1
|
Lee J, Kim DH, Lee K. Myostatin gene role in regulating traits of poultry species for potential industrial applications. J Anim Sci Biotechnol 2024; 15:82. [PMID: 38825693 PMCID: PMC11145818 DOI: 10.1186/s40104-024-01040-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/22/2024] [Indexed: 06/04/2024] Open
Abstract
The myostatin (MSTN) gene is considered a potential genetic marker to improve economically important traits in livestock, since the discovery of its function using the MSTN knockout mice. The anti-myogenic function of the MSTN gene was further demonstrated in farm animal species with natural or induced mutations. In poultry species, myogenesis in cell culture was regulated by modulation of the MSTN gene. Also, different expression levels of the MSTN gene in poultry models with different muscle mass have been reported, indicating the conserved myogenic function of the MSTN gene between mammalian and avian species. Recent advances of CRISPR/Cas9-mediated genome editing techniques have led to development of genome-edited poultry species targeting the MSTN gene to clearly demonstrate its anti-myogenic function and further investigate other potential functions in poultry species. This review summarizes research conducted to understand the function of the MSTN gene in various poultry models from cells to whole organisms. Furthermore, the genome-edited poultry models targeting the MSTN gene are reviewed to integrate diverse effects of the MSTN gene on different traits of poultry species.
Collapse
Affiliation(s)
- Joonbum Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Dong-Hwan Kim
- Department of Animal Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Kichoon Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
2
|
Prasad AR, Bhattacharya TK, Chatterjee RN, Divya D, Bhanja SK, Shanmugam M, Sagar NG. Silencing acetyl-CoA carboxylase A and sterol regulatory element-binding protein 1 genes through RNAi reduce serum and egg cholesterol in chicken. Sci Rep 2022; 12:1191. [PMID: 35075178 PMCID: PMC8786841 DOI: 10.1038/s41598-022-05204-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 01/03/2022] [Indexed: 11/09/2022] Open
Abstract
Cholesterol is synthesized in chicken through de novo lipid biosynthetic pathway where two most important genes viz. SREBP1 and ACACA play immense role. To minimize cholesterol synthesis, RNAi approach was adopted and accordingly, we developed transgenic chicken possessing ACACA and SREBP1 shRNA constructs, which showed lower level of ACACA and SREBP1 in serum. The serum total cholesterol, triglycerides, HDL and LDL cholesterol was significantly lower by 23.8, 35.6, 26.6 and 20.9%, respectively in SREBP1 transgenic birds compared to the control. The egg total cholesterol and LDL cholesterol content was numerically lower in both ACACA and SREBP1 transgenic birds by 14.3 and 13.2%, and 10.4 and 13.7%, respectively compared to the control. It is concluded that the protocol was perfected to develop transgenic chicken through RNAi for knocking down the expression of ACACA and SREBP1 proteins, which minimized the cholesterol and triglycerides contents in serum and eggs.
Collapse
Affiliation(s)
| | - T K Bhattacharya
- ICAR-Directorate of Poultry Research, Rajendranagar, Hyderabad, India.
| | - R N Chatterjee
- ICAR-Directorate of Poultry Research, Rajendranagar, Hyderabad, India
| | - D Divya
- ICAR-Directorate of Poultry Research, Rajendranagar, Hyderabad, India
| | - S K Bhanja
- ICAR-Directorate of Poultry Research, Rajendranagar, Hyderabad, India
| | - M Shanmugam
- ICAR-Directorate of Poultry Research, Rajendranagar, Hyderabad, India
| | - N G Sagar
- ICAR-Directorate of Poultry Research, Rajendranagar, Hyderabad, India
| |
Collapse
|
3
|
Kanaka KK, Chatterjee RN, Kumar P, Bhushan B, Divya D, Bhattacharya TK. Cloning, characterisation and expression of the SERPINB14 gene, and association of promoter polymorphisms with egg quality traits in layer chicken. Br Poult Sci 2021; 62:783-794. [PMID: 34047227 DOI: 10.1080/00071668.2021.1934400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
1. Ovalbumin (SERPINB14) is the most abundant protein present in egg white contributing about 54% of the total egg protein. In this study, the objectives were to clone and characterise the coding sequence of the SERPINB14 gene, to explore its expression profile, identify polymorphisms in the promoter of the gene and explore any association with egg quality traits in White Leghorn chickens.2. SNPs and mRNA expression of SERPINB14 in White Leghorn chicken lines were detected by PCR-single strand conformation polymorphism (SSCP) along with sequencing and qPCR. The open reading frame (ORF) was cloned in an expression plasmid vector and sequenced.3. The ORF of this gene was 1161 bp encoding a peptide of 386 amino acids. There were three SNPs observed in the coding region of the gene, one of which was of the mis-sense type, having c562G>A transition which resulted in substitution of alanine to threonine at position 188 in the protein sequence. In both the lines, an increase in expression of the gene was observed after onset of egg production with peak expression at the 40th week of age compared to before onset of lay. The SERPINB14 gene was expressed in the magnum, but not in ovary and infundibulum, tissues of each White Leghorn line. The promoter region of the gene showed SNPs with three haplotypes; H1, H2, and H3. The haplo groups were associated with the egg weight and age at sexual maturity in the IWI line and Haugh unit and albumin index in the IWK line.4. It was concluded that the ORF of SERPINB14 gene in White Leghorn chicken lines is polymorphic. The promoter region of the gene is also polymorphic and has significant (P < 0.05) association with Haugh unit and egg weight in IWK and IWI chicken lines, respectively.
Collapse
Affiliation(s)
- K K Kanaka
- Animal Genetics Division, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - R N Chatterjee
- Molecular Genetics Lab, ICAR-Directorate of Poultry Research, Rajendranagar, India
| | - P Kumar
- Animal Genetics Division, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - B Bhushan
- Animal Genetics Division, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - D Divya
- Molecular Genetics Lab, ICAR-Directorate of Poultry Research, Rajendranagar, India
| | - T K Bhattacharya
- Molecular Genetics Lab, ICAR-Directorate of Poultry Research, Rajendranagar, India
| |
Collapse
|
4
|
Wasti S, Sah N, Kuehu DL, Kim YS, Jha R, Mishra B. Expression of follistatin is associated with egg formation in the oviduct of laying hens. Anim Sci J 2020; 91:e13396. [PMID: 32468659 DOI: 10.1111/asj.13396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 03/20/2020] [Accepted: 04/01/2020] [Indexed: 12/15/2022]
Abstract
The objective of this study was to examine the expression profiles of follistatin (FST) and its associated molecules (MSTN, INHA, INHBB, INHBA, ACVR2A, and ACVR2B) in the oviduct of laying hens at 3 hr and 20 hr post-ovulation (p.o., n = 5; 35 weeks old), molting (n = 5; 60 weeks old), and non-laying (n = 4; 35-60 weeks old) hens and also to localize the FST by using immunohistochemistry assay. Expression of FST was significantly higher (p < .05), and MSTN was lower in the uterus of laying hens around 15-20 hr p.o. (during eggshell formation), however, their expressions in the magnum remain unchanged across different physiological stages of hens. FST was mainly expressed in the luminal and glandular epithelium of the uterine tissues, and their expression intensity was highest in laying hens during the eggshell mineralization. There was a relatively increased expression of INHA in the magnum of laying hens around 3 hr p.o. as compared to non-laying and molting hens. At the same time (3 hr p.o.), there was a significant (p < .05) decrease in the expression of the INHBB, ACVR2A, and ACV2B. These results indicate that follistatin may regulate the differentiation of uterine luminal and glandular epithelium during eggshell biomineralization.
Collapse
Affiliation(s)
- Sanjeev Wasti
- Department of Human Nutrition Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Nirvay Sah
- Department of Human Nutrition Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Donna L Kuehu
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Yong S Kim
- Department of Human Nutrition Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Rajesh Jha
- Department of Human Nutrition Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Birendra Mishra
- Department of Human Nutrition Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
5
|
Walton A, Sheehan MJ, Toth AL. Going wild for functional genomics: RNA interference as a tool to study gene-behavior associations in diverse species and ecological contexts. Horm Behav 2020; 124:104774. [PMID: 32422196 DOI: 10.1016/j.yhbeh.2020.104774] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/25/2022]
Abstract
Identifying the genetic basis of behavior has remained a challenge for biologists. A major obstacle to this goal is the difficulty of examining gene function in an ecologically relevant context. New tools such as CRISPR/Cas9, which alter the germline of an organism, have taken center stage in functional genomics in non-model organisms. However, germline modifications of this nature cannot be ethically implemented in the wild as a part of field experiments. This impediment is more than technical. Gene function is intimately tied to the environment in which the gene is expressed, especially for behavior. Most lab-based studies fail to recapitulate an organism's ecological niche, thus most published functional genomics studies of gene-behavior relationships may provide an incomplete or even inaccurate assessment of gene function. In this review, we highlight RNA interference as an especially effective experimental method to deepen our understanding of the interplay between genes, behavior, and the environment. We highlight the utility of RNAi for researchers investigating behavioral genetics, noting unique attributes of RNAi including transience of effect and the feasibility of releasing treated animals into the wild, that make it especially useful for studying the function of behavior-related genes. Furthermore, we provide guidelines for planning and executing an RNAi experiment to study behavior, including challenges to consider. We urge behavioral ecologists and functional genomicists to adopt a more fully integrated approach which we call "ethological genomics". We advocate this approach, utilizing tools such as RNAi, to study gene-behavior relationships in their natural context, arguing that such studies can provide a deeper understanding of how genes can influence behavior, as well as ecological aspects beyond the organism that houses them.
Collapse
Affiliation(s)
- Alexander Walton
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA.
| | - Michael J Sheehan
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Amy L Toth
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA; Department of Entomology, Iowa State University, Ames, IA, USA
| |
Collapse
|
6
|
Torres-Velarde J, Llera-Herrera R, Ibarra-Castro L, García-Gasca T, García-Gasca A. Post-transcriptional silencing of myostatin-1 in the spotted rose snapper (Lutjanus guttatus) promotes muscle hypertrophy. Mol Biol Rep 2019; 47:443-450. [DOI: 10.1007/s11033-019-05147-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/16/2019] [Indexed: 12/13/2022]
|
7
|
Saneyasu T, Honda K, Kamisoyama H. Myostatin Increases Smad2 Phosphorylation and Atrogin-1 Expression in Chick Embryonic Myotubes. J Poult Sci 2019; 56:224-230. [PMID: 32055218 PMCID: PMC7005388 DOI: 10.2141/jpsa.0180092] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/12/2018] [Indexed: 01/07/2023] Open
Abstract
Skeletal muscle mass is an important trait in poultry meat production. In mammals, myostatin, a negative regulator of skeletal muscle growth, activates Smad transcription factors and induces the expression of atrogin-1 by regulating the Akt/FOXO pathway. Although the amino acid sequence of chicken myostatin is known to be completely identical to its mammalian counterpart, previous studies in chicken skeletal muscles have implied that the physiological roles of chicken myostatin are different from those of mammals. Furthermore, it remains to be elucidated whether myostatin affects cellular signaling factors and atrogin-1 expression. In this study, using chick embryonic myotubes, we found that myostatin significantly increased the phosphorylation rate of Smad2 and mRNA levels of atrogin-1. No significant change was observed in the phosphorylation of Akt and FOXO1. These in vitro results suggest that the molecular mechanisms underlying myostatin-induced expression of atrogin-1 might be different between chickens and mammals.
Collapse
Affiliation(s)
- Takaoki Saneyasu
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Kazuhisa Honda
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Hiroshi Kamisoyama
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
8
|
Bhattacharya TK, Shukla R, Chatterjee RN, Bhanja SK. Comparative analysis of silencing expression of myostatin (MSTN) and its two receptors (ACVR2A and ACVR2B) genes affecting growth traits in knock down chicken. Sci Rep 2019; 9:7789. [PMID: 31127166 PMCID: PMC6534594 DOI: 10.1038/s41598-019-44217-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/10/2019] [Indexed: 12/22/2022] Open
Abstract
Myostatin (MSTN), a growth differentiation factor-8 regulates muscular development through its receptors, ACVR2A (Activin receptor type IIA) and ACVR2B (Activin receptor type IIB) by inhibiting cellular differentiation of developing somites during embryonic stage and diminishing myofibriller growth during post-embryonic period. The objective of this study was to compare the effect of knockdown of expression of myostatin, ACVR2A and ACVR2B genes on growth traits in chicken. The shRNAs for Myostatin, ACVR2A and ACVR2B genes were designed, synthesized and cloned in DEST vector. The recombinant molecules were transfected into the spermatozoa and transfected spermatozoa were inseminated artificially to the hens to obtain fertile eggs. The fertile eggs were collected, incubated in the incubator and hatched to chicks. Silencing of ACVR2B gene showed significantly higher body weight than other single, double and triple knock down of genes in transgenic birds. The carcass traits such as dressing%, leg muscle%, and breast muscle% were found with the highest magnitudes in birds with silencing of the ACVR2B gene as compared to the birds with that of other genes and control group. The lowest serum cholesterol and HDL content was found in ACVR2B silencing birds. The total RBC count was the highest in this group though the differential counts did not differ significantly among various silencing and control groups of birds. It is concluded that silencing of only one receptor of MSTN particularly, ACVR2B may augment the highest growth in chicken during juvenile stage. Our findings may be used as model for improving growth in other food animals and repairing muscular degenerative disorders in human and other animals.
Collapse
Affiliation(s)
- T K Bhattacharya
- ICAR-Directorate of Poultry Research, Rajendranagar, Hyderabad, India.
| | - Renu Shukla
- ICAR-Directorate of Poultry Research, Rajendranagar, Hyderabad, India
| | - R N Chatterjee
- ICAR-Directorate of Poultry Research, Rajendranagar, Hyderabad, India
| | - S K Bhanja
- ICAR-Directorate of Poultry Research, Rajendranagar, Hyderabad, India
| |
Collapse
|
9
|
Guru Vishnu P, Bhattacharya TK, Bhushan B, Kumar P, Chatterjee RN, Paswan C, Dushyanth K, Divya D, Prasad AR. In silico prediction of short hairpin RNA and in vitro silencing of activin receptor type IIB in chicken embryo fibroblasts by RNA interference. Mol Biol Rep 2019; 46:2947-2959. [PMID: 30879273 DOI: 10.1007/s11033-019-04756-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/08/2019] [Indexed: 12/26/2022]
Abstract
Gene silencing by RNA interference is extensively used reverse genetic approach to analyse the implications of any gene in mammalian systems. The silencing of the Activin type IIB receptor belonging to transforming growth factor beta superfamily has demonstrated increase in muscle growth in many species. We designed five short hairpin RNA constructs targeting coding region of chicken ACTRIIB. All the shRNAs were transfected into chicken embryo fibroblast cells and evaluated their silencing efficiency by real time PCR and western blotting. Initially the computational analysis of target region and shRNA constructs was undertaken to predict sequence based features (secondary structures, GC% and H-b index) and thermodynamic features (ΔGoverall, ΔGduplex, ΔGbreak-target, ΔGintra-oligomer, ΔGinter-oligomer and ΔΔGends). We determined that all these predicted features were associated with shRNA efficacy. The invitro analysis of shRNA constructs exhibited significant (P < 0.05) reduction in the levels of ACTRIIB at mRNA and protein level. The knock down efficiency of shRNAs varied significantly (P < 0.001) from 83% (shRNA 1) to 43% (shRNA 5). All the shRNAs up regulated the myogenic pathway associated genes (MyoD and MyoG) significantly (P < 0.05). There was significant (P < 0.05) up-regulation of IFNA, IFNB and MHCII transcripts. The ACTRIIB expression was inversely associated with the expression of myogenic pathway and immune response genes. The anti ACTRIIB shRNA construct 1 and 3 exhibited maximum knock down efficiency with minimal interferon response, and can be used for generating ACTRIIB knockdown chicken with higher muscle mass.
Collapse
Affiliation(s)
- P Guru Vishnu
- Sri Venkateswara Veterinary University, Tirupathi, A.P., India.
| | | | - Bharat Bhushan
- Division of Animal Genetics & Breeding, Indian Veterinary Research Institute, Izatnagar, U.P., India
| | - Pushpendra Kumar
- Division of Animal Genetics & Breeding, Indian Veterinary Research Institute, Izatnagar, U.P., India
| | | | | | - K Dushyanth
- ICAR-Directorate of Poultry Research, Hyderabad, India
| | - D Divya
- ICAR-Directorate of Poultry Research, Hyderabad, India
| | - A Rajendra Prasad
- Division of Animal Genetics & Breeding, Indian Veterinary Research Institute, Izatnagar, U.P., India
| |
Collapse
|