1
|
Tian H, Gao P, Qi C, Li G, Ma T. Nitrate and oxygen significantly changed the abundance rather than structure of sulphate-reducing and sulphur-oxidising bacteria in water retrieved from petroleum reservoirs. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13248. [PMID: 38581137 PMCID: PMC10997955 DOI: 10.1111/1758-2229.13248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 03/12/2024] [Indexed: 04/08/2024]
Abstract
Sulphate-reducing bacteria (SRB) are the main culprits of microbiologically influenced corrosion in water-flooding petroleum reservoirs, but some sulphur-oxidising bacteria (SOB) are stimulated when nitrate and oxygen are injected, which control the growth of SRB. This study aimed to determine the distributions of SRB and SOB communities in injection-production systems and to analyse the responses of these bacteria to different treatments involving nitrate and oxygen. Desulfovibrio, Desulfobacca, Desulfobulbus, Sulfuricurvum and Dechloromonas were commonly detected via 16S rRNA gene sequencing. Still, no significant differences were observed for either the SRB or SOB communities between injection and production wells. Three groups of water samples collected from different sampling sites were incubated. Statistical analysis of functional gene (dsrB and soxB) clone libraries and quantitative polymerase chain reaction showed that the SOB community structures were more strongly affected by the nitrate and oxygen levels than SRB clustered according to the sampling site; moreover, both the SRB and SOB community abundances significantly changed. Additionally, the highest SRB inhibitory effect and the lowest dsrB/soxB ratio were obtained under high concentrations of nitrate and oxygen in the three groups, suggesting that the synergistic effect of nitrate and oxygen level was strong on the inhibition of SRB by potential SOB.
Collapse
Affiliation(s)
- Huimei Tian
- College of ForestryShandong Agricultural UniversityTaianChina
- Ecology Postdoctoral Mobile StationForestry College of Shandong Agricultural UniversityTaianChina
| | - Peike Gao
- College of Life SciencesQufu Normal UniversityJiningChina
| | - Chen Qi
- College of ForestryShandong Agricultural UniversityTaianChina
| | - Guoqiang Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life SciencesNankai UniversityTianjinChina
| | - Ting Ma
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life SciencesNankai UniversityTianjinChina
| |
Collapse
|
2
|
Liduino VS, Leoni GB, Sérvulo EFC, Cammarota MC. Investigation of carbon steel corrosion by oilfield nitrate- and sulfate-reducing prokaryotes consortia in a hypersaline environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:10830-10840. [PMID: 36087181 DOI: 10.1007/s11356-022-22896-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Microbiologically influenced corrosion (MIC) behavior of the AISI 1020 carbon steel caused by consortia of nitrate-reducing prokaryotes (NRP) and sulfate-reducing prokaryotes (SRP) was investigated separately in hypersaline seawater conditions. Microbiological analysis, surface images, characterization of corrosion products, weight loss, and electrochemical measurements were employed to monitor the corrosion process for 10 days at 40 °C. Compared to abiotic corrosion (control), the extent of corrosion was more aggravated in the conditions with microbial consortia. It corroborates the critical role of microbial activity in corrosion processes in natural and industrial environments since microorganisms are widely spread. Corrosion rates obtained from Tafel extrapolation were statically equal for both microbial consortia (0.093 ± 0.009 mm.y-1); however, the maximum pit depth on the steel surface subjected to NRP-MIC was about 25% deeper (48.5 µm) than that caused by SRP-MIC (32.6 µm). In contrast, SRP activity almost doubled the number of pits on the steel surface (2.7 × 104 ± 4.1 × 103 pits.m-2), resulting in more weight loss than NRP activity. In addition, SRP cells formed nanowires to support direct electron uptake from steel oxidation. This research contributes to the understanding of steel corrosion mechanisms in hypersaline environments with the prevalence of NRP or SRP, as oil reservoirs undergo nitrate injection treatments.
Collapse
Affiliation(s)
- Vitor Silva Liduino
- School of Chemistry, Federal University of Rio de Janeiro, Cidade Universitária, Av. Athos da Silveira Ramos, nº 149, Bloco E, Sala 109, Rio de Janeiro, RJ, 21941-909, Brazil.
| | - Gabriel Batalha Leoni
- School of Chemistry, Federal University of Rio de Janeiro, Cidade Universitária, Av. Athos da Silveira Ramos, nº 149, Bloco E, Sala 109, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Eliana Flávia Camporese Sérvulo
- School of Chemistry, Federal University of Rio de Janeiro, Cidade Universitária, Av. Athos da Silveira Ramos, nº 149, Bloco E, Sala 109, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Magali Christe Cammarota
- School of Chemistry, Federal University of Rio de Janeiro, Cidade Universitária, Av. Athos da Silveira Ramos, nº 149, Bloco E, Sala 109, Rio de Janeiro, RJ, 21941-909, Brazil
| |
Collapse
|
3
|
Assessing Microbial Corrosion Risk on Offshore Crude Oil Production Topsides under Conditions of Nitrate and Nitrite Treatment for Souring. Microorganisms 2022; 10:microorganisms10050932. [PMID: 35630376 PMCID: PMC9145487 DOI: 10.3390/microorganisms10050932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 01/06/2023] Open
Abstract
Oilfield souring is a detrimental effect caused by sulfate-reducing microorganisms that reduce sulfate to sulfide during their respiration process. Nitrate or nitrite can be used to mitigate souring, but may also impart a corrosion risk. Produced fluids sampled from the topside infrastructure of two floating, production, storage, and offloading (FPSO) vessels (Platform A and Platform B) were assessed for microbial corrosion under nitrate and nitrite breakthrough conditions using microcosm tests incubated at 54 °C. Microbial community compositions on each individual FPSO were similar, while those between the two FPSO vessels differed. Platform B microbial communities responded as expected to nitrate breakthrough conditions, where nitrate-reducing activity was enhanced and sulfate reduction was inhibited. In contrast, nitrate treatments of Platform A microbial communities were not as effective in preventing sulfide production. Nitrite breakthrough conditions had the strongest sulfate reduction inhibition in samples from both platforms, but exhibited the highest pitting density. Live experimental replicates with no nitrate or nitrite additive yielded the highest general corrosion rates in the study (up to 0.48 mm/year), while nitrate- or nitrite-treated fluids revealed general corrosion rates that are considered low or moderate (<0.12 mm/year). Overall, the results of this study provide a description of nitrogen- and sulfur-based microbial activities under thermophilic conditions, and their risk for MIC that can occur along fluid processing lines on FPSO topsides that process fluids during offshore oil production operations.
Collapse
|
4
|
Machine Learning Predicts Biogeochemistry from Microbial Community Structure in a Complex Model System. Microbiol Spectr 2022; 10:e0190921. [PMID: 35138192 PMCID: PMC8826735 DOI: 10.1128/spectrum.01909-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Microbial community structure is influenced by the environment and in turn exerts control on many environmental parameters. We applied this concept in a bioreactor study to test whether microbial community structure contains information sufficient to predict the concentration of H2S as the product of sulfate reduction. Microbial sulfate reduction is a major source of H2S in many industrial and environmental systems and is often influenced by the existing physicochemical conditions. Production of H2S in industrial systems leads to occupational hazards and adversely affects the quality of products. A long-term (148 days) experiment was conducted in upflow bioreactors to mimic sulfidogenesis, followed by inhibition with nitrate salts and a resumption of H2S generation when inhibition was released. We determined microbial community structure in 731 samples across 20 bioreactors using 16S rRNA gene sequencing and applied a random forest algorithm to successfully predict different phases of sulfidogenesis and mitigation (accuracy = 93.17%) and sessile and effluent microbial communities (accuracy = 100%). Similarly derived regression models that also included cell abundances were able to predict H2S concentration with remarkably high fidelity (R2 > 0.82). Metabolic profiles based on microbial community structure were also found to be reliable predictors for H2S concentration (R2 = 0.78). These results suggest that microbial community structure contains information sufficient to predict sulfidogenesis in a closed system, with anticipated applications to microbially driven processes in open environments. IMPORTANCE Microbial communities control many biogeochemical processes. Many of these processes are impractical or expensive to measure directly. Because the taxonomic structure of the microbial community is indicative of its function, it encodes information that can be used to predict biogeochemistry. Here, we demonstrate how a machine learning technique can be used to predict sulfidogenesis, a key biogeochemical process in a model system. A distinction of this research was the ability to predict H2S production in a bioreactor from the effluent bacterial community structure without direct observations of the sessile community or other environmental conditions. This study establishes the ability to use machine learning approaches in predicting sulfide concentrations in a closed system, which can be further developed as a valuable tool for predicting biogeochemical processes in open environments. As machine learning algorithms continue to improve, we anticipate increased applications of microbial community structure to predict key environmental and industrial processes.
Collapse
|
5
|
Amundson KK, Borton MA, Daly RA, Hoyt DW, Wong A, Eder E, Moore J, Wunch K, Wrighton KC, Wilkins MJ. Microbial colonization and persistence in deep fractured shales is guided by metabolic exchanges and viral predation. MICROBIOME 2022; 10:5. [PMID: 35034639 PMCID: PMC8762873 DOI: 10.1186/s40168-021-01194-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/01/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Microbial colonization of subsurface shales following hydraulic fracturing offers the opportunity to study coupled biotic and abiotic factors that impact microbial persistence in engineered deep subsurface ecosystems. Shale formations underly much of the continental USA and display geographically distinct gradients in temperature and salinity. Complementing studies performed in eastern USA shales that contain brine-like fluids, here we coupled metagenomic and metabolomic approaches to develop the first genome-level insights into ecosystem colonization and microbial community interactions in a lower-salinity, but high-temperature western USA shale formation. RESULTS We collected materials used during the hydraulic fracturing process (i.e., chemicals, drill muds) paired with temporal sampling of water produced from three different hydraulically fractured wells in the STACK (Sooner Trend Anadarko Basin, Canadian and Kingfisher) shale play in OK, USA. Relative to other shale formations, our metagenomic and metabolomic analyses revealed an expanded taxonomic and metabolic diversity of microorganisms that colonize and persist in fractured shales. Importantly, temporal sampling across all three hydraulic fracturing wells traced the degradation of complex polymers from the hydraulic fracturing process to the production and consumption of organic acids that support sulfate- and thiosulfate-reducing bacteria. Furthermore, we identified 5587 viral genomes and linked many of these to the dominant, colonizing microorganisms, demonstrating the key role that viral predation plays in community dynamics within this closed, engineered system. Lastly, top-side audit sampling of different source materials enabled genome-resolved source tracking, revealing the likely sources of many key colonizing and persisting taxa in these ecosystems. CONCLUSIONS These findings highlight the importance of resource utilization and resistance to viral predation as key traits that enable specific microbial taxa to persist across fractured shale ecosystems. We also demonstrate the importance of materials used in the hydraulic fracturing process as both a source of persisting shale microorganisms and organic substrates that likely aid in sustaining the microbial community. Moreover, we showed that different physicochemical conditions (i.e., salinity, temperature) can influence the composition and functional potential of persisting microbial communities in shale ecosystems. Together, these results expand our knowledge of microbial life in deep subsurface shales and have important ramifications for management and treatment of microbial biomass in hydraulically fractured wells. Video Abstract.
Collapse
Affiliation(s)
- Kaela K. Amundson
- Department of Soil & Crop Sciences, Colorado State University, Fort Collins, CO USA
| | - Mikayla A. Borton
- Department of Soil & Crop Sciences, Colorado State University, Fort Collins, CO USA
| | - Rebecca A. Daly
- Department of Soil & Crop Sciences, Colorado State University, Fort Collins, CO USA
| | - David W. Hoyt
- Environmental Molecular Sciences Laboratory, Richland, WA USA
| | - Allison Wong
- Environmental Molecular Sciences Laboratory, Richland, WA USA
| | - Elizabeth Eder
- Environmental Molecular Sciences Laboratory, Richland, WA USA
| | | | | | - Kelly C. Wrighton
- Department of Soil & Crop Sciences, Colorado State University, Fort Collins, CO USA
| | - Michael J. Wilkins
- Department of Soil & Crop Sciences, Colorado State University, Fort Collins, CO USA
| |
Collapse
|
6
|
Pereira GF, Pilz-Junior HL, Corção G. The impact of bacterial diversity on resistance to biocides in oilfields. Sci Rep 2021; 11:23027. [PMID: 34845279 PMCID: PMC8630110 DOI: 10.1038/s41598-021-02494-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 11/01/2021] [Indexed: 11/18/2022] Open
Abstract
Extreme conditions and the availability of determinate substrates in oil fields promote the growth of a specific microbiome. Sulfate-reducing bacteria (SRB) and acid-producing bacteria (APB) are usually found in these places and can harm important processes due to increases in corrosion rates, biofouling and reservoir biosouring. Biocides such as glutaraldehyde, dibromo-nitrilopropionamide (DBNPA), tetrakis (hydroxymethyl) phosphonium sulfate (THPS) and alkyl dimethyl benzyl ammonium chloride (ADBAC) are commonly used in oil fields to mitigate uncontrolled microbial growth. The aim of this work was to evaluate the differences among microbiome compositions and their resistance to standard biocides in four different Brazilian produced water samples, two from a Southeast Brazil offshore oil field and two from different Northeast Brazil onshore oil fields. Microbiome evaluations were carried out through 16S rRNA amplicon sequencing. To evaluate the biocidal resistance, the Minimum Inhibitory Concentration (MIC) of the standard biocides were analyzed using enriched consortia of SRB and APB from the produced water samples. The data showed important differences in terms of taxonomy but similar functional characterization, indicating the high diversity of the microbiomes. The APB and SRB consortia demonstrated varying resistance levels against the biocides. These results will help to customize biocidal treatments in oil fields.
Collapse
Affiliation(s)
- Gabriela Feix Pereira
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul, Rua Sarmento Leite 500, Porto Alegre, RS, 90050-170, Brazil.,Dorf Ketal Research and Development Center, Rua da Pedreira 559, Nova Santa Rita, RS, 92480-000, Brazil
| | - Harry Luiz Pilz-Junior
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul, Rua Sarmento Leite 500, Porto Alegre, RS, 90050-170, Brazil
| | - Gertrudes Corção
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul, Rua Sarmento Leite 500, Porto Alegre, RS, 90050-170, Brazil.
| |
Collapse
|
7
|
Detection of Sulfate-Reducing Bacteria as an Indicator for Successful Mitigation of Sulfide Production. Appl Environ Microbiol 2021; 87:e0174821. [PMID: 34550760 PMCID: PMC8579970 DOI: 10.1128/aem.01748-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Sulfate-reducing bacteria (SRBs) are one of the main sources of biogenic H2S generation in oil reservoirs. Excess H2S production in these systems leads to oil biosouring, which causes operational risks and health hazards and can increase the cost of refining crude oil. Nitrate salts are often added to the system to suppress sulfidogenesis. Because SRB populations can persist in biofilms even after nitrate treatment, identifying shifts in the sessile community is crucial for successful mitigation. However, sampling the sessile community is hampered by its inaccessibility. Here, we use the results of a long-term (148 days) ex situ experiment to identify particular sessile community members from observations of the sample waste stream. Microbial community structure was determined for 731 samples across 20 bioreactors using 16S rRNA gene sequencing. By associating microbial community structure with specific steps in the mitigation process, we could distinguish between taxa associated with H2S production and mitigation. After initiation of nitrate treatment, certain SRB populations increased in the planktonic community during critical time points, indicating the dissociation of SRBs from the biofilm. Predicted relative abundances of the dissimilatory sulfate reduction pathway also increased during the critical time points. Here, by analyzing the planktonic community structure, we describe a general method that uses high-throughput amplicon sequencing, metabolic inferences, and cell abundance data to identify successful biofilm mitigation. We anticipate that our approach is also applicable to other systems where biofilms must be mitigated but cannot be sampled easily. IMPORTANCE Microbial biofilms are commonly present in many industrial processes and can negatively impact performance and safety. Within the oil industry, subterranean biofilms cause biosouring with implications for oil quality, cost, occupational health, and the environment. Because these biofilms cannot be sampled directly, methods are needed to indirectly assess the success of mitigation measures. This study demonstrates how the planktonic microbial community can be used to assess the dissociation of sulfate-reducing bacterium (SRB)-containing biofilms. We found that an increase in the abundance of a specific SRB population in the effluent after nitrate treatment can be used as a potential indicator for the successful mitigation of biofilm-forming SRBs. Moreover, a method for determining critical time points for detecting potential indicators is suggested. This study expands our knowledge of improving mitigation strategies for biosouring and could have broader implications in other systems where biofilms lead to adverse consequences.
Collapse
|
8
|
Veshareh MJ, Dolfing J, Nick HM. Importance of thermodynamics dependent kinetic parameters in nitrate-based souring mitigation studies. WATER RESEARCH 2021; 206:117673. [PMID: 34624655 DOI: 10.1016/j.watres.2021.117673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/30/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Souring is the unwanted formation of hydrogen sulfide (H2S) by sulfate-reducing microorganisms (SRM) in sewer systems and seawater flooded oil reservoirs. Nitrate treatment (NT) is one of the major methods to alleviate souring: The mechanism of souring remediation by NT is stimulation of nitrate reducing microorganisms (NRM) that depending on the nitrate reduction pathway can outcompete SRM for common electron donors, or oxidize sulfide to sulfate. However, some nitrate reduction pathways may challenge the efficacy of NT. Therefore, a precise understanding of souring rate, nitrate reduction rate and pathways is crucial for efficient souring management. Here, we investigate the necessity of incorporating two thermodynamic dependent kinetic parameters, namely, the growth yield (Y), and FT, a parameter related to the minimum catabolic energy production required by cells to utilize a given catabolic reaction. We first show that depending on physiochemical conditions, Y and FT for SRM change significantly in the range of [0-0.4] mole biomass per mole electron donor and [0.0006-0.5], respectively, suggesting that these parameters should not be considered constant and that it is important to couple souring models with thermodynamic models. Then, we highlight this further by showing an experimental dataset that can be modeled very well by considering variable FT. Next, we show that nitrate based lithotrophic sulfide oxidation to sulfate (lNRM3) is the dominant nitrate reduction pathway. Then, arguing that thermodynamics would suggest that S° consumption should proceed faster than S0 production, we infer that the reason for frequently observed S0 accumulation is its low solubility. Last, we suggest that nitrate based souring treatment will suffer less from S0 accumulation if we (i) act early, (ii) increase temperature and (iii) supplement stoichiometrically sufficient nitrate.
Collapse
Affiliation(s)
- Moein Jahanbani Veshareh
- Danish Hydrocarbon Research and Technology Centre, Technical University of Denmark, Lyngby, Denmark.
| | - Jan Dolfing
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, UK
| | - Hamidreza M Nick
- Danish Hydrocarbon Research and Technology Centre, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
9
|
Long-Term Biocide Efficacy and Its Effect on a Souring Microbial Community. Appl Environ Microbiol 2021; 87:e0084221. [PMID: 34160245 PMCID: PMC8357289 DOI: 10.1128/aem.00842-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Reservoir souring, which is the production of H2S mainly by sulfate-reducing microorganisms (SRM) in oil reservoirs, has been a long-standing issue for the oil industry. While biocides have been frequently applied to control biogenic souring, the effects of biocide treatment are usually temporary, and biocides eventually fail. The reasons for biocide failure and the long-term response of the microbial community remain poorly understood. In this study, one-time biocide treatments with glutaraldehyde (GA) and an aldehyde-releasing biocide (ARB) at low (100 ppm) and high (750 ppm) doses were individually applied to a complex SRM community, followed by 1 year of monitoring of the chemical responses and the microbial community succession. The chemical results showed that souring control failed after 7 days at a dose of 100 ppm regardless of the biocide type and lasting souring control for the entire 1-year period was achieved only with ARB at 750 ppm. Microbial community analyses suggested that the high-dose biocide treatments resulted in 1 order of magnitude lower average total microbial abundance and average SRM abundance, compared to the low-dose treatments. The recurrence of souring was associated with reduction of alpha diversity and with long-term microbial community structure changes; therefore, monitoring changes in microbial community metrics may provide early warnings of the failure of a biocide-based souring control program in the field. Furthermore, spore-forming sulfate reducers (Desulfotomaculum and Desulfurispora) were enriched and became dominant in both GA-treated groups, which could cause challenges for the design of long-lasting remedial souring control strategies. IMPORTANCE Reservoir souring is a problem for the oil and gas industry, because H2S corrodes the steel infrastructure, downgrades oil quality, and poses substantial risks to field personnel and the environment. Biocides have been widely applied to remedy souring, but the long-term performance of biocide treatments is hard to predict or to optimize due to limited understanding of the microbial ecology affected by biocide treatment. This study investigates the long-term biocide performance and associated changes in the abundance, diversity, and structure of the souring microbial community, thus advancing the knowledge toward a deeper understanding of the microbial ecology of biocide-treated systems and contributing to the improvement of current biocide-based souring control practices. The study showcases the potential application of incorporating microbial community analyses to forecast souring, and it highlights the long-term consequences of biocide treatment in the microbial communities, with relevance to both operators and regulators.
Collapse
|
10
|
Marietou A. Sulfate reducing microorganisms in high temperature oil reservoirs. ADVANCES IN APPLIED MICROBIOLOGY 2021; 116:99-131. [PMID: 34353505 DOI: 10.1016/bs.aambs.2021.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
High temperature reservoirs offer a window into the microbial life of the deep biosphere. Sulfate reducing microorganisms have been recovered from high temperature oil reservoirs around the globe and characterized using culture-dependent and culture-independent approaches. The activities of sulfate reducers contribute to reservoir souring and hydrocarbon degradation among other attracting considerable interest from the oil industry for the last 100 years. The extremes of temperature and pressure shape the activities and distribution of sulfate reducing bacteria and archaea in high temperature reservoirs. This chapter will attempt to summarize the key findings on the diversity and activities of sulfate reducing microorganisms in high temperature reservoirs.
Collapse
Affiliation(s)
- Angeliki Marietou
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
11
|
Abou Khalil C, Prince VL, Prince RC, Greer CW, Lee K, Zhang B, Boufadel MC. Occurrence and biodegradation of hydrocarbons at high salinities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143165. [PMID: 33131842 DOI: 10.1016/j.scitotenv.2020.143165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
Hypersaline environments are found around the world, above and below ground, and many are exposed to hydrocarbons on a continuous or a frequent basis. Some surface hypersaline environments are exposed to hydrocarbons because they have active petroleum seeps while others are exposed because of oil exploration and production, or nearby human activities. Many oil reservoirs overlie highly saline connate water, and some national oil reserves are stored in salt caverns. Surface hypersaline ecosystems contain consortia of halophilic and halotolerant microorganisms that decompose organic compounds including hydrocarbons, and subterranean ones are likely to contain the same. However, the rates and extents of hydrocarbon biodegradation are poorly understood in such ecosystems. Here we describe hypersaline environments potentially or likely to become contaminated with hydrocarbons, including perennial and transient environments above and below ground, and discuss what is known about the microbes degrading hydrocarbons and the extent of their activities. We also discuss what limits the microbial hydrocarbon degradation in hypersaline environments and whether there are opportunities for inhibiting (oil storage) or stimulating (oil spills) such biodegradation as the situation requires.
Collapse
Affiliation(s)
- Charbel Abou Khalil
- Center for Natural Resources, Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | | | | | - Charles W Greer
- National Research Council Canada, Energy, Mining and Environment Research Centre, Montreal, QC H4P 2R2, Canada
| | - Kenneth Lee
- Fisheries and Oceans Canada, Ecosystem Science, Ottawa, ON K1A 0E6, Canada
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| | - Michel C Boufadel
- Center for Natural Resources, Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| |
Collapse
|
12
|
Ibrahim A, Hawboldt K, Bottaro C, Khan F. Simulation of sour‐oxic‐nitrite chemical environment in oil and gas facilities. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.24003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Abdulhaqq Ibrahim
- C‐RISE, Faculty of Engineering and Applied Science Memorial University St John's Newfoundland and Labrador Canada
| | - Kelly Hawboldt
- C‐RISE, Faculty of Engineering and Applied Science Memorial University St John's Newfoundland and Labrador Canada
| | - Christina Bottaro
- Department of Chemistry Memorial University St John's Newfoundland and Labrador Canada
| | - Faisal Khan
- C‐RISE, Faculty of Engineering and Applied Science Memorial University St John's Newfoundland and Labrador Canada
| |
Collapse
|
13
|
Dutta A, Smith B, Goldman T, Walker L, Streets M, Eden B, Dirmeier R, Bowman JS. Understanding Microbial Community Dynamics in Up-Flow Bioreactors to Improve Mitigation Strategies for Oil Souring. Front Microbiol 2020; 11:585943. [PMID: 33343524 PMCID: PMC7744764 DOI: 10.3389/fmicb.2020.585943] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/09/2020] [Indexed: 01/04/2023] Open
Abstract
Oil souring occurs when H2S is generated in oil reservoirs. This not only leads to operational risks and health hazards but also increases the cost of refining crude oil. Sulfate-reducing microorganisms are considered to be the main source of the H2S that leads to oil souring. Substrate competition between nitrate-reducing and sulfate-reducing microorganisms makes biosouring mitigation via the addition of nitrate salts a viable strategy. This study explores the shift in microbial community across different phases of biosouring and mitigation. Anaerobic sand-filled columns wetted with seawater and/or oil were used to initiate the processes of sulfidogenesis, followed by mitigation with nitrate, rebound sulfidogenesis, and rebound control phases (via nitrate and low salinity treatment). Shifts in microbial community structure and function were observed across different phases of seawater and oil setups. Marine bacterial taxa (Marinobacter, Marinobacterium, Thalassolituus, Alteromonas, and Cycloclasticus) were found to be the initial responders to the application of nitrate during mitigation of sulfidogenesis in both seawater- and oil- wetted columns. Autotrophic groups (Sulfurimonas and Desulfatibacillum) were found to be higher in seawater-wetted columns compared to oil-wetted columns, suggesting the potential for autotrophic volatile fatty acid (VFA) production in oil-field aquifers when seawater is introduced. Results indicate that fermentative (such as Bacteroidetes) and oil-degrading bacteria (such as Desulfobacula toluolica) play an important role in generating electron donors in the system, which may sustain biosouring and nitrate reduction. Persistence of certain microorganisms (Desulfobacula) across different phases was observed, which may be due to a shift in metabolic lifestyle of the microorganisms across phases, or zonation based on nutrient availability in the columns. Overall results suggest mitigation strategies for biosouring can be improved by monitoring VFA concentrations and microbial community dynamics in the oil reservoirs during secondary recovery of oil.
Collapse
Affiliation(s)
- Avishek Dutta
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
| | - Ben Smith
- BP Upstream Technology, London, United Kingdom
| | | | - Leanne Walker
- Rawwater Engineering Company Ltd., Culcheth, United Kingdom
| | | | - Bob Eden
- Rawwater Engineering Company Ltd., Culcheth, United Kingdom
| | | | - Jeff S. Bowman
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
14
|
Zhang X, Zhang D, Huang Y, Wu S, Lu P. The anodic potential shaped a cryptic sulfur cycling with forming thiosulfate in a microbial fuel cell treating hydraulic fracturing flowback water. WATER RESEARCH 2020; 185:116270. [PMID: 32784035 DOI: 10.1016/j.watres.2020.116270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/22/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
The flowback water (FW) from shale gas exploitation can be effectively treated by bioelectrochemical technology, but sulfide overproduction remains to be addressed. Herein, sulfate-reducing bacteria (SRB) meditated microbial fuel cells (MFCs) with anodic potential control were used. COD removal gradually increased to 67.4 ± 5.1% in electrode-potential-control (EPC) MFCs and 78.9 ± 2.4% in the MFC with open circuit (OC-MFC). However, in EPC MFCs sulfate removal stabilized at much lower levels (no more than 19.9 ± 1.9%) along with much lower sulfide concentrations, but in OC-MFC it increased and finally stabilized at 59.9 ± 0.1%. Partial sulfur reuse in EPC MFCs was indicated by the current production. Notably, thiosulfate was specially detected under low potentials and effectively oxidized in EPC MFCs, especially under -0.1 V vs. SHE, which probably related to the sulfur reuse. Metagenomics analysis showed that the anode with -0.1 and -0.2 V likely shunted electrons from cytochromes that used for reducing DsrC-S0 trisulfide and thus contributed to producing thiosulfate and decreasing sulfide production. Meanwhile, the anode with -0.1 V specially accumulated sulfur-oxidizing system (Sox) genes regarding thiosulfate and sulfite oxidation to sulfate, which concurred to the effective thiosulfate oxidation and also indicated the possible direct sulfite oxidation to sulfate during the sulfur cycling. But the anode of -0.2 V highly accumulated genes for thiosulfate and sulfite reduction. Both anodes also distinctly accumulated genes regarding thiosulfate oxidation to tetrathionate and sulfide oxidation to sulfur or polysulfide. Further, sulfur-oxidizing bacteria were specially enriched in EPC MFCs and likely contributed to thiosulfate and sulfite oxidation. Thus, we suggested that the higher electrode potential (e.g. -0.1 V) can shape a cryptic sulfur cycling, in which sulfate was first reduced to sulfite, and then reoxidized to sulfate by forming thiosulfate as an important intermediate or by direct sulfite oxidation. The results provide new sights on the bioelectrochemical treatment of wastewater containing complex organics and sulfate.
Collapse
Affiliation(s)
- Xiaoting Zhang
- Department of Environmental Science, Chongqing University, Chongqing 400044, China
| | - Daijun Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Department of Environmental Science, Chongqing University, Chongqing 400044, China.
| | - Yongkui Huang
- Department of Environmental Science, Chongqing University, Chongqing 400044, China
| | - Shanshan Wu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Peili Lu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Department of Environmental Science, Chongqing University, Chongqing 400044, China
| |
Collapse
|
15
|
Physicochemical and biological controls of sulfide accumulation in a high temperature oil reservoir. Appl Microbiol Biotechnol 2020; 104:8467-8478. [DOI: 10.1007/s00253-020-10828-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/02/2020] [Accepted: 08/11/2020] [Indexed: 01/04/2023]
|
16
|
Simulation Study on Reservoir Souring Induced by Injection of Reservoir Brine Containing Sulfate-Reducing Bacteria. SUSTAINABILITY 2020. [DOI: 10.3390/su12114603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This paper examined the reservoir souring induced by the sulfate-reducing bacteria (SRB) inhabiting the reservoir brine of an oilfield in Japan. Although the concentration of sulfate of the reservoir brine was lower than that of seawater, which often was injected into oil reservoir and induced the reservoir souring, the SRB inhabiting the reservoir brine generated hydrogen sulfide (H2S) by using sulfate and an electron donor in the reservoir brine. This paper therefore developed a numerical simulator predicting the reservoir souring in the reservoir into which the reservoir brine was injected. The results of the simulation suggested that severe reservoir souring was not induced by the brine injection; however, the SRB grew and generated H2S around the injection well where temperature was decreased by injected brine whose temperature was lower than that of formation water. In particular, H2S was actively generated in the mixing zone between the injection water and formation water, which contained a high level of the electron donor. Furthermore, the results of numerical simulation suggested that the reservoir souring could be prevented more surely by sterilizing the SRB in the injection brine, heating up the injection brine to 50 °C, or reducing sulfate in the injection brine.
Collapse
|
17
|
Kamarisima, Miyanaga K, Tanji Y. The utilization of aromatic hydrocarbon by nitrate- and sulfate-reducing bacteria in single and multiple nitrate injection for souring control. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Kannan P, Su SS, Mannan MS, Castaneda H, Vaddiraju S. A Review of Characterization and Quantification Tools for Microbiologically Influenced Corrosion in the Oil and Gas Industry: Current and Future Trends. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b02211] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Pranav Kannan
- Mary Kay O’Connor Process Safety Center, Texas A&M University System, 3122 TAMU, College Station, Texas 77843-3122, United States
- Artie McFerrin Department of Chemical Engineering, Texas A&M University System, 3122 TAMU, College Station, Texas 77843-3122, United States
| | - Shei Sia Su
- National Corrosion and Materials Reliability Laboratory, Texas A&M University, College Station, Texas 77843-3003, United States
- Materials Science and Engineering Department, Texas A&M University, College Station, Texas 77843-3003, United States
| | - M. Sam Mannan
- Mary Kay O’Connor Process Safety Center, Texas A&M University System, 3122 TAMU, College Station, Texas 77843-3122, United States
- Artie McFerrin Department of Chemical Engineering, Texas A&M University System, 3122 TAMU, College Station, Texas 77843-3122, United States
| | - Homero Castaneda
- National Corrosion and Materials Reliability Laboratory, Texas A&M University, College Station, Texas 77843-3003, United States
- Materials Science and Engineering Department, Texas A&M University, College Station, Texas 77843-3003, United States
| | - Sreeram Vaddiraju
- Mary Kay O’Connor Process Safety Center, Texas A&M University System, 3122 TAMU, College Station, Texas 77843-3122, United States
- Artie McFerrin Department of Chemical Engineering, Texas A&M University System, 3122 TAMU, College Station, Texas 77843-3122, United States
| |
Collapse
|