1
|
Improvement of Curvulamine Production by Precursors Co-addition Strategy in Liquid Culture of Marine-Derived Fungus Curvularia sp. IFB-Z10. Appl Biochem Biotechnol 2019; 190:73-89. [DOI: 10.1007/s12010-019-03072-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 07/05/2019] [Indexed: 12/27/2022]
|
2
|
Gao R, Xu Z, Deng H, Guan Z, Liao X, Zhao Y, Zheng X, Cai Y. Influences of light on growth, reproduction and hypocrellin production by Shiraia sp. SUPER-H168. Arch Microbiol 2018; 200:1217-1225. [PMID: 29947836 DOI: 10.1007/s00203-018-1529-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/23/2018] [Accepted: 05/18/2018] [Indexed: 01/17/2023]
Abstract
Light is a very important signal for fungi since it influences many different physiological responses. The effects of dark or light at different wavelengths on growth, reproduction and hypocrellins of Shiraia sp. SUPER-H168 were studied: dark, white, red, yellow, green, blue and purple. All incubations under different light conditions had significant stimulating effects on aerial hyphae and suppressing effects on hypocrellin biosynthesis compared with dark incubation. Under blue and purple light especially blue light, the colonies with profuse growth of aerial mycelium were formed. Hypocrellin production reached 13.73 mg per dish under dark condition, and decreased to 4.01 mg and 2.83 mg per dish under white and blue light, respectively. Light condition not only influenced hypocrellin production but also influenced the composition of hypocrellins. Four types of hyphae, namely surface, aerial, biofilm and penetrative hyphae, were observed by light microscopy and SEM. This study found that biofilm hyphae was so closely connected with production of secondary metabolites, and hypocrellins were only produced by biofilm hyphae. Light promoted sexual development and inhibited asexual reproduction, especially blue light strongly inhibited asexual development.
Collapse
Affiliation(s)
- Ruijie Gao
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Zhecun Xu
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Huaxiang Deng
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Zhengbing Guan
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Xiangru Liao
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Ye Zhao
- College of Life Sciences, Northwest University, Xi'an, 710069, Shanxi, China.
| | - Xiaohui Zheng
- College of Life Sciences, Northwest University, Xi'an, 710069, Shanxi, China
| | - Yujie Cai
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
3
|
Improved hypocrellin A production in Shiraia bambusicola by light-dark shift. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 182:100-107. [PMID: 29656218 DOI: 10.1016/j.jphotobiol.2018.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/17/2018] [Accepted: 04/03/2018] [Indexed: 01/02/2023]
Abstract
Hypocrellin A (HA) is a major bioactive perylenequinone from the fruiting body of Shiraia bambusicola used for the treatment of skin diseases and developed as a photodynamic therapy (PDT) agent against cancers and viruses. The mycelial culture of S. bambusicola under dark is a biotechnological alternative for HA production but with low yield. In this study, light and dark conditions were investigated to develop effective elicitation on HA production in the cultures. Our results showed the constant light at 200 lx stimulated HA production without any growth retardation of mycelia. A light/dark shift (24: 24 h) not only increased HA content in mycelia by 65%, but stimulated HA release into the medium with the highest total HA production 181.67 mg/L on day 8, about 73% increase over the dark control. Moreover, light/dark shifting induced the formation of smaller and more compact fungal pellets, suggesting a new effective strategy for large-scale production of HA in mycelium cultures. The light/dark shift up-regulated the expression levels of two reactive oxygen species (ROS) related genes including superoxide-generating NADPH oxidase (Nox) and cytochrome c peroxidase (CCP), and induced the generation of ROS. With the treatment of vitamin C, we found that ROS was involved in the up-regulated expression of key biosynthetical genes for hypocrellins and improved HA production. These results provide a basis for understanding the influence of light/dark shift on fungal metabolism and the application of a novel strategy for enhancing HA production in submerged Shiraia cultures.
Collapse
|
4
|
Abstract
Covering: 2016. Previous review: Nat. Prod. Rep., 2017, 34, 235-294This review covers the literature published in 2016 for marine natural products (MNPs), with 757 citations (643 for the period January to December 2016) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1277 in 432 papers for 2016), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | | | | | | | | | | |
Collapse
|
5
|
Zhang X, Gao Y, Yin Y, Cai M, Zhou X, Zhang Y. Regulation of different polyketide biosynthesis by green light in an endophytic fungus of mangrove leaf. 3 Biotech 2017; 7:363. [PMID: 29043115 DOI: 10.1007/s13205-017-0996-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 09/23/2017] [Indexed: 12/15/2022] Open
Abstract
Light is an important environmental signal for many organisms. The light response reports of fungi usually focus on blue light and red light. Although the green light sensor has also been found in several fungi, the knowledge of the green light response in fungi is very limited. Halorosellinia sp. (No. 1403) is a light-sensitive endophytic fungus of mangrove leaf. In this study, we explored the specific effects of monochromatic blue light, red light, and green light on polyketides biosynthesis in Halorosellinia sp. (No. 1403), respectively. The major polyketides produced in Halorosellinia sp. (No. 1403) are octaketides (1403C and 1403R) and heptaketide (griseofulvin). All monochromatic light enhanced octaketide biosynthesis and inhibited heptaketide biosynthesis to some extent compared with the dark condition. Most prominently, the total production of octaketides was increased by 76%, and the production of heptaketide was decreased by 73% under green light in bioreactor. Therefore, green light can not only influence the secondary metabolism in fungi, but also it can influence different biosynthetic pathways in different ways. We speculate that the significant effect of green light on mangrove leaf endophytic fungus Halorosellinia sp. (No. 1403) may be a kind of environmental adaptation to plant photosynthesis.
Collapse
|
6
|
Xue J, Balamurugan S, Li DW, Liu YH, Zeng H, Wang L, Yang WD, Liu JS, Li HY. Glucose-6-phosphate dehydrogenase as a target for highly efficient fatty acid biosynthesis in microalgae by enhancing NADPH supply. Metab Eng 2017; 41:212-221. [PMID: 28465173 DOI: 10.1016/j.ymben.2017.04.008] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 01/10/2023]
Abstract
Oleaginous microalgae have great prospects in the fields of feed, nutrition, biofuel, etc. However, biomass and lipid productivity in microalgae remain a major economic and technological bottleneck. Here we present a novel regulatory target, glucose-6-phosphate dehydrogenase (G6PD) from the pentose phosphate pathway (PPP), in boosting microalgal lipid accumulation. G6PD, involved in the formation of NADPH demanded in fatty acid biosynthesis as reducing power, was characterized in oleaginous microalga Phaeodactylum tricornutum. In G6PD overexpressing microalgae, transcript abundance of G6PD increased by 4.4-fold, and G6PD enzyme activity increased by more than 3.1-fold with enhanced NADPH production. Consequently, the lipid content increased by 2.7-fold and reached up to 55.7% of dry weight, while cell growth was not apparently affected. The fatty acid composition exhibited significant changes, including a remarkable increase in monounsaturated fatty acids C16:1 and C18:1 concomitant with a decrease in polyunsaturated fatty acids C20:5 and C22:6. G6PD was localized to the chloroplast and its overexpression stimulated an increase in the number and size of oil bodies. Proteomic and metabolomic analyzes revealed that G6PD play a key role in regulating pentose phosphate pathway and subsequently upregulating NADPH consuming pathways such as fatty acid synthesis, thus eventually leading to lipid accumulation. Our findings show the critical role of G6PD in microalgal lipid accumulation by enhancing NADPH supply and demonstrate that G6PD is a promising target for metabolic engineering.
Collapse
Affiliation(s)
- Jiao Xue
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Srinivasan Balamurugan
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Da-Wei Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yu-Hong Liu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hao Zeng
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lan Wang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Wei-Dong Yang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jie-Sheng Liu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hong-Ye Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
7
|
Zhang X, Gao Y, Yin Y, Cai M, Zhou X, Zhang Y. Effective pH pretreatment and cell disruption method for real-time intracellular enzyme activity assay of a marine fungus covered with pigments. Prep Biochem Biotechnol 2016; 47:211-217. [DOI: 10.1080/10826068.2016.1201682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Xiaoxu Zhang
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yanyun Gao
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ying Yin
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Menghao Cai
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiangshan Zhou
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yuanxing Zhang
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Collaborative Innovation Center for Biomanufacturing, Shanghai, China
| |
Collapse
|