosynth. Res. 95, 197-209 (2008)] for site energy prediction; a graphical interface that implements the protocol automatically is published online at http://nanohub.org/tools/pigmenthunter. With the exception of a single outlier (presumably due to unexpected structural changes), we find that the calculated frequency shifts match the experiment remarkably well, with an average error of 1.6 nm over a 9 nm spread in wavelengths. We anticipate that the accuracy of the method can be improved in the future with more advanced sampling of mutant protein structures.
Collapse
Affiliation(s)
- Amit Srivastava
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Safa Ahad
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Jacob H Wat
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Mike Reppert
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
9
|
Negi S, Perrine Z, Friedland N, Kumar A, Tokutsu R, Minagawa J, Berg H, Barry AN, Govindjee G, Sayre R. Light regulation of light-harvesting antenna size substantially enhances photosynthetic efficiency and biomass yield in green algae †. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:584-603. [PMID: 32180283 DOI: 10.1111/tpj.14751] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 02/06/2020] [Accepted: 03/09/2020] [Indexed: 05/25/2023]
Abstract
One of the major factors limiting biomass productivity in algae is the low thermodynamic efficiency of photosynthesis. The greatest thermodynamic inefficiencies in photosynthesis occur during the conversion of light into chemical energy. At full sunlight the light-harvesting antenna captures photons at a rate nearly 10 times faster than the rate-limiting step in photosynthetic electron transport. Excess captured energy is dissipated by non-productive pathways including the production of reactive oxygen species. Substantial improvements in photosynthetic efficiency have been achieved by reducing the optical cross-section of the light-harvesting antenna by selectively reducing chlorophyll b levels and peripheral light-harvesting complex subunits. Smaller light-harvesting antenna, however, may not exhibit optimal photosynthetic performance in low or fluctuating light environments. We describe a translational control system to dynamically adjust light-harvesting antenna sizes for enhanced photosynthetic performance. By expressing a chlorophyllide a oxygenase (CAO) gene having a 5' mRNA extension encoding a Nab1 translational repressor binding site in a CAO knockout line it was possible to continuously alter chlorophyll b levels and correspondingly light-harvesting antenna sizes by light-activated Nab1 repression of CAO expression as a function of growth light intensity. Significantly, algae having light-regulated antenna sizes had substantially higher photosynthetic rates and two-fold greater biomass productivity than the parental wild-type strains as well as near wild-type ability to carry out state transitions and non-photochemical quenching. These results have broad implications for enhanced algae and plant biomass productivity.
Collapse
Affiliation(s)
- Sangeeta Negi
- New Mexico Consortium and Los Alamos National Laboratory, Los Alamos, NM, 87544, USA
| | - Zoee Perrine
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | | | - Anil Kumar
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Ryutaro Tokutsu
- Division of Environmental Photobiology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), 38 Nishigonaka, Myodaiji, Okazaki, 444-8585, Japan
- CREST (Core Research for Evolutional Science and Technology), Japan Science and Technology Agency (JST), 38 Nishigonaka, Myodaiji, Okazaki, 444-8585, Japan
| | - Jun Minagawa
- Division of Environmental Photobiology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), 38 Nishigonaka, Myodaiji, Okazaki, 444-8585, Japan
- CREST (Core Research for Evolutional Science and Technology), Japan Science and Technology Agency (JST), 38 Nishigonaka, Myodaiji, Okazaki, 444-8585, Japan
| | - Howard Berg
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Amanda N Barry
- Los Alamos National Laboratory, Los Alamos, NM, 87544, USA
| | - Govindjee Govindjee
- Department of Biochemistry, Department of Plant Biology, Center of Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | | |
Collapse
|
10
|
Hong ME, Yu BS, Patel AK, Choi HI, Song S, Sung YJ, Chang WS, Sim SJ. Enhanced biomass and lipid production of Neochloris oleoabundans under high light conditions by anisotropic nature of light-splitting CaCO 3 crystal. BIORESOURCE TECHNOLOGY 2019; 287:121483. [PMID: 31121442 DOI: 10.1016/j.biortech.2019.121483] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 06/09/2023]
Abstract
The aim of this work was to study the anisotropic effect of crystalline CaCO3 nanoparticles (CN)-driven multiple refraction/scattering from the CN-coated agglomerated cells on the rate of photosynthesis and the product yield under high light conditions in the freshwater microalgae Neochloris oleoabundans. The CN-coating via biomineralization significantly improved the biomass and lipid production of N. oleoabundans during second stage of autotrophic induction by sustaining relatively high rate of photosynthesis at high irradiance using the multiple-splitting effect of the anisotropic polymorphism. The CN were successfully produced, adsorbed and grown on the external cells under conditions of mild alkalinity (pH 7.5-8.0), mild CaCl2 concentration (0.05 M) and under nitrogen starvation with strong light (400 µE m-2 s-1). Consequently, lipid content and productivity of N. oleoabundans cells cultured with 0.05 M CaCl2 increased by 18.4% and 31.5%, respectively, compared to the cells cultured with 0.05 M CaCl2 and acetazolamide to inhibit calcification.
Collapse
Affiliation(s)
- Min Eui Hong
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Byung Sun Yu
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Anil Kumar Patel
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Hong Il Choi
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Sojin Song
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Young Joon Sung
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Won Seok Chang
- Research Institute, Korea District Heating Corp., 92, Gigok-ro, Giheung-gu, Yongin-si, Gyeonggi-do 17099, South Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, South Korea.
| |
Collapse
|
11
|
Saini RK, Keum YS. Microbial platforms to produce commercially vital carotenoids at industrial scale: an updated review of critical issues. J Ind Microbiol Biotechnol 2019; 46:657-674. [PMID: 30415292 DOI: 10.1007/s10295-018-2104-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/31/2018] [Indexed: 10/27/2022]
Abstract
Carotenoids are a diverse group of isoprenoid pigments that play crucial roles in plants, animals, and microorganisms, including body pigmentation, bio-communication, precursors for vitamin A, and potent antioxidant activities. With their potent antioxidant activities, carotenoids are emerging as molecules of vital importance in protecting against chronic degenerative disease, such as aging, cancer, cataract, cardiovascular, and neurodegenerative diseases. Due to countless functions in the cellular system, carotenoids are extensively used in dietary supplements, food colorants, aquaculture and poultry feed, nutraceuticals, and cosmetics. Moreover, the emerging demand for carotenoids in these vast areas has triggered their industrial-scale production. Currently, 80%-90% of carotenoids are produced synthetically by chemical synthesis. However, the demand for naturally produced carotenoids is increasing due to the health concern of synthetic counterparts. This article presents a review of the industrial production of carotenoids utilizing a number of diverse microbes, including microalgae, bacteria, and fungi, some of which have been genetically engineered to improve production titers.
Collapse
Affiliation(s)
- Ramesh Kumar Saini
- Department of Bioresources and Food Science, Konkuk University, Seoul, 143-701, Republic of Korea.
- Institute of Natural Science and Agriculture, Konkuk University, Seoul, 143-701, Republic of Korea.
- Department of Crop Science, Konkuk University, Seoul, 143-701, Republic of Korea.
| | - Young-Soo Keum
- Department of Crop Science, Konkuk University, Seoul, 143-701, Republic of Korea.
| |
Collapse
|
12
|
León-Vaz A, León R, Díaz-Santos E, Vigara J, Raposo S. Using agro-industrial wastes for mixotrophic growth and lipids production by the green microalga Chlorella sorokiniana. N Biotechnol 2019; 51:31-38. [PMID: 30738878 DOI: 10.1016/j.nbt.2019.02.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 12/31/2022]
Abstract
There has been growing interest in the use of microalgae for the production of biofuels, but production costs continue to be too high to compete with fossil fuel prices. One of the main limitations for photobioreactor productivity is light shielding, especially at high cell densities. The growth of the green microalga Chlorella sorokiniana, a robust industrial species, has been evaluated under different trophic conditions with traditional carbon sources, such as glucose and sucrose, and alternative low cost carbon sources, such as carob pod extract, industrial glycerol and acetate-rich oxidized wine waste lees. The mixotrophic cultivation of this microalga with wine waste lees alleviated the problems of light shielding observed in photoautotrophic cultures, improving specific growth rate (0.052 h-1) compared with the other organic sources. The fed-batch mixotrophic culture of Chlorella sorokiniana in a 2 L stirred tank reactor, with optimized nutritional conditions, 100 mM of acetate coming from the oxidized wine waste lees and 30 mM of ammonium, produced an algal biomass concentration of 11 g L-1 with a lipid content of 38 % (w/w). This fed-batch strategy has been found to be a very effective means to enhance the biomass and neutral lipid productivity.
Collapse
Affiliation(s)
- Antonio León-Vaz
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence (CEIMAR) and CEICAMBIO, University of Huelva, 21007, Huelva, Spain
| | - Rosa León
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence (CEIMAR) and CEICAMBIO, University of Huelva, 21007, Huelva, Spain
| | - Encarnación Díaz-Santos
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence (CEIMAR) and CEICAMBIO, University of Huelva, 21007, Huelva, Spain
| | - Javier Vigara
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence (CEIMAR) and CEICAMBIO, University of Huelva, 21007, Huelva, Spain
| | - Sara Raposo
- Center for Marine and Environmental Research - CIMA, University of Algarve - Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
13
|
Characterization of a Microalgal UV Mutant for CO 2 Biofixation and Biomass Production. BIOMED RESEARCH INTERNATIONAL 2019; 2018:4375170. [PMID: 30671452 PMCID: PMC6323505 DOI: 10.1155/2018/4375170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/19/2018] [Accepted: 11/25/2018] [Indexed: 11/17/2022]
Abstract
The mutagenesis is an emerging strategy for screening microalgal candidates for CO2 biofixation and biomass production. In this study, by 96-well microplates-UV mutagenesis, a mutant stemmed from Scenedesmus obliquus was screened and named as SDEC-1M. To characterize SDEC-1M, it was cultivated under air and high level CO2 (15% v/v), and its parental strain (PS) was considered as control. Growth characterizations showed that SDEC-1M grew best in high level CO2. It indicated that the mutant had high CO2 tolerance (HCT) and growth potential under high level CO2. Richer total carbohydrate content (37.26%) and lipid content (24.80%) demonstrated that, compared to its parental strain, SDEC-1M was apt to synthesize energy storage materials, especially under high CO2 level. Meanwhile, the highest light conversion efficiency (approximately 18 %) was also obtained. Thus, the highest overall biomass productivities were achieved in SDEC-1M under high level CO2, largely attributed to that the highest productivities of total lipid, total carbohydrate, and crude protein were also achieved in the meantime. By modified UV, therefore, mutagenized SDEC-1M was the better candidate for CO2 biofixation and biofuel production than its parental strain.
Collapse
|
14
|
Löwe J, Siewert A, Scholpp AC, Wobbe L, Gröger H. Providing reducing power by microalgal photosynthesis: a novel perspective towards sustainable biocatalytic production of bulk chemicals exemplified for aliphatic amines. Sci Rep 2018; 8:10436. [PMID: 29993023 PMCID: PMC6041261 DOI: 10.1038/s41598-018-28755-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/29/2018] [Indexed: 01/23/2023] Open
Abstract
A biotechnological process is reported, which enables an enzymatic reduction without the need for addition of an organic co-substrate for in situ-cofactor recycling. The process is based on merging the fields of enzymatic reductive amination with formate dehydrogenase-based in situ-cofactor recycling and algae biotechnology by means of the photoautotrophic microorganism Chlamydomonas reinhardtii, providing the needed formate in situ by formation from carbon dioxide, water and light. This biotransformation has been exemplified for the synthesis of various aliphatic amines known as bulk chemicals.
Collapse
Affiliation(s)
- Jana Löwe
- Chair of Organic Chemistry I, Faculty of Chemistry, Bielefeld University, Universitätsstr, 25, 33615, Bielefeld, Germany
| | - Arthur Siewert
- Algae Biotechnology and Bioenergy Group, Faculty of Biology, Center for Biotechnology/CeBiTec, Bielefeld University, Universitätsstr, 27, 33615, Bielefeld, Germany
| | - Anna-Catharina Scholpp
- Algae Biotechnology and Bioenergy Group, Faculty of Biology, Center for Biotechnology/CeBiTec, Bielefeld University, Universitätsstr, 27, 33615, Bielefeld, Germany
| | - Lutz Wobbe
- Algae Biotechnology and Bioenergy Group, Faculty of Biology, Center for Biotechnology/CeBiTec, Bielefeld University, Universitätsstr, 27, 33615, Bielefeld, Germany.
| | - Harald Gröger
- Chair of Organic Chemistry I, Faculty of Chemistry, Bielefeld University, Universitätsstr, 25, 33615, Bielefeld, Germany.
| |
Collapse
|
15
|
Guldhe A, Kumari S, Ramanna L, Ramsundar P, Singh P, Rawat I, Bux F. Prospects, recent advancements and challenges of different wastewater streams for microalgal cultivation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 203:299-315. [PMID: 28803154 DOI: 10.1016/j.jenvman.2017.08.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/28/2017] [Accepted: 08/05/2017] [Indexed: 06/07/2023]
Abstract
Microalgae are recognized as one of the most powerful biotechnology platforms for many value added products including biofuels, bioactive compounds, animal and aquaculture feed etc. However, large scale production of microalgal biomass poses challenges due to the requirements of large amounts of water and nutrients for cultivation. Using wastewater for microalgal cultivation has emerged as a potential cost effective strategy for large scale microalgal biomass production. This approach also offers an efficient means to remove nutrients and metals from wastewater making wastewater treatment sustainable and energy efficient. Therefore, much research has been conducted in the recent years on utilizing various wastewater streams for microalgae cultivation. This review identifies and discusses the opportunities and challenges of different wastewater streams for microalgal cultivation. Many alternative routes for microalgal cultivation have been proposed to tackle some of the challenges that occur during microalgal cultivation in wastewater such as nutrient deficiency, substrate inhibition, toxicity etc. Scope and challenges of microalgal biomass grown on wastewater for various applications are also discussed along with the biorefinery approach.
Collapse
Affiliation(s)
- Abhishek Guldhe
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O Box 1334, Durban, 4000, South Africa
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O Box 1334, Durban, 4000, South Africa
| | - Luveshan Ramanna
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O Box 1334, Durban, 4000, South Africa
| | - Prathana Ramsundar
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O Box 1334, Durban, 4000, South Africa
| | - Poonam Singh
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O Box 1334, Durban, 4000, South Africa
| | - Ismail Rawat
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O Box 1334, Durban, 4000, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O Box 1334, Durban, 4000, South Africa.
| |
Collapse
|
16
|
Fu W, Chaiboonchoe A, Khraiwesh B, Sultana M, Jaiswal A, Jijakli K, Nelson DR, Al-Hrout A, Baig B, Amin A, Salehi-Ashtiani K. Intracellular spectral recompositioning of light enhances algal photosynthetic efficiency. SCIENCE ADVANCES 2017; 3:e1603096. [PMID: 28879232 PMCID: PMC5580877 DOI: 10.1126/sciadv.1603096] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 08/05/2017] [Indexed: 06/07/2023]
Abstract
Diatoms, considered as one of the most diverse and largest groups of algae, can provide the means to reach a sustainable production of petrochemical substitutes and bioactive compounds. However, a prerequisite to achieving this goal is to increase the solar-to-biomass conversion efficiency of photosynthesis, which generally remains less than 5% for most photosynthetic organisms. We have developed and implemented a rapid and effective approach, herein referred to as intracellular spectral recompositioning (ISR) of light, which, through absorption of excess blue light and its intracellular emission in the green spectral band, can improve light utilization. We demonstrate that ISR can be used chemogenically, by using lipophilic fluorophores, or biogenically, through the expression of an enhanced green fluorescent protein (eGFP) in the model diatom Phaeodactylum tricornutum. Engineered P. tricornutum cells expressing eGFP achieved 28% higher efficiency in photosynthesis than the parental strain, along with an increased effective quantum yield and reduced nonphotochemical quenching (NPQ) induction levels under high-light conditions. Further, pond simulator experiments demonstrated that eGFP transformants could outperform their wild-type parental strain by 50% in biomass production rate under simulated outdoor sunlight conditions. Transcriptome analysis identified up-regulation of major photosynthesis genes in the engineered strain in comparison with the wild type, along with down-regulation of NPQ genes involved in light stress response. Our findings provide a proof of concept for a strategy of developing more efficient photosynthetic cell factories to produce algae-based biofuels and bioactive products.
Collapse
Affiliation(s)
- Weiqi Fu
- Laboratory of Algal, Systems, and Synthetic Biology, Division of Science and Math, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, UAE
| | - Amphun Chaiboonchoe
- Laboratory of Algal, Systems, and Synthetic Biology, Division of Science and Math, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, UAE
| | - Basel Khraiwesh
- Laboratory of Algal, Systems, and Synthetic Biology, Division of Science and Math, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, UAE
- Center for Genomics and Systems Biology, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, UAE
| | - Mehar Sultana
- Center for Genomics and Systems Biology, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, UAE
| | - Ashish Jaiswal
- Laboratory of Algal, Systems, and Synthetic Biology, Division of Science and Math, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, UAE
| | - Kenan Jijakli
- Laboratory of Algal, Systems, and Synthetic Biology, Division of Science and Math, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, UAE
| | - David R. Nelson
- Laboratory of Algal, Systems, and Synthetic Biology, Division of Science and Math, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, UAE
- Center for Genomics and Systems Biology, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, UAE
| | - Ala’a Al-Hrout
- Department of Biology, College of Science, UAE University, P.O. Box 15551, Al Ain, UAE
| | - Badriya Baig
- Department of Biology, College of Science, UAE University, P.O. Box 15551, Al Ain, UAE
| | - Amr Amin
- Department of Biology, College of Science, UAE University, P.O. Box 15551, Al Ain, UAE
- Department of Zoology, Cairo University, Giza, Egypt
| | - Kourosh Salehi-Ashtiani
- Laboratory of Algal, Systems, and Synthetic Biology, Division of Science and Math, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, UAE
- Center for Genomics and Systems Biology, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, UAE
| |
Collapse
|
17
|
Beacham TA, Sweet JB, Allen MJ. Large scale cultivation of genetically modified microalgae: A new era for environmental risk assessment. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.04.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
18
|
Cantrell M, Peers G. A mutant of Chlamydomonas without LHCSR maintains high rates of photosynthesis, but has reduced cell division rates in sinusoidal light conditions. PLoS One 2017. [PMID: 28644828 PMCID: PMC5482440 DOI: 10.1371/journal.pone.0179395] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The LHCSR protein belongs to the light harvesting complex family of pigment-binding proteins found in oxygenic photoautotrophs. Previous studies have shown that this complex is required for the rapid induction and relaxation of excess light energy dissipation in a wide range of eukaryotic algae and moss. The ability of cells to rapidly regulate light harvesting between this dissipation state and one favoring photochemistry is believed to be important for reducing oxidative stress and maintaining high photosynthetic efficiency in a rapidly changing light environment. We found that a mutant of Chlamydomonas reinhardtii lacking LHCSR, npq4lhcsr1, displays minimal photoinhibition of photosystem II and minimal inhibition of short term oxygen evolution when grown in constant excess light compared to a wild type strain. We also investigated the impact of no LHCSR during growth in a sinusoidal light regime, which mimics daily changes in photosynthetically active radiation. The absence of LHCSR correlated with a slight reduction in the quantum efficiency of photosystem II and a stimulation of the maximal rates of photosynthesis compared to wild type. However, there was no reduction in carbon accumulation during the day. Another novel finding was that npq4lhcsr1 cultures underwent fewer divisions at night, reducing the overall growth rate compared to the wild type. Our results show that the rapid regulation of light harvesting mediated by LHCSR is required for high growth rates, but it is not required for efficient carbon accumulation during the day in a sinusoidal light environment. This finding has direct implications for engineering strategies directed at increasing photosynthetic productivity in mass cultures.
Collapse
Affiliation(s)
- Michael Cantrell
- Department of Biology, Colorado State University, Fort Collins, CO, United States of America
| | - Graham Peers
- Department of Biology, Colorado State University, Fort Collins, CO, United States of America
- * E-mail:
| |
Collapse
|
19
|
Novel micro-photobioreactor design and monitoring method for assessing microalgae response to light intensity. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.07.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Janssen M. Microalgal Photosynthesis and Growth in Mass Culture. PHOTOBIOREACTION ENGINEERING 2016. [DOI: 10.1016/bs.ache.2015.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Wen X, Du K, Wang Z, Peng X, Luo L, Tao H, Xu Y, Zhang D, Geng Y, Li Y. Effective cultivation of microalgae for biofuel production: a pilot-scale evaluation of a novel oleaginous microalga Graesiella sp. WBG-1. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:123. [PMID: 27303444 PMCID: PMC4906892 DOI: 10.1186/s13068-016-0541-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/02/2016] [Indexed: 05/04/2023]
Abstract
BACKGROUND Commercial production of microalgal biodiesel is not yet economically viable, largely because of low storage lipid yield in microalgae mass cultivation. Selection of lipid-rich microalgae, thus, becomes one of the key research topics for microalgal biodiesel production. However, the laboratory screening protocols alone cannot predict the ability of the strains to dominate and perform in outdoor ponds. Comprehensive assessment of microalgae species should be performed not only under the laboratory conditions, but also in the fields. RESULTS Laboratory investigations using a bubbled column photobioreactor indicated the microalga Graesiella sp. WBG-1 to be the most productive species among the 63 Chlorophyta strains. In a 10 L reactor, mimicking the industrial circular pond, Graesiella sp. WBG-1 produced 12.03 g biomass m(-2) day(-1) and 5.44 g lipids (45.23 % DW) m(-2) day(-1) under 15 mol m(-2) day(-1) artificial light irradiations. The lipid content decreased to ~34 % DW when the microalga was cultured in 30 L tank PBR under natural solar irradiations, but the decline of lipid content with scaling up was the minimum among the tested strains. Based on these results, the microalga was further tested for its lipid production and culture competitiveness using a pilot-scale raceway pond (200 m(2) illuminated area, culture volume 40,000 L). Consequently, Graesiella sp. WBG-1 maintained a high lipid content (33.4 % DW), of which ~90 % was storage TAGs. Results from the outdoor experiments indicated the nice adaptability of the Graesiella sp. WBG-1 to strong and fluctuating natural solar irradiance and temperature, and also demonstrated several other features, such as large cell size (easy for harvest and resistant to swallow by protozoa) and tolerance to high culture pH (helpful to CO2 fixation). CONCLUSIONS Graesiella sp. WBG-1 was a promising strain capable of accumulating large amount of storage lipid under nature solar irradiance and temperature. The high lipid content of 33.4 % DW was achieved for the first time in pilot-scale raceway pond. The results also provide evidence for the feasibility of using low-cost raceway pond for autotrophic cultivation of microalgae for biodiesel production.
Collapse
Affiliation(s)
- Xiaobin Wen
- />Key Laboratory of Pant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Kui Du
- />Key Laboratory of Pant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- />University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zhongjie Wang
- />Key Laboratory of Pant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Xinan Peng
- />Key Laboratory of Pant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- />University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Liming Luo
- />Key Laboratory of Pant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- />Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 78703 USA
| | - Huanping Tao
- />Key Laboratory of Pant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Yan Xu
- />Key Laboratory of Pant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- />University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Dan Zhang
- />Key Laboratory of Pant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Yahong Geng
- />Key Laboratory of Pant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Yeguang Li
- />Key Laboratory of Pant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
| |
Collapse
|
22
|
Wobbe L, Bassi R, Kruse O. Multi-Level Light Capture Control in Plants and Green Algae. TRENDS IN PLANT SCIENCE 2016; 21:55-68. [PMID: 26545578 DOI: 10.1016/j.tplants.2015.10.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 09/16/2015] [Accepted: 10/05/2015] [Indexed: 05/02/2023]
Abstract
Life on Earth relies on photosynthesis, and the ongoing depletion of fossil carbon fuels has renewed interest in phototrophic light-energy conversion processes as a blueprint for the conversion of atmospheric CO2 into various organic compounds. Light-harvesting systems have evolved in plants and green algae, which are adapted to the light intensity and spectral composition encountered in their habitats. These organisms are constantly challenged by a fluctuating light supply and other environmental cues affecting photosynthetic performance. Excess light can be especially harmful, but plants and microalgae are equipped with different acclimation mechanisms to control the processing of sunlight absorbed at both photosystems. We summarize the current knowledge and discuss the potential for optimization of phototrophic light-energy conversion.
Collapse
Affiliation(s)
- Lutz Wobbe
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse 27, 33615, Bielefeld, Germany
| | - Roberto Bassi
- Universita degli Studi di Verona, Department of Biotechnology, Strada Le Grazie 15, 37134 Verona, Italy
| | - Olaf Kruse
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse 27, 33615, Bielefeld, Germany.
| |
Collapse
|
23
|
Gimpel JA, Henríquez V, Mayfield SP. In Metabolic Engineering of Eukaryotic Microalgae: Potential and Challenges Come with Great Diversity. Front Microbiol 2015; 6:1376. [PMID: 26696985 PMCID: PMC4678203 DOI: 10.3389/fmicb.2015.01376] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 11/20/2015] [Indexed: 12/03/2022] Open
Abstract
The great phylogenetic diversity of microalgae is corresponded by a wide arrange of interesting and useful metabolites. Nonetheless metabolic engineering in microalgae has been limited, since specific transformation tools must be developed for each species for either the nuclear or chloroplast genomes. Microalgae as production platforms for metabolites offer several advantages over plants and other microorganisms, like the ability of GMO containment and reduced costs in culture media, respectively. Currently, microalgae have proved particularly well suited for the commercial production of omega-3 fatty acids and carotenoids. Therefore most metabolic engineering strategies have been developed for these metabolites. Microalgal biofuels have also drawn great attention recently, resulting in efforts for improving the production of hydrogen and photosynthates, particularly triacylglycerides. Metabolic pathways of microalgae have also been manipulated in order to improve photosynthetic growth under specific conditions and for achieving trophic conversion. Although these pathways are not strictly related to secondary metabolites, the synthetic biology approaches could potentially be translated to this field and will also be discussed.
Collapse
Affiliation(s)
- Javier A Gimpel
- Chemical and Biotechnology Engineering Department, Centre for Biotechnology and Bioengineering, Universidad de Chile Santiago, Chile
| | - Vitalia Henríquez
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso Valparaiso, Chile
| | - Stephen P Mayfield
- Division of Biological Sciences, California Center for Algae Biotechnology, University of California, San Diego La Jolla, CA, USA
| |
Collapse
|
24
|
Schierenbeck L, Ries D, Rogge K, Grewe S, Weisshaar B, Kruse O. Fast forward genetics to identify mutations causing a high light tolerant phenotype in Chlamydomonas reinhardtii by whole-genome-sequencing. BMC Genomics 2015; 16:57. [PMID: 25730202 PMCID: PMC4336690 DOI: 10.1186/s12864-015-1232-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 01/12/2015] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND High light tolerance of microalgae is a desired phenotype for efficient cultivation in large scale production systems under fluctuating outdoor conditions. Outdoor cultivation requires the use of either wild-type or non-GMO derived mutant strains due to safety concerns. The identification and molecular characterization of such mutants derived from untagged forward genetics approaches was limited previously by the tedious and time-consuming methods involving techniques such as classical meiotic mapping. The combination of mapping with next generation sequencing technologies offers alternative strategies to identify genes involved in high light adaptation in untagged mutants. RESULTS We used the model alga Chlamydomonas reinhardtii in a non-GMO mutation strategy without any preceding crossing step or pooled progeny to identify genes involved in the regulatory processes of high light adaptation. To generate high light tolerant mutants, wildtype cells were mutagenized only to a low extent, followed by a stringent selection. We performed whole-genome sequencing of two independent mutants hit1 and hit2 and the parental wildtype. The availability of a reference genome sequence and the removal of shared bakground variants between the wildtype strain and each mutant, enabled us to identify two single nucleotide polymorphisms within the same gene Cre02.g085050, hereafter called LRS1 (putative Light Response Signaling protein 1). These two independent single amino acid exchanges are both located in the putative WD40 propeller domain of the corresponding protein LRS1. Both mutants exhibited an increased rate of non-photochemical-quenching (NPQ) and an improved resistance against chemically induced reactive oxygen species. In silico analyses revealed homology of LRS1 to the photoregulatory protein COP1 in plants. CONCLUSIONS In this work we identified the nuclear encoded gene LRS1 as an essential factor for high light adaptation in C. reinhardtii. The causative random mutation within this gene was identified by a rapid and efficient method, avoiding any preceding crossing step, meiotic mapping, or pooled progeny. Our results open up new insights into mechanisms of high light adaptation in microalgae and at the same time provide a simplified strategy for non-GMO forward genetics, a crucial precondition that could result in the identification of key factors for economically relevant biological processes within algae.
Collapse
Affiliation(s)
- Lisa Schierenbeck
- />Department of Biology/Center for Biotechnology, Algae Biotechnology and Bioenergy, Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - David Ries
- />Department of Biology/Center for Biotechnology, Genome Research, Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Kristin Rogge
- />Department of Biology/Center for Biotechnology, Algae Biotechnology and Bioenergy, Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Sabrina Grewe
- />Department of Biology/Center for Biotechnology, Algae Biotechnology and Bioenergy, Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Bernd Weisshaar
- />Department of Biology/Center for Biotechnology, Genome Research, Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Olaf Kruse
- />Department of Biology/Center for Biotechnology, Algae Biotechnology and Bioenergy, Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany
| |
Collapse
|
25
|
Hayes CJ, Burgess DR, Manion JA. Combustion Pathways of Biofuel Model Compounds. ADVANCES IN PHYSICAL ORGANIC CHEMISTRY 2015. [DOI: 10.1016/bs.apoc.2015.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Perin G, Bellan A, Segalla A, Meneghesso A, Alboresi A, Morosinotto T. Generation of random mutants to improve light-use efficiency of Nannochloropsis gaditana cultures for biofuel production. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:161. [PMID: 26413160 PMCID: PMC4583171 DOI: 10.1186/s13068-015-0337-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/09/2015] [Indexed: 05/02/2023]
Abstract
BACKGROUND The productivity of an algal culture depends on how efficiently it converts sunlight into biomass and lipids. Wild-type algae in their natural environment evolved to compete for light energy and maximize individual cell growth; however, in a photobioreactor, global productivity should be maximized. Improving light use efficiency is one of the primary aims of algae biotechnological research, and genetic engineering can play a major role in attaining this goal. RESULTS In this work, we generated a collection of Nannochloropsis gaditana mutant strains and screened them for alterations in the photosynthetic apparatus. The selected mutant strains exhibited diverse phenotypes, some of which are potentially beneficial under the specific artificial conditions of a photobioreactor. Particular attention was given to strains showing reduced cellular pigment contents, and further characterization revealed that some of the selected strains exhibited improved photosynthetic activity; in at least one case, this trait corresponded to improved biomass productivity in lab-scale cultures. CONCLUSIONS This work demonstrates that genetic modification of N. gaditana has the potential to generate strains with improved biomass productivity when cultivated under the artificial conditions of a photobioreactor.
Collapse
Affiliation(s)
- Giorgio Perin
- />Dipartimento di Biologia, Università di Padova, Via U. Bassi 58/B, 35121 Padua, Italy
| | - Alessandra Bellan
- />Dipartimento di Biologia, Università di Padova, Via U. Bassi 58/B, 35121 Padua, Italy
- />Centro studi di economia e tecnica dell’energia Giorgio Levi Cases, Università di Padova, Padua, Italy
| | - Anna Segalla
- />Dipartimento di Biologia, Università di Padova, Via U. Bassi 58/B, 35121 Padua, Italy
| | - Andrea Meneghesso
- />Dipartimento di Biologia, Università di Padova, Via U. Bassi 58/B, 35121 Padua, Italy
| | - Alessandro Alboresi
- />Dipartimento di Biologia, Università di Padova, Via U. Bassi 58/B, 35121 Padua, Italy
| | - Tomas Morosinotto
- />Dipartimento di Biologia, Università di Padova, Via U. Bassi 58/B, 35121 Padua, Italy
| |
Collapse
|