1
|
Hunt AC, Rasor BJ, Seki K, Ekas HM, Warfel KF, Karim AS, Jewett MC. Cell-Free Gene Expression: Methods and Applications. Chem Rev 2024. [PMID: 39700225 DOI: 10.1021/acs.chemrev.4c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Cell-free gene expression (CFE) systems empower synthetic biologists to build biological molecules and processes outside of living intact cells. The foundational principle is that precise, complex biomolecular transformations can be conducted in purified enzyme or crude cell lysate systems. This concept circumvents mechanisms that have evolved to facilitate species survival, bypasses limitations on molecular transport across the cell wall, and provides a significant departure from traditional, cell-based processes that rely on microscopic cellular "reactors." In addition, cell-free systems are inherently distributable through freeze-drying, which allows simple distribution before rehydration at the point-of-use. Furthermore, as cell-free systems are nonliving, they provide built-in safeguards for biocontainment without the constraints attendant on genetically modified organisms. These features have led to a significant increase in the development and use of CFE systems over the past two decades. Here, we discuss recent advances in CFE systems and highlight how they are transforming efforts to build cells, control genetic networks, and manufacture biobased products.
Collapse
Affiliation(s)
- Andrew C Hunt
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Blake J Rasor
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Kosuke Seki
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Holly M Ekas
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Katherine F Warfel
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty S Karim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, United States
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
2
|
Ekas H, Wang B, Silverman AD, Lucks JB, Karim AS, Jewett MC. An Automated Cell-Free Workflow for Transcription Factor Engineering. ACS Synth Biol 2024; 13:3389-3399. [PMID: 39373325 PMCID: PMC11494693 DOI: 10.1021/acssynbio.4c00471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/08/2024]
Abstract
The design and optimization of metabolic pathways, genetic systems, and engineered proteins rely on high-throughput assays to streamline design-build-test-learn cycles. However, assay development is a time-consuming and laborious process. Here, we create a generalizable approach for the tailored optimization of automated cell-free gene expression (CFE)-based workflows, which offers distinct advantages over in vivo assays in reaction flexibility, control, and time to data. Centered around designing highly accurate and precise transfers on the Echo Acoustic Liquid Handler, we introduce pilot assays and validation strategies for each stage of protocol development. We then demonstrate the efficacy of our platform by engineering transcription factor-based biosensors. As a model, we rapidly generate and assay libraries of 127 MerR and 134 CadR transcription factor variants in 3682 unique CFE reactions in less than 48 h to improve limit of detection, selectivity, and dynamic range for mercury and cadmium detection. This was achieved by assessing a panel of ligand conditions for sensitivity (to 0.1, 1, 10 μM Hg and 0, 1, 10, 100 μM Cd for MerR and CadR, respectively) and selectivity (against Ag, As, Cd, Co, Cu, Hg, Ni, Pb, and Zn). We anticipate that our Echo-based, cell-free approach can be used to accelerate multiple design workflows in synthetic biology.
Collapse
Affiliation(s)
- Holly
M. Ekas
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Brenda Wang
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Adam D. Silverman
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Julius B. Lucks
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Engineering Sustainability and Resilience, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty S. Karim
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Robert
H. Lurie Comprehensive Cancer Center, Northwestern
University, Chicago, Illinois 60611, United States
- Simpson Querrey
Institute, Northwestern University, Chicago, Illinois 60611, United States
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
3
|
Dickson CF, Hertel S, Tuckwell AJ, Li N, Ruan J, Al-Izzi SC, Ariotti N, Sierecki E, Gambin Y, Morris RG, Towers GJ, Böcking T, Jacques DA. The HIV capsid mimics karyopherin engagement of FG-nucleoporins. Nature 2024; 626:836-842. [PMID: 38267582 PMCID: PMC10881392 DOI: 10.1038/s41586-023-06969-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024]
Abstract
HIV can infect non-dividing cells because the viral capsid can overcome the selective barrier of the nuclear pore complex and deliver the genome directly into the nucleus1,2. Remarkably, the intact HIV capsid is more than 1,000 times larger than the size limit prescribed by the diffusion barrier of the nuclear pore3. This barrier in the central channel of the nuclear pore is composed of intrinsically disordered nucleoporin domains enriched in phenylalanine-glycine (FG) dipeptides. Through multivalent FG interactions, cellular karyopherins and their bound cargoes solubilize in this phase to drive nucleocytoplasmic transport4. By performing an in vitro dissection of the nuclear pore complex, we show that a pocket on the surface of the HIV capsid similarly interacts with FG motifs from multiple nucleoporins and that this interaction licences capsids to penetrate FG-nucleoporin condensates. This karyopherin mimicry model addresses a key conceptual challenge for the role of the HIV capsid in nuclear entry and offers an explanation as to how an exogenous entity much larger than any known cellular cargo may be able to non-destructively breach the nuclear envelope.
Collapse
Affiliation(s)
- C F Dickson
- Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - S Hertel
- Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - A J Tuckwell
- Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - N Li
- Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - J Ruan
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - S C Al-Izzi
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
- School of Physics, University of New South Wales, Sydney, New South Wales, Australia
| | - N Ariotti
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - E Sierecki
- Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Y Gambin
- Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - R G Morris
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
- School of Physics, University of New South Wales, Sydney, New South Wales, Australia
| | - G J Towers
- Infection and Immunity, University College London, London, UK
| | - T Böcking
- Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - D A Jacques
- Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia.
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
4
|
Moradi S, Wu Y, Walden P, Cui Z, Johnston WA, Petrov D, Alexandrov K. In Vitro Reconstitution and Analysis of SARS-CoV-2/Host Protein-Protein Interactions. ACS OMEGA 2023; 8:25009-25019. [PMID: 37483225 PMCID: PMC10357528 DOI: 10.1021/acsomega.3c01625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/23/2023] [Indexed: 07/25/2023]
Abstract
The emergence of viral threats such as Ebola, ZIKA, and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) requires a rapid and efficient approach for elucidating mechanisms of pathogenesis and development of therapeutics. In this context, cell-free protein synthesis (CFPS) holds a promise to resolve the bottlenecks of multiplexed protein production and interaction analysis among host and pathogen proteins. Here, we applied a eukaryotic CFPS system based on Leishmania tarentolae extract (LTE) protein expression in combination with AlphaLISA proximity-based protein interaction technology to identify intraviral and viral-human protein interactions of SARS-CoV-2 virus that can potentially be targeted by the existing or novel antiviral therapeutics. We produced and tested 54 putative human-viral protein pairs in vitro and identified 45 direct binary protein interactions. As a casing example of the assay's suitability for drug development applications, we analyzed the effect of a putative biologic on the human angiotensin-converting enzyme 2/receptor-binding domain (hACE2/RBD) interaction. This suggests that the presented pathogen characterization platform can facilitate the development of new therapeutic agents.
Collapse
Affiliation(s)
- Shayli
Varasteh Moradi
- CSIRO-QUT
Synthetic Biology Alliance, ARC Centre of Excellence in Synthetic
Biology, Centre for Agriculture and the Bioeconomy, Centre for Genomics
and Personalised Health, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Yue Wu
- CSIRO-QUT
Synthetic Biology Alliance, ARC Centre of Excellence in Synthetic
Biology, Centre for Agriculture and the Bioeconomy, Centre for Genomics
and Personalised Health, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Patricia Walden
- CSIRO-QUT
Synthetic Biology Alliance, ARC Centre of Excellence in Synthetic
Biology, Centre for Agriculture and the Bioeconomy, Centre for Genomics
and Personalised Health, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Zhenling Cui
- CSIRO-QUT
Synthetic Biology Alliance, ARC Centre of Excellence in Synthetic
Biology, Centre for Agriculture and the Bioeconomy, Centre for Genomics
and Personalised Health, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Wayne A. Johnston
- CSIRO-QUT
Synthetic Biology Alliance, ARC Centre of Excellence in Synthetic
Biology, Centre for Agriculture and the Bioeconomy, Centre for Genomics
and Personalised Health, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Dmitri Petrov
- Department
of Biology, Stanford University, Stanford, California 94305-5020, United
States
| | - Kirill Alexandrov
- CSIRO-QUT
Synthetic Biology Alliance, ARC Centre of Excellence in Synthetic
Biology, Centre for Agriculture and the Bioeconomy, Centre for Genomics
and Personalised Health, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| |
Collapse
|
5
|
Ergun Ayva C, Fiorito MM, Guo Z, Edwardraja S, Kaczmarski JA, Gagoski D, Walden P, Johnston WA, Jackson CJ, Nebl T, Alexandrov K. Exploring Performance Parameters of Artificial Allosteric Protein Switches. J Mol Biol 2022; 434:167678. [PMID: 35709893 DOI: 10.1016/j.jmb.2022.167678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 10/18/2022]
Abstract
Biological information processing networks rely on allosteric protein switches that dynamically interconvert biological signals. Construction of their artificial analogues is a central goal of synthetic biology and bioengineering. Receptor domain insertion is one of the leading methods for constructing chimeric protein switches. Here we present an in vitro expression-based platform for the analysis of chimeric protein libraries for which traditional cell survival or cytometric high throughput assays are not applicable. We utilise this platform to screen a focused library of chimeras between PQQ-glucose dehydrogenase and calmodulin. Using this approach, we identified 50 chimeras (approximately 23% of the library) that were activated by calmodulin-binding peptides. We analysed performance parameters of the active chimeras and demonstrated that their dynamic range and response times are anticorrelated, pointing to the existence of an inherent thermodynamic trade-off. We show that the structure of the ligand peptide affects both the response and activation kinetics of the biosensors suggesting that the structure of a ligand:receptor complex can influence the chimera's activation pathway. In order to understand the extent of structural changes in the reporter protein induced by the receptor domains, we have analysed one of the chimeric molecules by CD spectroscopy and hydrogen-deuterium exchange mass spectrometry. We concluded that subtle ligand-induced changes in the receptor domain propagated into the GDH domain and affected residues important for substrate and cofactor binding. Finally, we used one of the identified chimeras to construct a two-component rapamycin biosensor and demonstrated that core switch optimisation translated into improved biosensor performance.
Collapse
Affiliation(s)
- Cagla Ergun Ayva
- ARC Centre of Excellence in Synthetic Biology, Australia; Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD 4001, Australia; School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Maria M Fiorito
- ARC Centre of Excellence in Synthetic Biology, Australia; Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD 4001, Australia; School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Zhong Guo
- ARC Centre of Excellence in Synthetic Biology, Australia; Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD 4001, Australia; School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Selvakumar Edwardraja
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Joe A Kaczmarski
- ARC Centre of Excellence in Synthetic Biology, Australia; Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Dejan Gagoski
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Patricia Walden
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD 4001, Australia; School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Wayne A Johnston
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD 4001, Australia; School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Colin J Jackson
- ARC Centre of Excellence in Synthetic Biology, Australia; Research School of Biology, Australian National University, Canberra, ACT 2601, Australia; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia; Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, ACT 2601, Australia. https://twitter.com/Jackson_Lab
| | - Tom Nebl
- Biology Group, Biomedical Manufacturing Program, CSIRO, Bayview Ave/Research Way, Clayton, VIC 3168, Australia
| | - Kirill Alexandrov
- ARC Centre of Excellence in Synthetic Biology, Australia; Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD 4001, Australia; School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD 4001, Australia; CSIRO-QUT Synthetic Biology Alliance, Brisbane, QLD 4001, Australia; Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD 4001, Australia.
| |
Collapse
|
6
|
Seebauer CT, Graus MS, Huang L, McCann AJ, Wylie-Sears J, Fontaine FR, Karnezis T, Zurakowski D, Staffa SJ, Meunier FA, Mulliken JB, Bischoff J, Francois M. Non-β-blocker enantiomers of propranolol and atenolol inhibit vasculogenesis in infantile hemangioma. J Clin Invest 2021; 132:151109. [PMID: 34874911 PMCID: PMC8803322 DOI: 10.1172/jci151109] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 12/02/2021] [Indexed: 12/02/2022] Open
Abstract
Propranolol and atenolol, current therapies for problematic infantile hemangioma (IH), are composed of R(+) and S(–) enantiomers: the R(+) enantiomer is largely devoid of beta blocker activity. We investigated the effect of R(+) enantiomers of propranolol and atenolol on the formation of IH-like blood vessels from hemangioma stem cells (HemSCs) in a murine xenograft model. Both R(+) enantiomers inhibited HemSC vessel formation in vivo. In vitro, similar to R(+) propranolol, both atenolol and its R(+) enantiomer inhibited HemSC to endothelial cell differentiation. As our previous work implicated the transcription factor sex-determining region Y (SRY) box transcription factor 18 (SOX18) in propranolol-mediated inhibition of HemSC to endothelial differentiation, we tested in parallel a known SOX18 small-molecule inhibitor (Sm4) and show that this compound inhibited HemSC vessel formation in vivo with efficacy similar to that seen with the R(+) enantiomers. We next examined how R(+) propranolol alters SOX18 transcriptional activity. Using a suite of biochemical, biophysical, and quantitative molecular imaging assays, we show that R(+) propranolol directly interfered with SOX18 target gene trans-activation, disrupted SOX18-chromatin binding dynamics, and reduced SOX18 dimer formation. We propose that the R(+) enantiomers of widely used beta blockers could be repurposed to increase the efficiency of current IH treatment and lower adverse associated side effects.
Collapse
Affiliation(s)
- Caroline T Seebauer
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, United States of America
| | - Matthew S Graus
- David Richmond Laboratory for Cardiovascular Development, University of Sydney, Sydney, Australia
| | - Lan Huang
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, United States of America
| | - Alex J McCann
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Jill Wylie-Sears
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, United States of America
| | - Frank R Fontaine
- Gertrude Biomedical, Gertrude Biomedical Pty Ltd, Melbourne, Australia
| | - Tara Karnezis
- Gertrude Biomedical, Gertrude Biomedical Pty Ltd, Melbourne, Australia
| | - David Zurakowski
- Department of Anesthesiology, Boston Children's Hospital and Harvard Medical School, Boston, United States of America
| | - Steven J Staffa
- Department of Anesthesiology, Boston Children's Hospital and Harvard Medical School, Boston, United States of America
| | - Frédéric A Meunier
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - John B Mulliken
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, United States of America
| | - Joyce Bischoff
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, United States of America
| | - Mathias Francois
- David Richmond Laboratory for Cardiovascular Development, University of Sydney, Sydney, Australia
| |
Collapse
|
7
|
Leitão ADG, Rudolffi-Soto P, Chappard A, Bhumkar A, Lau D, Hunter DJB, Gambin Y, Sierecki E. Selectivity of Lewy body protein interactions along the aggregation pathway of α-synuclein. Commun Biol 2021; 4:1124. [PMID: 34556785 PMCID: PMC8460662 DOI: 10.1038/s42003-021-02624-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 09/01/2021] [Indexed: 02/08/2023] Open
Abstract
The aggregation of alpha-synuclein (α-SYN) follows a cascade of oligomeric, prefibrillar and fibrillar forms, culminating in the formation of Lewy Bodies (LB), the pathological hallmarks of Parkinson's Disease. Although LB contain over 70 proteins, the potential for interactions along the aggregation pathway of α-SYN is unknown. Here we propose a map of interactions of 65 proteins against different species of α-SYN. We measured binding to monomeric α-SYN using AlphaScreen, a sensitive nano-bead luminescence assay for detection of protein interactions. To access oligomeric species, we used the pathological mutants of α-SYN (A30P, G51D and A53T) which form oligomers with distinct properties. Finally, we generated amyloid fibrils from recombinant α-SYN. Binding to oligomers and fibrils was measured by two-color coincidence detection (TCCD) on a single molecule spectroscopy setup. Overall, we demonstrate that LB components are recruited to specific steps in the aggregation of α-SYN, uncovering future targets to modulate aggregation in synucleinopathies.
Collapse
Affiliation(s)
- André D G Leitão
- EMBL Australia Node in Single Molecule Science and School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Paulina Rudolffi-Soto
- EMBL Australia Node in Single Molecule Science and School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Alexandre Chappard
- EMBL Australia Node in Single Molecule Science and School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia
- School of Chemistry, The University of Edinburgh, Edinburgh, UK
| | - Akshay Bhumkar
- EMBL Australia Node in Single Molecule Science and School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia
- Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Derrick Lau
- EMBL Australia Node in Single Molecule Science and School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Dominic J B Hunter
- EMBL Australia Node in Single Molecule Science and School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Yann Gambin
- EMBL Australia Node in Single Molecule Science and School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia.
| | - Emma Sierecki
- EMBL Australia Node in Single Molecule Science and School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
8
|
Leishmania tarentolae cell-free based approach for rapid anitbody-antigen interaction analysis. Methods Enzymol 2021; 659:391-409. [PMID: 34752297 DOI: 10.1016/bs.mie.2021.06.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Rapid techniques for producing high-quality recombinant proteins are essential for fast protein functional analysis, as well as various screening applications. Cell-free protein expression is an enabling tool in protein research capable of producing high-quality proteins within a few hours. In this chapter, we describe the use of a Leishmania tarentolae-based cell-free expression system to produce antibody fragments coupled to the analysis of their interaction with their ligands. Interaction analysis is performed using the scalable and sensitive AlphaLISA bead proximity assay. The method presented in this chapter offers a rapid and inexpensive approach for production of putative interacting protein pairs, as well as a multiplexable approach for their rapid interaction analysis.
Collapse
|
9
|
Clabbers MTB, Holmes S, Muusse TW, Vajjhala PR, Thygesen SJ, Malde AK, Hunter DJB, Croll TI, Flueckiger L, Nanson JD, Rahaman MH, Aquila A, Hunter MS, Liang M, Yoon CH, Zhao J, Zatsepin NA, Abbey B, Sierecki E, Gambin Y, Stacey KJ, Darmanin C, Kobe B, Xu H, Ve T. MyD88 TIR domain higher-order assembly interactions revealed by microcrystal electron diffraction and serial femtosecond crystallography. Nat Commun 2021; 12:2578. [PMID: 33972532 PMCID: PMC8110528 DOI: 10.1038/s41467-021-22590-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/18/2021] [Indexed: 02/03/2023] Open
Abstract
MyD88 and MAL are Toll-like receptor (TLR) adaptors that signal to induce pro-inflammatory cytokine production. We previously observed that the TIR domain of MAL (MALTIR) forms filaments in vitro and induces formation of crystalline higher-order assemblies of the MyD88 TIR domain (MyD88TIR). These crystals are too small for conventional X-ray crystallography, but are ideally suited to structure determination by microcrystal electron diffraction (MicroED) and serial femtosecond crystallography (SFX). Here, we present MicroED and SFX structures of the MyD88TIR assembly, which reveal a two-stranded higher-order assembly arrangement of TIR domains analogous to that seen previously for MALTIR. We demonstrate via mutagenesis that the MyD88TIR assembly interfaces are critical for TLR4 signaling in vivo, and we show that MAL promotes unidirectional assembly of MyD88TIR. Collectively, our studies provide structural and mechanistic insight into TLR signal transduction and allow a direct comparison of the MicroED and SFX techniques.
Collapse
Affiliation(s)
- Max T B Clabbers
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, California, USA
| | - Susannah Holmes
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Timothy W Muusse
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Parimala R Vajjhala
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Sara J Thygesen
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Alpeshkumar K Malde
- Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| | - Dominic J B Hunter
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Kensington, New South Wales, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Tristan I Croll
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Leonie Flueckiger
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Jeffrey D Nanson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Md Habibur Rahaman
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Andrew Aquila
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Mark S Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Mengning Liang
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Chun Hong Yoon
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Jingjing Zhao
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Nadia A Zatsepin
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Brian Abbey
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Emma Sierecki
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Kensington, New South Wales, Australia
| | - Yann Gambin
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Kensington, New South Wales, Australia
| | - Katryn J Stacey
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Connie Darmanin
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia.
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia.
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia.
| | - Hongyi Xu
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden.
| | - Thomas Ve
- Institute for Glycomics, Griffith University, Southport, Queensland, Australia.
| |
Collapse
|
10
|
Rae J, Ferguson C, Ariotti N, Webb RI, Cheng HH, Mead JL, Riches JD, Hunter DJ, Martel N, Baltos J, Christopoulos A, Bryce NS, Cagigas ML, Fonseka S, Sayre ME, Hardeman EC, Gunning PW, Gambin Y, Hall TE, Parton RG. A robust method for particulate detection of a genetic tag for 3D electron microscopy. eLife 2021; 10:64630. [PMID: 33904409 PMCID: PMC8104959 DOI: 10.7554/elife.64630] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/26/2021] [Indexed: 12/20/2022] Open
Abstract
Genetic tags allow rapid localization of tagged proteins in cells and tissues. APEX, an ascorbate peroxidase, has proven to be one of the most versatile and robust genetic tags for ultrastructural localization by electron microscopy (EM). Here, we describe a simple method, APEX-Gold, which converts the diffuse oxidized diaminobenzidine reaction product of APEX into a silver/gold particle akin to that used for immunogold labelling. The method increases the signal-to-noise ratio for EM detection, providing unambiguous detection of the tagged protein, and creates a readily quantifiable particulate signal. We demonstrate the wide applicability of this method for detection of membrane proteins, cytoplasmic proteins, and cytoskeletal proteins. The method can be combined with different EM techniques including fast freezing and freeze substitution, focussed ion beam scanning EM, and electron tomography. Quantitation of expressed APEX-fusion proteins is achievable using membrane vesicles generated by a cell-free expression system. These membrane vesicles possess a defined quantum of signal, which can act as an internal standard for determination of the absolute density of expressed APEX-fusion proteins. Detection of fusion proteins expressed at low levels in cells from CRISPR-edited mice demonstrates the high sensitivity of the APEX-Gold method.
Collapse
Affiliation(s)
- James Rae
- The University of Queensland, Institute for Molecular Bioscience, Queensland, Australia
| | - Charles Ferguson
- The University of Queensland, Institute for Molecular Bioscience, Queensland, Australia
| | - Nicholas Ariotti
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, Australia.,School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Richard I Webb
- The University of Queensland, Centre for Microscopy and Microanalysis, Queensland, Australia
| | - Han-Hao Cheng
- The University of Queensland, Centre for Microscopy and Microanalysis, Queensland, Australia
| | - James L Mead
- The University of Queensland, Centre for Microscopy and Microanalysis, Queensland, Australia.,Division Microrobotics and Control Engineering, Department of Computing Science, University of Oldenburg, Oldenburg, Germany
| | - James D Riches
- Queensland University of Technology, Queensland, Australia
| | - Dominic Jb Hunter
- The University of Queensland, Institute for Molecular Bioscience, Queensland, Australia.,EMBL Australia Node for Single Molecule Sciences, University of New South Wales, Sydney, Australia
| | - Nick Martel
- The University of Queensland, Institute for Molecular Bioscience, Queensland, Australia
| | - Joanne Baltos
- Monash Institute of Pharmaceutical Sciences, Monash University, Victoria, Australia
| | - Arthur Christopoulos
- Monash Institute of Pharmaceutical Sciences, Monash University, Victoria, Australia
| | - Nicole S Bryce
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | | | - Sachini Fonseka
- The University of Queensland, Institute for Molecular Bioscience, Queensland, Australia
| | - Marcel E Sayre
- The University of Queensland, Centre for Microscopy and Microanalysis, Queensland, Australia
| | - Edna C Hardeman
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Peter W Gunning
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Yann Gambin
- EMBL Australia Node for Single Molecule Sciences, University of New South Wales, Sydney, Australia
| | - Thomas E Hall
- The University of Queensland, Institute for Molecular Bioscience, Queensland, Australia
| | - Robert G Parton
- The University of Queensland, Institute for Molecular Bioscience, Queensland, Australia.,The University of Queensland, Centre for Microscopy and Microanalysis, Queensland, Australia
| |
Collapse
|
11
|
Fogeron ML, Lecoq L, Cole L, Harbers M, Böckmann A. Easy Synthesis of Complex Biomolecular Assemblies: Wheat Germ Cell-Free Protein Expression in Structural Biology. Front Mol Biosci 2021; 8:639587. [PMID: 33842544 PMCID: PMC8027086 DOI: 10.3389/fmolb.2021.639587] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/20/2021] [Indexed: 12/18/2022] Open
Abstract
Cell-free protein synthesis (CFPS) systems are gaining more importance as universal tools for basic research, applied sciences, and product development with new technologies emerging for their application. Huge progress was made in the field of synthetic biology using CFPS to develop new proteins for technical applications and therapy. Out of the available CFPS systems, wheat germ cell-free protein synthesis (WG-CFPS) merges the highest yields with the use of a eukaryotic ribosome, making it an excellent approach for the synthesis of complex eukaryotic proteins including, for example, protein complexes and membrane proteins. Separating the translation reaction from other cellular processes, CFPS offers a flexible means to adapt translation reactions to protein needs. There is a large demand for such potent, easy-to-use, rapid protein expression systems, which are optimally serving protein requirements to drive biochemical and structural biology research. We summarize here a general workflow for a wheat germ system providing examples from the literature, as well as applications used for our own studies in structural biology. With this review, we want to highlight the tremendous potential of the rapidly evolving and highly versatile CFPS systems, making them more widely used as common tools to recombinantly prepare particularly challenging recombinant eukaryotic proteins.
Collapse
Affiliation(s)
- Marie-Laure Fogeron
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, Lyon, France
| | - Lauriane Lecoq
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, Lyon, France
| | - Laura Cole
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, Lyon, France
| | - Matthias Harbers
- CellFree Sciences, Yokohama, Japan
- RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, Lyon, France
| |
Collapse
|
12
|
Das Gupta K, Shakespear MR, Curson JEB, Murthy AMV, Iyer A, Hodson MP, Ramnath D, Tillu VA, von Pein JB, Reid RC, Tunny K, Hohenhaus DM, Moradi SV, Kelly GM, Kobayashi T, Gunter JH, Stevenson AJ, Xu W, Luo L, Jones A, Johnston WA, Blumenthal A, Alexandrov K, Collins BM, Stow JL, Fairlie DP, Sweet MJ. Class IIa Histone Deacetylases Drive Toll-like Receptor-Inducible Glycolysis and Macrophage Inflammatory Responses via Pyruvate Kinase M2. Cell Rep 2021; 30:2712-2728.e8. [PMID: 32101747 DOI: 10.1016/j.celrep.2020.02.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 09/30/2019] [Accepted: 02/03/2020] [Indexed: 12/14/2022] Open
Abstract
Histone deacetylases (HDACs) drive innate immune cell-mediated inflammation. Here we identify class IIa HDACs as key molecular links between Toll-like receptor (TLR)-inducible aerobic glycolysis and macrophage inflammatory responses. A proteomic screen identified the glycolytic enzyme pyruvate kinase M isoform 2 (Pkm2) as a partner of proinflammatory Hdac7 in murine macrophages. Myeloid-specific Hdac7 overexpression in transgenic mice amplifies lipopolysaccharide (LPS)-inducible lactate and promotes a glycolysis-associated inflammatory signature. Conversely, pharmacological or genetic targeting of Hdac7 and other class IIa HDACs attenuates LPS-inducible glycolysis and accompanying inflammatory responses in macrophages. We show that an Hdac7-Pkm2 complex acts as an immunometabolism signaling hub, whereby Pkm2 deacetylation at lysine 433 licenses its proinflammatory functions. Disrupting this complex suppresses inflammatory responses in vitro and in vivo. Class IIa HDACs are thus pivotal intermediates connecting TLR-inducible glycolysis to inflammation via Pkm2.
Collapse
Affiliation(s)
- Kaustav Das Gupta
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland 4072, Australia; IMB Centre for Inflammation and Disease Research and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Melanie R Shakespear
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland 4072, Australia; IMB Centre for Inflammation and Disease Research and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - James E B Curson
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland 4072, Australia; IMB Centre for Inflammation and Disease Research and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ambika M V Murthy
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland 4072, Australia; IMB Centre for Inflammation and Disease Research and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Abishek Iyer
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland 4072, Australia; IMB Centre for Inflammation and Disease Research and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, IMB, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Mark P Hodson
- School of Pharmacy, The University of Queensland, Brisbane, Queensland 4072, Australia; Metabolomics Australia, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia; Victor Chang Cardiac Research Institute, Sydney, New South Wales 2010, Australia
| | - Divya Ramnath
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland 4072, Australia; IMB Centre for Inflammation and Disease Research and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Vikas A Tillu
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jessica B von Pein
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland 4072, Australia; IMB Centre for Inflammation and Disease Research and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Robert C Reid
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland 4072, Australia; IMB Centre for Inflammation and Disease Research and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, IMB, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Kathryn Tunny
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Daniel M Hohenhaus
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Shayli Varasteh Moradi
- CSIRO-QUT Synthetic Biology Alliance, Centre for Tropical Crops and Biocommodities, Queensland University of Technology (QUT), Gardens Point Campus, Brisbane, Queensland 4000, Australia
| | - Gregory M Kelly
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Takumi Kobayashi
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jennifer H Gunter
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Translational Research Institute, Queensland University of Technology (QUT), Brisbane, Queensland 4102, Australia
| | - Alexander J Stevenson
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Weijun Xu
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland 4072, Australia; IMB Centre for Inflammation and Disease Research and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, IMB, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Lin Luo
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland 4072, Australia; IMB Centre for Inflammation and Disease Research and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Alun Jones
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Wayne A Johnston
- CSIRO-QUT Synthetic Biology Alliance, Centre for Tropical Crops and Biocommodities, Queensland University of Technology (QUT), Gardens Point Campus, Brisbane, Queensland 4000, Australia
| | - Antje Blumenthal
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Kirill Alexandrov
- CSIRO-QUT Synthetic Biology Alliance, Centre for Tropical Crops and Biocommodities, Queensland University of Technology (QUT), Gardens Point Campus, Brisbane, Queensland 4000, Australia
| | - Brett M Collins
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jennifer L Stow
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland 4072, Australia; IMB Centre for Inflammation and Disease Research and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David P Fairlie
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland 4072, Australia; IMB Centre for Inflammation and Disease Research and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, IMB, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland 4072, Australia; IMB Centre for Inflammation and Disease Research and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
13
|
Lau D, Walsh JC, Dickson CF, Tuckwell A, Stear JH, Hunter DJB, Bhumkar A, Shah V, Turville SG, Sierecki E, Gambin Y, Böcking T, Jacques DA. Rapid HIV-1 Capsid Interaction Screening Using Fluorescence Fluctuation Spectroscopy. Anal Chem 2021; 93:3786-3793. [PMID: 33593049 DOI: 10.1021/acs.analchem.0c04250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The HIV capsid is a multifunctional protein capsule that mediates the delivery of the viral genetic material into the nucleus of the target cell. Host cell proteins bind to a number of repeating binding sites on the capsid to regulate steps in the replication cycle. Here, we develop a fluorescence fluctuation spectroscopy method using self-assembled capsid particles as the bait to screen for fluorescence-labeled capsid-binding analytes ("prey" molecules) in solution. The assay capitalizes on the property of the HIV capsid as a multivalent interaction platform, facilitating high sensitivity detection of multiple prey molecules that have accumulated onto capsids as spikes in fluorescence intensity traces. By using a scanning stage, we reduced the measurement time to 10 s without compromising on sensitivity, providing a rapid binding assay for screening libraries of potential capsid interactors. The assay can also identify interfaces for host molecule binding by using capsids with defects in known interaction interfaces. Two-color coincidence detection using the fluorescent capsid as the bait further allows the quantification of binding levels and determination of binding affinities. Overall, the assay provides new tools for the discovery and characterization of molecules used by the HIV capsid to orchestrate infection. The measurement principle can be extended for the development of sensitive interaction assays, utilizing natural or synthetic multivalent scaffolds as analyte-binding platforms.
Collapse
Affiliation(s)
- Derrick Lau
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - James C Walsh
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Claire F Dickson
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Andrew Tuckwell
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Jeffrey H Stear
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Dominic J B Hunter
- The Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Akshay Bhumkar
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Vaibhav Shah
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Stuart G Turville
- The Kirby Institute, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Emma Sierecki
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Yann Gambin
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Till Böcking
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - David A Jacques
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| |
Collapse
|
14
|
Varasteh Moradi S, Gagoski D, Mureev S, Walden P, McMahon KA, Parton RG, Johnston WA, Alexandrov K. Mapping Interactions among Cell-Free Expressed Zika Virus Proteins. J Proteome Res 2020; 19:1522-1532. [DOI: 10.1021/acs.jproteome.9b00771] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Shayli Varasteh Moradi
- CSIRO-QUT Synthetic Biology Alliance, Centre for Tropical Crops and Bio-commodities, Queensland University of Technology, Brisbane QLD 4001, Australia
| | - Dejan Gagoski
- Queensland Brain Institute, The University of Queensland, St Lucia, Brisbane QLD 4072, Australia
| | - Sergey Mureev
- CSIRO-QUT Synthetic Biology Alliance, Centre for Tropical Crops and Bio-commodities, Queensland University of Technology, Brisbane QLD 4001, Australia
| | - Patricia Walden
- CSIRO-QUT Synthetic Biology Alliance, Centre for Tropical Crops and Bio-commodities, Queensland University of Technology, Brisbane QLD 4001, Australia
| | - Kerrie-Ann McMahon
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane QLD 4072, Australia
| | - Robert G. Parton
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane QLD 4072, Australia
- Centre for Microscopy and Microanalysis, The University of Queensland, St Lucia, Brisbane QLD 4072, Australia
| | - Wayne A. Johnston
- CSIRO-QUT Synthetic Biology Alliance, Centre for Tropical Crops and Bio-commodities, Queensland University of Technology, Brisbane QLD 4001, Australia
| | - Kirill Alexandrov
- CSIRO-QUT Synthetic Biology Alliance, Centre for Tropical Crops and Bio-commodities, Queensland University of Technology, Brisbane QLD 4001, Australia
| |
Collapse
|
15
|
Brown JWP, Bauer A, Polinkovsky ME, Bhumkar A, Hunter DJB, Gaus K, Sierecki E, Gambin Y. Single-molecule detection on a portable 3D-printed microscope. Nat Commun 2019; 10:5662. [PMID: 31827096 PMCID: PMC6906517 DOI: 10.1038/s41467-019-13617-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 11/08/2019] [Indexed: 11/22/2022] Open
Abstract
Single-molecule assays have, by definition, the ultimate sensitivity and represent the next frontier in biological analysis and diagnostics. However, many of these powerful technologies require dedicated laboratories and trained personnel and have therefore remained research tools for specialists. Here, we present a single-molecule confocal system built from a 3D-printed scaffold, resulting in a compact, plug and play device called the AttoBright. This device performs single photon counting and fluorescence correlation spectroscopy (FCS) in a simple format and is widely applicable to the detection of single fluorophores, proteins, liposomes or bacteria. The power of single-molecule detection is demonstrated by detecting single α-synuclein amyloid fibrils, that are currently evaluated as biomarkers for Parkinson’s disease, with an improved sensitivity of >100,000-fold over bulk measurements. Single-molecule in vitro assays require dedicated confocal microscopes equipped with fluorescence correlation spectroscopy (FCS) modules. Here the authors present a compact, cheap and open-source 3D-printed confocal microscope for single photon counting and FCS measurements, and use it to detect α-synuclein aggregation.
Collapse
Affiliation(s)
- James W P Brown
- EMBL Australia Node in Single Molecule Science, and School of Medical Sciences, University of New South Wales, Sydney, 2052, NSW, Australia
| | - Arnaud Bauer
- EMBL Australia Node in Single Molecule Science, and School of Medical Sciences, University of New South Wales, Sydney, 2052, NSW, Australia
| | - Mark E Polinkovsky
- EMBL Australia Node in Single Molecule Science, and School of Medical Sciences, University of New South Wales, Sydney, 2052, NSW, Australia
| | - Akshay Bhumkar
- EMBL Australia Node in Single Molecule Science, and School of Medical Sciences, University of New South Wales, Sydney, 2052, NSW, Australia
| | - Dominic J B Hunter
- The Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Katharina Gaus
- EMBL Australia Node in Single Molecule Science, and School of Medical Sciences, University of New South Wales, Sydney, 2052, NSW, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, 2052, NSW, Australia
| | - Emma Sierecki
- EMBL Australia Node in Single Molecule Science, and School of Medical Sciences, University of New South Wales, Sydney, 2052, NSW, Australia.
| | - Yann Gambin
- EMBL Australia Node in Single Molecule Science, and School of Medical Sciences, University of New South Wales, Sydney, 2052, NSW, Australia.
| |
Collapse
|
16
|
Overman J, Fontaine F, Wylie-Sears J, Moustaqil M, Huang L, Meurer M, Chiang IK, Lesieur E, Patel J, Zuegg J, Pasquier E, Sierecki E, Gambin Y, Hamdan M, Khosrotehrani K, Andelfinger G, Bischoff J, Francois M. R-propranolol is a small molecule inhibitor of the SOX18 transcription factor in a rare vascular syndrome and hemangioma. eLife 2019; 8:43026. [PMID: 31358114 PMCID: PMC6667216 DOI: 10.7554/elife.43026] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 05/15/2019] [Indexed: 12/15/2022] Open
Abstract
Propranolol is an approved non-selective β-adrenergic blocker that is first line therapy for infantile hemangioma. Despite the clinical benefit of propranolol therapy in hemangioma, the mechanistic understanding of what drives this outcome is limited. Here, we report successful treatment of pericardial edema with propranolol in a patient with Hypotrichosis-Lymphedema-Telangiectasia and Renal (HLTRS) syndrome, caused by a mutation in SOX18. Using a mouse pre-clinical model of HLTRS, we show that propranolol treatment rescues its corneal neo-vascularisation phenotype. Dissection of the molecular mechanism identified the R(+)-propranolol enantiomer as a small molecule inhibitor of the SOX18 transcription factor, independent of any anti-adrenergic effect. Lastly, in a patient-derived in vitro model of infantile hemangioma and pre-clinical model of HLTRS we demonstrate the therapeutic potential of the R(+) enantiomer. Our work emphasizes the importance of SOX18 etiological role in vascular neoplasms, and suggests R(+)-propranolol repurposing to numerous indications ranging from vascular diseases to metastatic cancer.
Collapse
Affiliation(s)
- Jeroen Overman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Frank Fontaine
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Jill Wylie-Sears
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, United States
| | - Mehdi Moustaqil
- Single Molecule Science, Lowy Cancer Research Centre, The University of New South Wales, Sydney, Australia
| | - Lan Huang
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, United States
| | - Marie Meurer
- Centre de Recherche en Cancérologie de Marseille (CRCM Marseille Cancer Research Centre), Inserm UMR1068, CNRS UMR7258, Aix-Marseille University UM105, Marseille, France
| | - Ivy Kim Chiang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Emmanuelle Lesieur
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Jatin Patel
- Translational Research Institute, Diamantina Institute, The University of Queensland, Brisbane, Australia
| | - Johannes Zuegg
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Eddy Pasquier
- Centre de Recherche en Cancérologie de Marseille (CRCM Marseille Cancer Research Centre), Inserm UMR1068, CNRS UMR7258, Aix-Marseille University UM105, Marseille, France
| | - Emma Sierecki
- Single Molecule Science, Lowy Cancer Research Centre, The University of New South Wales, Sydney, Australia
| | - Yann Gambin
- Single Molecule Science, Lowy Cancer Research Centre, The University of New South Wales, Sydney, Australia
| | | | - Kiarash Khosrotehrani
- Translational Research Institute, Diamantina Institute, The University of Queensland, Brisbane, Australia
| | - Gregor Andelfinger
- Department of Pediatrics, University of Montreal, Ste-Justine University Hospital Centre, Montréal, Canada
| | - Joyce Bischoff
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, United States
| | - Mathias Francois
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| |
Collapse
|
17
|
Moustaqil M, Fontaine F, Overman J, McCann A, Bailey TL, Rudolffi Soto P, Bhumkar A, Giles N, Hunter DJB, Gambin Y, Francois M, Sierecki E. Homodimerization regulates an endothelial specific signature of the SOX18 transcription factor. Nucleic Acids Res 2019; 46:11381-11395. [PMID: 30335167 PMCID: PMC6265484 DOI: 10.1093/nar/gky897] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 09/26/2018] [Indexed: 01/24/2023] Open
Abstract
During embryogenesis, vascular development relies on a handful of transcription factors that instruct cell fate in a distinct sub-population of the endothelium (1). The SOXF proteins that comprise SOX7, 17 and 18, are molecular switches modulating arterio-venous and lymphatic endothelial differentiation (2,3). Here, we show that, in the SOX-F family, only SOX18 has the ability to switch between a monomeric and a dimeric form. We characterized the SOX18 dimer in binding assays in vitro, and using a split-GFP reporter assay in a zebrafish model system in vivo. We show that SOX18 dimerization is driven by a novel motif located in the vicinity of the C-terminus of the DNA binding region. Insertion of this motif in a SOX7 monomer forced its assembly into a dimer. Genome-wide analysis of SOX18 binding locations on the chromatin revealed enrichment for a SOX dimer binding motif, correlating with genes with a strong endothelial signature. Using a SOX18 small molecule inhibitor that disrupts dimerization, we revealed that dimerization is important for transcription. Overall, we show that dimerization is a specific feature of SOX18 that enables the recruitment of key endothelial transcription factors, and refines the selectivity of the binding to discrete genomic locations assigned to endothelial specific genes.
Collapse
Affiliation(s)
- Mehdi Moustaqil
- EMBL Australia node in Single Molecule Science and School of Medical Sciences, The University of New South Wales, Sydney, NSW 2031, Australia
| | - Frank Fontaine
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jeroen Overman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Alex McCann
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Timothy L Bailey
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, NV 89557, USA
| | - Paulina Rudolffi Soto
- EMBL Australia node in Single Molecule Science and School of Medical Sciences, The University of New South Wales, Sydney, NSW 2031, Australia
| | - Akshay Bhumkar
- EMBL Australia node in Single Molecule Science and School of Medical Sciences, The University of New South Wales, Sydney, NSW 2031, Australia
| | - Nichole Giles
- EMBL Australia node in Single Molecule Science and School of Medical Sciences, The University of New South Wales, Sydney, NSW 2031, Australia
| | - Dominic J B Hunter
- EMBL Australia node in Single Molecule Science and School of Medical Sciences, The University of New South Wales, Sydney, NSW 2031, Australia.,Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yann Gambin
- EMBL Australia node in Single Molecule Science and School of Medical Sciences, The University of New South Wales, Sydney, NSW 2031, Australia
| | - Mathias Francois
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Emma Sierecki
- EMBL Australia node in Single Molecule Science and School of Medical Sciences, The University of New South Wales, Sydney, NSW 2031, Australia
| |
Collapse
|
18
|
Ortega C, Abreu C, Oppezzo P, Correa A. Overview of High-Throughput Cloning Methods for the Post-genomic Era. Methods Mol Biol 2019; 2025:3-32. [PMID: 31267446 DOI: 10.1007/978-1-4939-9624-7_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The advent of new DNA sequencing technologies leads to a dramatic increase in the number of available genome sequences and therefore of target genes with potential for functional analysis. The insertion of these sequences into proper expression vectors requires a simple an efficient cloning method. In addition, when expressing a target protein, quite often it is necessary to evaluate different DNA constructs to achieve a soluble and homogeneous expression of the target with satisfactory yields. The development of new molecular methods made possible the cloning of a huge number of DNA sequences in a high-throughput manner, necessary for meeting the increasing demands for soluble protein expression and characterization. In this chapter several molecular methods suitable for high-throughput cloning are reviewed.
Collapse
Affiliation(s)
- Claudia Ortega
- Recombinant Protein Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Cecilia Abreu
- Recombinant Protein Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Molecular, Cellular and Animal Technology Program, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Pablo Oppezzo
- Recombinant Protein Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Agustín Correa
- Recombinant Protein Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay.
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay.
| |
Collapse
|
19
|
O'Carroll A, Chauvin B, Brown JWP, Meagher A, Coyle J, Schill J, Bhumkhar A, Hunter DJB, Ve T, Kobe B, Sierecki E, Gambin Y. Pathological mutations differentially affect the self-assembly and polymerisation of the innate immune system signalling adaptor molecule MyD88. BMC Biol 2018; 16:149. [PMID: 30583727 PMCID: PMC6304784 DOI: 10.1186/s12915-018-0611-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/15/2018] [Indexed: 02/06/2023] Open
Abstract
Background Higher-order self-assembly of proteins, or “prion-like” polymerisation, is now emerging as a simple and robust mechanism for signal amplification, in particular within the innate immune system, where the recognition of pathogens or danger-associated molecular patterns needs to trigger a strong, binary response within cells. MyD88, an important adaptor protein downstream of TLRs, is one of the most recent candidates for involvement in signalling by higher order self-assembly. In this new light, we set out to re-interpret the role of polymerisation in MyD88-related diseases and study the impact of disease-associated point mutations L93P, R196C, and L252P/L265P at the molecular level. Results We first developed new in vitro strategies to characterise the behaviour of polymerising, full-length MyD88 at physiological levels. To this end, we used single-molecule fluorescence fluctuation spectroscopy coupled to a eukaryotic cell-free protein expression system. We were then able to explore the polymerisation propensity of full-length MyD88, at low protein concentration and without purification, and compare it to the behaviours of the isolated TIR domain and death domain that have been shown to have self-assembly properties on their own. These experiments demonstrate that the presence of both domains is required to cooperatively lead to efficient polymerisation of the protein. We then characterised three pathological mutants of MyD88. Conclusion We discovered that all mutations block the ability of MyD88 to polymerise fully. Interestingly, we show that, in contrast to L93P and R196C, L252P is a gain-of-function mutation, which allows the MyD88 mutant to form extremely stable oligomers, even at low nanomolar concentrations. Thus, our results shed new light on the digital “all-or-none” responses by the myddosomes and the behaviour of the oncogenic mutations of MyD88.
Collapse
Affiliation(s)
- Ailís O'Carroll
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Kensington, NSW, 2052, Australia
| | - Brieuc Chauvin
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Kensington, NSW, 2052, Australia
| | - James W P Brown
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Kensington, NSW, 2052, Australia
| | - Ava Meagher
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Kensington, NSW, 2052, Australia
| | - Joanne Coyle
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Kensington, NSW, 2052, Australia
| | - Jurgen Schill
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Kensington, NSW, 2052, Australia
| | - Akshay Bhumkhar
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Kensington, NSW, 2052, Australia
| | - Dominic J B Hunter
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Kensington, NSW, 2052, Australia.,Institute for Molecular Bioscience, University of Queensland, QLD, Brisbane, 4072, Australia
| | - Thomas Ve
- Institute for Glycomics, Griffith University, QLD, Southport, 4222, Australia.,School of Chemistry and Molecular Biosciences, and Australian Infectious Diseases Research Centre, University of Queensland, QLD, Brisbane, 4072, Australia
| | - Bostjan Kobe
- Institute for Molecular Bioscience, University of Queensland, QLD, Brisbane, 4072, Australia.,School of Chemistry and Molecular Biosciences, and Australian Infectious Diseases Research Centre, University of Queensland, QLD, Brisbane, 4072, Australia
| | - Emma Sierecki
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Kensington, NSW, 2052, Australia.
| | - Yann Gambin
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Kensington, NSW, 2052, Australia.
| |
Collapse
|
20
|
Hunter DJB, Bhumkar A, Giles N, Sierecki E, Gambin Y. Unexpected instabilities explain batch-to-batch variability in cell-free protein expression systems. Biotechnol Bioeng 2018; 115:1904-1914. [PMID: 29603735 DOI: 10.1002/bit.26604] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/22/2018] [Accepted: 03/26/2018] [Indexed: 01/09/2023]
Abstract
Cell-free methods of protein synthesis offer rapid access to expressed proteins. Though the amounts produced are generally only at a small scale, these are sufficient to perform protein-protein interaction assays and tests of enzymatic activity. As such they are valuable tools for the biochemistry and bioengineering community. However the most complex, eukaryotic cell-free systems are difficult to manufacture in house and can be prohibitively expensive to obtain from commercial sources. The Leishmania tarentolae system offers a relatively cheap alternative which is capable of producing difficult to express proteins, but which is simpler to produce in large scale. However, this system suffers from batch-to-batch variability, which has been accepted as a consequence of the complexity of the extracts. Here we show an unexpected origin for the variability observed and demonstrate that small variations in a single parameter can dramatically affect expression, such that minor pipetting errors can have major effects on yields. L. tarentolae cell-free lysate activity is shown to be more stable to changes in Mg2+ concentration at a lower ratio of feed solution to lysate in the reaction than typically used, and a higher Mg2+ optimum. These changes essentially eliminate batch-to-batch variability of L. tarentolae lysate activity and permit their full potential to be realized.
Collapse
Affiliation(s)
- Dominic J B Hunter
- EMBL Australia Node for Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, Australia.,Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Akshay Bhumkar
- EMBL Australia Node for Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Nichole Giles
- EMBL Australia Node for Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Emma Sierecki
- EMBL Australia Node for Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Yann Gambin
- EMBL Australia Node for Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
21
|
Fontaine FR, Goodall S, Prokop JW, Howard CB, Moustaqil M, Kumble S, Rasicci DT, Osborne GW, Gambin Y, Sierecki E, Jones ML, Zuegg J, Mahler S, Francois M. Functional domain analysis of SOX18 transcription factor using a single-chain variable fragment-based approach. MAbs 2018; 10:596-606. [PMID: 29648920 PMCID: PMC5972640 DOI: 10.1080/19420862.2018.1451288] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Antibodies are routinely used to study the activity of transcription factors, using various in vitro and in vivo approaches such as electrophoretic mobility shift assay, enzyme-linked immunosorbent assay, genome-wide method analysis coupled with next generation sequencing, or mass spectrometry. More recently, a new application for antibodies has emerged as crystallisation scaffolds for difficult to crystallise proteins, such as transcription factors. Only in a few rare cases, antibodies have been used to modulate the activity of transcription factors, and there is a real gap in our knowledge on how to efficiently design antibodies to interfere with transcription. The molecular function of transcription factors is underpinned by complex networks of protein-protein interaction and in theory, setting aside intra-cellular delivery challenges, developing antibody-based approaches to modulate transcription factor activity appears a viable option. Here, we demonstrate that antibodies or an antibody single-chain variable region fragments are powerful molecular tools to unravel complex protein-DNA and protein-protein binding mechanisms. In this study, we focus on the molecular mode of action of the transcription factor SOX18, a key modulator of endothelial cell fate during development, as well as an attractive target in certain pathophysiological conditions such as solid cancer metastasis. The engineered antibody we designed inhibits SOX18 transcriptional activity, by interfering specifically with an 8-amino-acid motif in the C-terminal region directly adjacent to α-Helix 3 of SOX18 HMG domain, thereby disrupting protein-protein interaction. This new approach establishes a framework to guide the study of transcription factors interactomes using antibodies as molecular handles.
Collapse
Affiliation(s)
- Frank R Fontaine
- a Institute for Molecular Bioscience, The University of Queensland , Brisbane , Australia
| | - Stephen Goodall
- b Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , QLD , Australia
| | - Jeremy W Prokop
- c HudsonAlpha Institute for Biotechnology , Huntsville AL , USA.,d Department of Pediatrics and Human Development , Michigan State University , East Lansing , MI , USA
| | - Christopher B Howard
- b Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , QLD , Australia.,e ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , St Lucia , QLD , Australia
| | - Mehdi Moustaqil
- f Single Molecule Science, Lowy Cancer Research Centre, The University of New South Wales , Sydney , NSW , Australia
| | - Sumukh Kumble
- b Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , QLD , Australia.,e ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , St Lucia , QLD , Australia
| | | | - Geoffrey W Osborne
- e ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , St Lucia , QLD , Australia
| | - Yann Gambin
- f Single Molecule Science, Lowy Cancer Research Centre, The University of New South Wales , Sydney , NSW , Australia
| | - Emma Sierecki
- f Single Molecule Science, Lowy Cancer Research Centre, The University of New South Wales , Sydney , NSW , Australia
| | - Martina L Jones
- e ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , St Lucia , QLD , Australia
| | - Johannes Zuegg
- a Institute for Molecular Bioscience, The University of Queensland , Brisbane , Australia
| | - Stephen Mahler
- b Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , QLD , Australia.,e ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , St Lucia , QLD , Australia
| | - Mathias Francois
- a Institute for Molecular Bioscience, The University of Queensland , Brisbane , Australia
| |
Collapse
|
22
|
Ariotti N, Rae J, Giles N, Martel N, Sierecki E, Gambin Y, Hall TE, Parton RG. Ultrastructural localisation of protein interactions using conditionally stable nanobodies. PLoS Biol 2018; 16:e2005473. [PMID: 29621251 PMCID: PMC5903671 DOI: 10.1371/journal.pbio.2005473] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/17/2018] [Accepted: 03/20/2018] [Indexed: 01/21/2023] Open
Abstract
We describe the development and application of a suite of modular tools for high-resolution detection of proteins and intracellular protein complexes by electron microscopy (EM). Conditionally stable GFP- and mCherry-binding nanobodies (termed csGBP and csChBP, respectively) are characterized using a cell-free expression and analysis system and subsequently fused to an ascorbate peroxidase (APEX) enzyme. Expression of these cassettes alongside fluorescently labelled proteins results in recruitment and stabilisation of APEX, whereas unbound APEX nanobodies are efficiently degraded by the proteasome. This greatly simplifies correlative analyses, enables detection of less-abundant proteins, and eliminates the need to balance expression levels between fluorescently labelled and APEX nanobody proteins. Furthermore, we demonstrate the application of this system to bimolecular complementation ('EM split-fluorescent protein'), for localisation of protein-protein interactions at the ultrastructural level.
Collapse
Affiliation(s)
- Nicholas Ariotti
- The University of Queensland, Institute for Molecular Bioscience, Queensland, Australia
| | - James Rae
- The University of Queensland, Institute for Molecular Bioscience, Queensland, Australia
| | - Nichole Giles
- EMBL Australia Node in Single Molecule Sciences, School of Medical Science, The University of New South Wales, Sydney, New South Wales, Australia
| | - Nick Martel
- The University of Queensland, Institute for Molecular Bioscience, Queensland, Australia
| | - Emma Sierecki
- EMBL Australia Node in Single Molecule Sciences, School of Medical Science, The University of New South Wales, Sydney, New South Wales, Australia
| | - Yann Gambin
- EMBL Australia Node in Single Molecule Sciences, School of Medical Science, The University of New South Wales, Sydney, New South Wales, Australia
| | - Thomas E. Hall
- The University of Queensland, Institute for Molecular Bioscience, Queensland, Australia
| | - Robert G. Parton
- The University of Queensland, Institute for Molecular Bioscience, Queensland, Australia
- The University of Queensland, Centre for Microscopy and Microanalysis, Brisbane, Queensland, Australia
| |
Collapse
|
23
|
Unveiling a Selective Mechanism for the Inhibition of α-Synuclein Aggregation by β-Synuclein. Int J Mol Sci 2018; 19:ijms19020334. [PMID: 29364143 PMCID: PMC5855556 DOI: 10.3390/ijms19020334] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/15/2018] [Accepted: 01/19/2018] [Indexed: 12/13/2022] Open
Abstract
α-Synuclein (αS) is an intrinsically disordered protein that is associated with Parkinson’s disease (PD) through its ability to self-assemble into oligomers and fibrils. Inhibition of this oligomerization cascade is an interesting approach to developing therapeutical strategies and β-synuclein (βS) has been described as a natural negative regulator of this process. However, the biological background and molecular mechanisms by which this inhibition occurs is unclear. Herein, we focused on assessing the effect of βS on the aggregation of five αS pathological mutants linked to early-onset PD (A30P, E46K, H50Q, G51D and A53T). By coupling single molecule fluorescence spectroscopy to a cell-free protein expression system, we validated the ability of βS to act as a chaperone of αS, effectively inhibiting its aggregation. Interestingly, we found that βS does so in a selective manner, i.e., is a more effective inhibitor for certain αS pathological mutants—A30P and G51D—as compared to E46K, H50Q and A53T. Moreover, two-color coincidence experiments proved that this discrepancy is due to a preferential incorporation of βS into smaller oligomers of αS. This was validated by showing that the chaperoning effect was lost when proteins were mixed after being expressed individually. This study highlights the potential of fluorescence spectroscopy to deconstruct αS aggregation cascade and its interplay with βS.
Collapse
|
24
|
M. Hussein W, M. Choi P, Zhang C, Sierecki E, Johnston W, Jia Z, J. Monteiro M, Skwarczynski M, Gambin Y, Toth I. Investigating the affinity of poly tert-butyl acrylate toward Toll-Like Receptor 2. AIMS ALLERGY AND IMMUNOLOGY 2018. [DOI: 10.3934/allergy.2018.3.141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
25
|
Heyl A. Shuttling of Entire Libraries from an Entry Vector to a Destination Vector of the Gateway System. Methods Mol Biol 2018; 1794:235-242. [PMID: 29855961 DOI: 10.1007/978-1-4939-7871-7_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Large-scale experiments are the basis of functional genomics, the investigating of several hundred or even thousand genes or proteins in parallel. A prerequisite for such experiments is the ability to clone several thousand genes simultaneously into a vector of choice to investigate different aspects of protein function, e.g., protein interactions, or subcellular localization. In the recent past several such cloning systems have been developed and successfully used. Of the commercially available systems, the Gateway™ system is the most widely used.This protocol describes how to shuttle a library from an Entry vector to a destination vector of the Gateway™ system. Emphasis is placed on the efficiency of the shuttling process to avoid loss of complexity and on reproducibility of the method.
Collapse
Affiliation(s)
- Alexander Heyl
- Biology Department, Adelphi University, Garden City, NY, USA.
| |
Collapse
|
26
|
Gagoski D, Shi Z, Nielsen LK, Vickers CE, Mahler S, Speight R, Johnston WA, Alexandrov K. Cell-free pipeline for discovery of thermotolerant xylanases and endo -1,4-β-glucanases. J Biotechnol 2017; 259:191-198. [DOI: 10.1016/j.jbiotec.2017.07.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/04/2017] [Accepted: 07/12/2017] [Indexed: 11/29/2022]
|
27
|
Structural basis of TIR-domain-assembly formation in MAL- and MyD88-dependent TLR4 signaling. Nat Struct Mol Biol 2017; 24:743-751. [PMID: 28759049 DOI: 10.1038/nsmb.3444] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 06/29/2017] [Indexed: 12/12/2022]
Abstract
Toll-like receptor (TLR) signaling is a key innate immunity response to pathogens. Recruitment of signaling adapters such as MAL (TIRAP) and MyD88 to the TLRs requires Toll/interleukin-1 receptor (TIR)-domain interactions, which remain structurally elusive. Here we show that MAL TIR domains spontaneously and reversibly form filaments in vitro. They also form cofilaments with TLR4 TIR domains and induce formation of MyD88 assemblies. A 7-Å-resolution cryo-EM structure reveals a stable MAL protofilament consisting of two parallel strands of TIR-domain subunits in a BB-loop-mediated head-to-tail arrangement. Interface residues that are important for the interaction are conserved among different TIR domains. Although large filaments of TLR4, MAL or MyD88 are unlikely to form during cellular signaling, structure-guided mutagenesis, combined with in vivo interaction assays, demonstrated that the MAL interactions defined within the filament represent a template for a conserved mode of TIR-domain interaction involved in both TLR and interleukin-1 receptor signaling.
Collapse
|
28
|
Fontaine F, Overman J, Moustaqil M, Mamidyala S, Salim A, Narasimhan K, Prokoph N, Robertson AAB, Lua L, Alexandrov K, Koopman P, Capon RJ, Sierecki E, Gambin Y, Jauch R, Cooper MA, Zuegg J, Francois M. Small-Molecule Inhibitors of the SOX18 Transcription Factor. Cell Chem Biol 2017; 24:346-359. [PMID: 28163017 DOI: 10.1016/j.chembiol.2017.01.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/14/2016] [Accepted: 01/10/2017] [Indexed: 12/13/2022]
Abstract
Pharmacological modulation of transcription factors (TFs) has only met little success over the past four decades. This is mostly due to standard drug discovery approaches centered on blocking protein/DNA binding or interfering with post-translational modifications. Recent advances in the field of TF biology have revealed a central role of protein-protein interaction in their mode of action. In an attempt to modulate the activity of SOX18 TF, a known regulator of vascular growth in development and disease, we screened a marine extract library for potential small-molecule inhibitors. We identified two compounds, which inspired a series of synthetic SOX18 inhibitors, able to interfere with the SOX18 HMG DNA-binding domain, and to disrupt HMG-dependent protein-protein interaction with RBPJ. These compounds also perturbed SOX18 transcriptional activity in a cell-based reporter gene system. This approach may prove useful in developing a new class of anti-angiogenic compounds based on the inhibition of TF activity.
Collapse
Affiliation(s)
- Frank Fontaine
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jeroen Overman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mehdi Moustaqil
- Single Molecule Science, Lowy Cancer Research Centre, The University of New South Wales, Sydney, NSW 2031, Australia
| | - Sreeman Mamidyala
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Angela Salim
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kamesh Narasimhan
- Laboratory for Structural Biochemistry, Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Nina Prokoph
- Laboratory for Structural Biochemistry, Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Avril A B Robertson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Linda Lua
- Protein Expression Facility, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Kirill Alexandrov
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Peter Koopman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Robert J Capon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Emma Sierecki
- Single Molecule Science, Lowy Cancer Research Centre, The University of New South Wales, Sydney, NSW 2031, Australia
| | - Yann Gambin
- Single Molecule Science, Lowy Cancer Research Centre, The University of New South Wales, Sydney, NSW 2031, Australia
| | - Ralf Jauch
- Genome Regulation Laboratory, Drug Discovery Pipeline, Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China; Guangzhou Medical University, Guangzhou 511436, China
| | - Matthew A Cooper
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Johannes Zuegg
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Mathias Francois
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
29
|
Overman J, Fontaine F, Moustaqil M, Mittal D, Sierecki E, Sacilotto N, Zuegg J, Robertson AAB, Holmes K, Salim AA, Mamidyala S, Butler MS, Robinson AS, Lesieur E, Johnston W, Alexandrov K, Black BL, Hogan BM, De Val S, Capon RJ, Carroll JS, Bailey TL, Koopman P, Jauch R, Smyth MJ, Cooper MA, Gambin Y, Francois M. Pharmacological targeting of the transcription factor SOX18 delays breast cancer in mice. eLife 2017; 6:e21221. [PMID: 28137359 PMCID: PMC5283831 DOI: 10.7554/elife.21221] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 12/07/2016] [Indexed: 12/31/2022] Open
Abstract
Pharmacological targeting of transcription factors holds great promise for the development of new therapeutics, but strategies based on blockade of DNA binding, nuclear shuttling, or individual protein partner recruitment have yielded limited success to date. Transcription factors typically engage in complex interaction networks, likely masking the effects of specifically inhibiting single protein-protein interactions. Here, we used a combination of genomic, proteomic and biophysical methods to discover a suite of protein-protein interactions involving the SOX18 transcription factor, a known regulator of vascular development and disease. We describe a small-molecule that is able to disrupt a discrete subset of SOX18-dependent interactions. This compound selectively suppressed SOX18 transcriptional outputs in vitro and interfered with vascular development in zebrafish larvae. In a mouse pre-clinical model of breast cancer, treatment with this inhibitor significantly improved survival by reducing tumour vascular density and metastatic spread. Our studies validate an interactome-based molecular strategy to interfere with transcription factor activity, for the development of novel disease therapeutics.
Collapse
Affiliation(s)
- Jeroen Overman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Frank Fontaine
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Mehdi Moustaqil
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- Single Molecule Science, Lowy Cancer Research Centre, The University of New South Wales, Sydney, Australia
| | - Deepak Mittal
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Emma Sierecki
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- Single Molecule Science, Lowy Cancer Research Centre, The University of New South Wales, Sydney, Australia
| | - Natalia Sacilotto
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, The University of Oxford, Oxford, United Kingdom
| | - Johannes Zuegg
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Avril AB Robertson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Kelly Holmes
- Cancer Research UK, The University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Angela A Salim
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Sreeman Mamidyala
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Mark S Butler
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Ashley S Robinson
- Cardiovascular Research Institute, The University of California, San Francisco, San Francisco, United States
| | - Emmanuelle Lesieur
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Wayne Johnston
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Kirill Alexandrov
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Brian L Black
- Cardiovascular Research Institute, The University of California, San Francisco, San Francisco, United States
| | - Benjamin M Hogan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Sarah De Val
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, The University of Oxford, Oxford, United Kingdom
| | - Robert J Capon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Jason S Carroll
- Cancer Research UK, The University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Timothy L Bailey
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Peter Koopman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Ralf Jauch
- Genome Regulation Laboratory, Drug Discovery Pipeline, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangzhou Medical University, Guangzhou, China
| | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia
- School of Medicine, The University of Queensland, Herston, Australia
| | - Matthew A Cooper
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Yann Gambin
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- Single Molecule Science, Lowy Cancer Research Centre, The University of New South Wales, Sydney, Australia
| | - Mathias Francois
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| |
Collapse
|
30
|
Sierecki E, Giles N, Bowden Q, Polinkovsky ME, Steinbeck J, Arrioti N, Rahman D, Bhumkar A, Nicovich PR, Ross I, Parton RG, Böcking T, Gambin Y. Nanomolar oligomerization and selective co-aggregation of α-synuclein pathogenic mutants revealed by single-molecule fluorescence. Sci Rep 2016; 6:37630. [PMID: 27892477 PMCID: PMC5385372 DOI: 10.1038/srep37630] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 10/28/2016] [Indexed: 02/08/2023] Open
Abstract
Protein aggregation is a hallmark of many neurodegenerative diseases, notably Alzheimer's and Parkinson's disease. Parkinson's disease is characterized by the presence of Lewy bodies, abnormal aggregates mainly composed of α-synuclein. Moreover, cases of familial Parkinson's disease have been linked to mutations in α-synuclein. In this study, we compared the behavior of wild-type (WT) α-synuclein and five of its pathological mutants (A30P, E46K, H50Q, G51D and A53T). To this end, single-molecule fluorescence detection was coupled to cell-free protein expression to measure precisely the oligomerization of proteins without purification, denaturation or labelling steps. In these conditions, we could detect the formation of oligomeric and pre-fibrillar species at very short time scale and low micromolar concentrations. The pathogenic mutants surprisingly segregated into two classes: one group forming large aggregates and fibrils while the other tending to form mostly oligomers. Strikingly, co-expression experiments reveal that members from the different groups do not generally interact with each other, both at the fibril and monomer levels. Together, this data paints a completely different picture of α-synuclein aggregation, with two possible pathways leading to the development of fibrils.
Collapse
Affiliation(s)
- Emma Sierecki
- EMBL Australia Node in Single Molecule Science, The University of New South Wales, Sydney NSW 2032 Australia
| | - Nichole Giles
- EMBL Australia Node in Single Molecule Science, The University of New South Wales, Sydney NSW 2032 Australia
| | - Quill Bowden
- EMBL Australia Node in Single Molecule Science, The University of New South Wales, Sydney NSW 2032 Australia
| | - Mark E. Polinkovsky
- EMBL Australia Node in Single Molecule Science, The University of New South Wales, Sydney NSW 2032 Australia
| | - Janina Steinbeck
- Institute for Molecular Bioscience, The University of Queensland, St Lucia QLD 4072, Australia
| | - Nicholas Arrioti
- Institute for Molecular Bioscience, The University of Queensland, St Lucia QLD 4072, Australia
| | - Diya Rahman
- Institute for Molecular Bioscience, The University of Queensland, St Lucia QLD 4072, Australia
| | - Akshay Bhumkar
- EMBL Australia Node in Single Molecule Science, The University of New South Wales, Sydney NSW 2032 Australia
| | - Philip R. Nicovich
- EMBL Australia Node in Single Molecule Science, The University of New South Wales, Sydney NSW 2032 Australia
| | - Ian Ross
- Institute for Molecular Bioscience, The University of Queensland, St Lucia QLD 4072, Australia
| | - Robert G. Parton
- Institute for Molecular Bioscience, The University of Queensland, St Lucia QLD 4072, Australia
| | - Till Böcking
- EMBL Australia Node in Single Molecule Science, The University of New South Wales, Sydney NSW 2032 Australia
| | - Yann Gambin
- EMBL Australia Node in Single Molecule Science, The University of New South Wales, Sydney NSW 2032 Australia
| |
Collapse
|
31
|
Chai YJ, Sierecki E, Tomatis VM, Gormal RS, Giles N, Morrow IC, Xia D, Götz J, Parton RG, Collins BM, Gambin Y, Meunier FA. Munc18-1 is a molecular chaperone for α-synuclein, controlling its self-replicating aggregation. J Cell Biol 2016; 214:705-18. [PMID: 27597756 PMCID: PMC5021092 DOI: 10.1083/jcb.201512016] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 08/03/2016] [Indexed: 01/06/2023] Open
Abstract
Munc18-1 heterozygous mutations are associated with developmental diseases, including early infantile epileptic encephalopathy (EIEE). Chai et al. report that Munc18-1 acts as a chaperone for α-synuclein and controls its aggregative propensity. Munc18-1 EIEE-associated mutations promote the aggregation of endogenous α-synuclein in neurons, leading to a neurodegenerative phenotype. Munc18-1 is a key component of the exocytic machinery that controls neurotransmitter release. Munc18-1 heterozygous mutations cause developmental defects and epileptic phenotypes, including infantile epileptic encephalopathy (EIEE), suggestive of a gain of pathological function. Here, we used single-molecule analysis, gene-edited cells, and neurons to demonstrate that Munc18-1 EIEE-causing mutants form large polymers that coaggregate wild-type Munc18-1 in vitro and in cells. Surprisingly, Munc18-1 EIEE mutants also form Lewy body–like structures that contain α-synuclein (α-Syn). We reveal that Munc18-1 binds α-Syn, and its EIEE mutants coaggregate α-Syn. Likewise, removal of endogenous Munc18-1 increases the aggregative propensity of α-SynWT and that of the Parkinson’s disease–causing α-SynA30P mutant, an effect rescued by Munc18-1WT expression, indicative of chaperone activity. Coexpression of the α-SynA30P mutant with Munc18-1 reduced the number of α-SynA30P aggregates. Munc18-1 mutations and haploinsufficiency may therefore trigger a pathogenic gain of function through both the corruption of native Munc18-1 and a perturbed chaperone activity for α-Syn leading to aggregation-induced neurodegeneration.
Collapse
Affiliation(s)
- Ye Jin Chai
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Emma Sierecki
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia Single Molecule Sciences Centre, European Molecular Biology Laboratory Australia, The University of New South Wales, Sydney 2052, Australia
| | - Vanesa M Tomatis
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Rachel S Gormal
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Nichole Giles
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia Single Molecule Sciences Centre, European Molecular Biology Laboratory Australia, The University of New South Wales, Sydney 2052, Australia
| | - Isabel C Morrow
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Di Xia
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Brett M Collins
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Yann Gambin
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia Single Molecule Sciences Centre, European Molecular Biology Laboratory Australia, The University of New South Wales, Sydney 2052, Australia
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
32
|
Koch D, Rai A, Ali I, Bleimling N, Friese T, Brockmeyer A, Janning P, Goud B, Itzen A, Müller MP, Goody RS. A pull-down procedure for the identification of unknown GEFs for small GTPases. Small GTPases 2016; 7:93-106. [PMID: 26918858 PMCID: PMC4905258 DOI: 10.1080/21541248.2016.1156803] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Members of the family of small GTPases regulate a variety of important cellular functions. In order to accomplish this, tight temporal and spatial regulation is absolutely necessary. The two most important factors for this regulation are GTPase activating proteins (GAPs) and guanine nucleotide exchange factors (GEFs), the latter being responsible for the activation of the GTPase downstream pathways at the correct location and time. Although a large number of exchange factors have been identified, it is likely that a similarly large number remains unidentified. We have therefore developed a procedure to specifically enrich GEF proteins from biological samples making use of the high affinity binding of GEFs to nucleotide-free GTPases. In order to verify the results of these pull-down experiments, we have additionally developed two simple validation procedures: An in vitro transcription/translation system coupled with a GEF activity assay and a yeast two-hybrid screen for detection of GEFs. Although the procedures were established and tested using the Rab protein Sec4, the similar basic principle of action of all nucleotide exchange factors will allow the method to be used for identification of unknown GEFs of small GTPases in general.
Collapse
Affiliation(s)
- Daniel Koch
- a Department of Structural Biochemistry , Max Planck Institute of Molecular Physiology , Dortmund , Germany
| | - Amrita Rai
- a Department of Structural Biochemistry , Max Planck Institute of Molecular Physiology , Dortmund , Germany
| | - Imtiaz Ali
- a Department of Structural Biochemistry , Max Planck Institute of Molecular Physiology , Dortmund , Germany
| | - Nathalie Bleimling
- a Department of Structural Biochemistry , Max Planck Institute of Molecular Physiology , Dortmund , Germany
| | - Timon Friese
- a Department of Structural Biochemistry , Max Planck Institute of Molecular Physiology , Dortmund , Germany
| | - Andreas Brockmeyer
- b Department of Chemical Biology , Max Planck Institute of Molecular Physiology , Dortmund , Germany
| | - Petra Janning
- b Department of Chemical Biology , Max Planck Institute of Molecular Physiology , Dortmund , Germany
| | - Bruno Goud
- c Institut Curie, PSL Research University, CNRS UMR 144 , Paris , France
| | - Aymelt Itzen
- d Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Technische Universität München , Garching , Germany
| | - Matthias P Müller
- a Department of Structural Biochemistry , Max Planck Institute of Molecular Physiology , Dortmund , Germany
| | - Roger S Goody
- a Department of Structural Biochemistry , Max Planck Institute of Molecular Physiology , Dortmund , Germany
| |
Collapse
|
33
|
Kubala MH, Norwood SJ, Gomez GA, Jones A, Johnston W, Yap AS, Mureev S, Alexandrov K. Mammalian farnesyltransferase α subunit regulates vacuolar protein sorting-associated protein 4A (Vps4A)--dependent intracellular trafficking through recycling endosomes. Biochem Biophys Res Commun 2015; 468:580-6. [PMID: 26551458 DOI: 10.1016/j.bbrc.2015.10.148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 11/19/2022]
Abstract
The protein farnesyltransferase (FTase) mediates posttranslational modification of proteins with isoprenoid lipids. FTase is a heterodimer and although the β subunit harbors the active site, it requires the α subunit for its activity. Here we explore the other functions of the FTase α subunit in addition to its established role in protein prenylation. We found that in the absence of the β subunit, the α subunit of FTase forms a stable autonomous dimeric structure in solution. We identify interactors of FTase α using mass spectrometry, followed by rapid in vitro analysis using the Leishmania tarentolae cell - free system. Vps4A was validated for direct binding to the FTase α subunit both in vitro and in vivo. Analysis of the interaction with Vps4A in Hek 293 cells demonstrated that FTase α controls trafficking of transferrin receptor upstream of this protein. These results point to the existence of previously undetected biological functions of the FTase α subunit that includes control of intracellular membrane trafficking.
Collapse
Affiliation(s)
- Marta H Kubala
- Institute for Molecular Bioscience, University of Queensland, Brisbane, St. Lucia, Queensland, 4072, Australia
| | - Suzanne J Norwood
- Institute for Molecular Bioscience, University of Queensland, Brisbane, St. Lucia, Queensland, 4072, Australia
| | - Guillermo A Gomez
- Institute for Molecular Bioscience, University of Queensland, Brisbane, St. Lucia, Queensland, 4072, Australia
| | - Alun Jones
- Institute for Molecular Bioscience, University of Queensland, Brisbane, St. Lucia, Queensland, 4072, Australia
| | - Wayne Johnston
- Institute for Molecular Bioscience, University of Queensland, Brisbane, St. Lucia, Queensland, 4072, Australia
| | - Alpha S Yap
- Institute for Molecular Bioscience, University of Queensland, Brisbane, St. Lucia, Queensland, 4072, Australia
| | - Sergey Mureev
- Institute for Molecular Bioscience, University of Queensland, Brisbane, St. Lucia, Queensland, 4072, Australia
| | - Kirill Alexandrov
- Institute for Molecular Bioscience, University of Queensland, Brisbane, St. Lucia, Queensland, 4072, Australia.
| |
Collapse
|
34
|
Gagoski D, Polinkovsky ME, Mureev S, Kunert A, Johnston W, Gambin Y, Alexandrov K. Performance benchmarking of four cell-free protein expression systems. Biotechnol Bioeng 2015; 113:292-300. [PMID: 26301602 DOI: 10.1002/bit.25814] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/20/2015] [Accepted: 08/19/2015] [Indexed: 11/10/2022]
Abstract
Over the last half century, a range of cell-free protein expression systems based on pro- and eukaryotic organisms have been developed and have found a range of applications, from structural biology to directed protein evolution. While it is generally accepted that significant differences in performance among systems exist, there is a paucity of systematic experimental studies supporting this notion. Here, we took advantage of the species-independent translation initiation sequence to express and characterize 87 N-terminally GFP-tagged human cytosolic proteins of different sizes in E. coli, wheat germ (WGE), HeLa, and Leishmania-based (LTE) cell-free systems. Using a combination of single-molecule fluorescence spectroscopy, SDS-PAGE, and Western blot analysis, we assessed the expression yields, the fraction of full-length translation product, and aggregation propensity for each of these systems. Our results demonstrate that the E. coli system has the highest expression yields. However, we observe that high expression levels are accompanied by production of truncated species-particularly pronounced in the case of proteins larger than 70 kDa. Furthermore, proteins produced in the E. coli system display high aggregation propensity, with only 10% of tested proteins being produced in predominantly monodispersed form. The WGE system was the most productive among eukaryotic systems tested. Finally, HeLa and LTE show comparable protein yields that are considerably lower than the ones achieved in the E. coli and WGE systems. The protein products produced in the HeLa system display slightly higher integrity, whereas the LTE-produced proteins have the lowest aggregation propensity among the systems analyzed. The high quality of HeLa- and LTE-produced proteins enable their analysis without purification and make them suitable for analysis of multi-domain eukaryotic proteins.
Collapse
Affiliation(s)
- Dejan Gagoski
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, 4072, QLD, Australia
| | - Mark E Polinkovsky
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, 4072, QLD, Australia
| | - Sergey Mureev
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, 4072, QLD, Australia
| | - Anne Kunert
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, 4072, QLD, Australia
| | - Wayne Johnston
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, 4072, QLD, Australia
| | - Yann Gambin
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, 4072, QLD, Australia
| | - Kirill Alexandrov
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, 4072, QLD, Australia.
| |
Collapse
|