1
|
Pinto ASS, McDonald LJ, Jones RJ, Massanet-Nicolau J, Guwy A, McManus M. Production of volatile fatty acids by anaerobic digestion of biowastes: Techno-economic and life cycle assessments. BIORESOURCE TECHNOLOGY 2023; 388:129726. [PMID: 37690217 DOI: 10.1016/j.biortech.2023.129726] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/17/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Abstract
Production of volatile fatty acids from food waste and lignocellulosic materials has potential to avoid emissions from their production from petrochemicals and provide valuable feedstocks. Techno-economic and life cycle assessments of using food waste and grass to produce volatile fatty acids through anaerobic digestion have been conducted. Uncertainty and sensitivity analysis for both assessments were done to enable a robust forecast of key-aspects of the technology deployment at industrial scale. Results show low environmental impact of volatile fatty acid with food wastes being the most beneficial feedstock with global warming potential varying from -0.21 to 0.01 CO2 eq./kg of product. Food wastes had the greatest economic benefit with a breakeven selling price of 1.11-1.94 GBP/kg (1.22-2.33 USD) of volatile fatty acids in the product solution determined through sensitivity analysis. Anaerobic digestion of wastes is therefore a promising alternative to traditional volatile fatty acid production routes, providing economic and environmental benefits.
Collapse
Affiliation(s)
- Ariane S S Pinto
- Institute for Sustainability, University of Bath, BA2 7AY Bath, England, United Kingdom; Mechanical Engineering Department, University of Bath, BA2 7AY Bath, England, United Kingdom
| | - Lewis J McDonald
- Institute for Sustainability, University of Bath, BA2 7AY Bath, England, United Kingdom; Mechanical Engineering Department, University of Bath, BA2 7AY Bath, England, United Kingdom.
| | - Rhys Jon Jones
- Sustainable Environment Research Centre, University of South Wales, CF37 1DL Treforest, Pontypridd, Wales, United Kingdom
| | - Jaime Massanet-Nicolau
- Sustainable Environment Research Centre, University of South Wales, CF37 1DL Treforest, Pontypridd, Wales, United Kingdom
| | - Alan Guwy
- Sustainable Environment Research Centre, University of South Wales, CF37 1DL Treforest, Pontypridd, Wales, United Kingdom
| | - Marcelle McManus
- Institute for Sustainability, University of Bath, BA2 7AY Bath, England, United Kingdom; Mechanical Engineering Department, University of Bath, BA2 7AY Bath, England, United Kingdom
| |
Collapse
|
2
|
Almeida JR, León ES, Corona EL, Fradinho JC, Oehmen A, Reis MAM. Ammonia impact on the selection of a phototrophic - chemotrophic consortium for polyhydroxyalkanoates production under light-feast / dark-aerated-famine conditions. WATER RESEARCH 2023; 244:120450. [PMID: 37574626 DOI: 10.1016/j.watres.2023.120450] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/15/2023]
Abstract
Phototrophic polyhydroxyalkanoate (PHA) production is an emerging technology for recovering carbon and nutrients from diverse wastewater streams. However, reliable selection methods for the enrichment of PHA accumulating purple phototrophic bacteria (PPB) in phototrophic mixed cultures (PMC) are needed. This research evaluates the impact of ammonia on the selection of a PHA accumulating phototrophic-chemotrophic consortium, towards the enrichment of PHA accumulating PPB. The culture was operated under light-feast/dark-aerated-famine and winter simulated-outdoor conditions (13.2 ± 0.9 °C, transient light, 143.5 W/m2), using real fermented domestic wastewater with molasses as feedstock. Three ammonia supply strategies were assessed: 1) ammonia available only in the light phase, 2) ammonia always present and 3) ammonia available only during the dark-aerated-famine phase. Results showed that the PMC selected under 1) ammonia only in the light and 3) dark-famine ammonia conditions, presented the lowest PHA accumulation capacity during the light period (11.1 % g PHA/g VSS and 10.4 % g PHA/g VSS, respectively). In case 1), the absence of ammonia during the dark-aerated-famine phase did not promote the selection of PHA storing PPB, whereas in case 3) the absence of ammonia during the light period favoured cyanobacteria growth as well as purple sulphur bacteria with increased non-PHA inclusions, resulting in an overall decrease of phototrophic PHA accumulation capacity. The best PHA accumulation performance was obtained with selection under permanent presence of ammonia (case 2), which attained a PHA content of 21.6 % g PHA/g VSS (10.2 Cmmol PHA/L), at a production rate of 0.57 g PHA/L·day, during the light period in the selection reactor. Results in case 2 also showed that feedstock composition impacts the PMC performance, with feedstocks richer in more reduced volatile fatty acids (butyric and valeric acids) decreasing phototrophic performance and leading to acids entering the dark-aerated phase. Nevertheless, the presence of organic carbon in the aerated phase was not detrimental to the system. In fact, it led to the establishment of a phototrophic-chemotrophic consortium that could photosynthetically accumulate a PHA content of 13.2 % g PHA/g VSS (6.7 Cmmol PHA/L) at a production rate of 0.20 g PHA/L·day in the light phase, and was able to further increase that storage up to 18.5 % g PHA/g VSS (11.0 Cmmol PHA/L) at a production rate of 1.35 g PHA/L·day in the dark-aerated period. Furthermore, the light-feast/dark-aerated-famine operation was able to maintain the performance of the selection reactor under winter conditions, unlike non-aerated PMC systems operated under summer conditions, suggesting that night-time aeration coupled with the constant presence of ammonia can contribute to overcoming the seasonal constraints of outdoor operation of PMCs for PHA production.
Collapse
Affiliation(s)
- J R Almeida
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - E Serrano León
- FCC Servicios Ciudadanos, Av. del Camino de Santiago, 40, edificio 3, 4ª planta, 28050 Madrid, Spain
| | - E Lara Corona
- FCC Servicios Ciudadanos, Av. del Camino de Santiago, 40, edificio 3, 4ª planta, 28050 Madrid, Spain
| | - J C Fradinho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal.
| | - A Oehmen
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - M A M Reis
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| |
Collapse
|
3
|
Goswami L, Kushwaha A, Napathorn SC, Kim BS. Valorization of organic wastes using bioreactors for polyhydroxyalkanoate production: Recent advancement, sustainable approaches, challenges, and future perspectives. Int J Biol Macromol 2023; 247:125743. [PMID: 37423435 DOI: 10.1016/j.ijbiomac.2023.125743] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/23/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Microbial polyhydroxyalkanoates (PHA) are encouraging biodegradable polymers, which may ease the environmental problems caused by petroleum-derived plastics. However, there is a growing waste removal problem and the high price of pure feedstocks for PHA biosynthesis. This has directed to the forthcoming requirement to upgrade waste streams from various industries as feedstocks for PHA production. This review covers the state-of-the-art progress in utilizing low-cost carbon substrates, effective upstream and downstream processes, and waste stream recycling to sustain entire process circularity. This review also enlightens the use of various batch, fed-batch, continuous, and semi-continuous bioreactor systems with flexible results to enhance the productivity and simultaneously cost reduction. The life-cycle and techno-economic analyses, advanced tools and strategies for microbial PHA biosynthesis, and numerous factors affecting PHA commercialization were also covered. The review includes the ongoing and upcoming strategies viz. metabolic engineering, synthetic biology, morphology engineering, and automation to expand PHA diversity, diminish production costs, and improve PHA production with an objective of "zero-waste" and "circular bioeconomy" for a sustainable future.
Collapse
Affiliation(s)
- Lalit Goswami
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Anamika Kushwaha
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | | | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| |
Collapse
|
4
|
Zhang Z, Lin Y, Wu S, Li X, Cheng JJ, Yang C. Effect of composition of volatile fatty acids on yield of polyhydroxyalkanoates and mechanisms of bioconversion from activated sludge. BIORESOURCE TECHNOLOGY 2023:129445. [PMID: 37399967 DOI: 10.1016/j.biortech.2023.129445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Polyhydroxyalkanoates (PHA) is green biodegradable natural polymer. Here PHA production from volatile fatty acids (VFAs) was investigated in sequential batch reactors inoculated with activated sludge. Single or mixed VFAs ranging from acetate to valerate were evaluated, and the dominant VFA concentration was 2 times of that of the others in the tests. Results showed that mixed substrates achieved about 1.6 times higher yield of PHA production than single substrate. The butyrate-dominated substrates maximized PHA content at 72.08% of VSS, and the valerate-dominated substrates were followed with PHA content at 61.57%. Metabolic flux analysis showed the presence of valerate in the substrates caused a more robust PHA production. There was at least 20% of 3-hydroxyvalerate in the polymer. Hydrogenophaga and Comamonas were the main PHA producers. As VFAs could be produced in anaerobic digestion of organic wastes, the methods and data here could be referred for efficient green bioconversion of PHA.
Collapse
Affiliation(s)
- Ziying Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Yan Lin
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Shaohua Wu
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Xiang Li
- Hunan Urban and Rural Environmental Construction Co., Ltd, Changsha, Hunan 410118, China
| | - Jay J Cheng
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China; Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China.
| |
Collapse
|
5
|
Huang J, Chen K, Xia X, Zhu H. Long-term performance on volatile fatty acids production improved in a kitchen wastewater fermenter by co-fermentation of sludge and membrane separation. CHEMOSPHERE 2023:139049. [PMID: 37245599 DOI: 10.1016/j.chemosphere.2023.139049] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 05/30/2023]
Abstract
Kitchen wastewater can be transformed into a valuable resource through anaerobic fermentation. However, the efficiency of this process is hindered by various factors including salt inhibition and nutrient imbalance. In this study, we examined the effects of co-fermentation with sludge and membrane filtration on the anaerobic fermentation of kitchen wastewater. Our findings indicate that co-fermentation with sludge resulted in a 4-fold increase in fermentation rate and a 2-fold increase in short-chain fatty acids (SCFAs) production. This suggests that the addition of sludge helped to alleviate salt and acid inhibition through ammonia buffering and elemental balancing. The membrane filtration retained 60% of soluble carbohydrates and 15% of proteins in the reactor for further fermentation and recovered nearly 100% of NH4+ and SCFAs in the filtrate, which helped to alleviate acid and ammonia inhibition. The combined fermentation system significantly increased the richness and diversity of microorganisms, particularly caproiciproducens and Clostridium_sensu_stricto_12. The membrane flux remained stable and at a relatively high level, indicating that the combined process may be economically feasible. However, scaling up the co-anaerobic fermentation of kitchen wastewater and sludge in a membrane reactor is necessary for further economic evaluation in the future.
Collapse
Affiliation(s)
- Jianghao Huang
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China; Power China Guizhou Electric Power Design & Research Institute Co., LTD, Guiyang, 550002, China
| | - Kai Chen
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China
| | - Xiaodong Xia
- Power China Guizhou Electric Power Design & Research Institute Co., LTD, Guiyang, 550002, China
| | - Hongtao Zhu
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
6
|
Clagnan E, Adani F. Influence of feedstock source on the development of polyhydroxyalkanoates-producing mixed microbial cultures in continuously stirred tank reactors. N Biotechnol 2023; 76:90-97. [PMID: 37220837 DOI: 10.1016/j.nbt.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/14/2023] [Accepted: 05/20/2023] [Indexed: 05/25/2023]
Abstract
Polyhydroxyalkanoates (PHAs) are the new frontier of bioplastic production; however, research is needed to develop and characterise efficient mixed microbial communities (MMCs) for their application with a multi-feedstock approach. Here, the performance and composition of six MMCs developed from the same inoculum on different feedstocks were investigated through Illumina sequencing to understand community development and identify possible redundancies in terms of genera and PHA metabolism. High PHA production efficiencies (>80% mg CODPHA mg-1 CODOA-consumed) were seen across all samples, but differences in the organic acids (OAs) composition led to different ratios of the monomers poly(3-hydroxybutyrate) (3HB) to poly(3-hydroxyvalerate) (3HV). Communities differed across all feedstocks, with enrichments in specific PHA-producing genera, but analysis of potential enzymatic activity identified a certain degree of functional redundancy, possibly leading to the general high efficiency seen in PHA production from all feedstocks. Leading PHAs producers across all feedstocks were identified in genera such as Thauera, Leadbetterella, Neomegalonema and Amaricoccus.
Collapse
Affiliation(s)
- Elisa Clagnan
- Gruppo Ricicla labs., Department of Agricultural and Environmental Sciences - Production, Territory, Agroenergy (DiSAA), University of Milan (Università degli studi di Milano), Via Celoria 2, 20133 Milano, Italy.
| | - Fabrizio Adani
- Gruppo Ricicla labs., Department of Agricultural and Environmental Sciences - Production, Territory, Agroenergy (DiSAA), University of Milan (Università degli studi di Milano), Via Celoria 2, 20133 Milano, Italy.
| |
Collapse
|
7
|
Liang B, Zhang X, Wang F, Miao C, Ji Y, Huang Z, Gu P, Liu X, Fan X, Li Q. Production of polyhydroxyalkanoate by mixed cultivation of Brevundimonas diminuta R79 and Pseudomonas balearica R90. Int J Biol Macromol 2023; 234:123667. [PMID: 36796552 DOI: 10.1016/j.ijbiomac.2023.123667] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
The microflora in the activated sludge of propylene oxide saponification wastewater is characterized by a clear succession after enrichment and domestication, and the specifically enriched strains can significantly increase the yield of polyhydroxyalkanoate. In this study, Pseudomonas balearica R90 and Brevundimonas diminuta R79, which are dominant strain after domestication, were selected as models to examine the interactive mechanisms associated with the synthesis of polyhydroxyalkanoate by co-cultured strains. RNA-Seq analysis revealed the up-regulated expression of the acs and phaA genes of strains R79 and R90 in the co-culture group, which enhanced their utilization of acetic acid and synthesis of poly-β-hydroxybutyrate. Cell dry weight and the yield of poly-β-hydroxybutyrate in the co-culture group were accordingly considerably higher than those in the respective pure culture groups. In addition, two-component system, quorum-sensing, flagellar synthesis-related, and chemotaxis-related genes were enriched in strain R90, thereby indicating that compared with the R79 strain, R90 can adapt more rapidly to a domesticated environment. Expression of the acs gene was higher in R79 than in R90, and consequently, strain R79 could more efficiently assimilate acetate in the domesticated environment, and thus predominated in the culture population at the end of the fermentation period.
Collapse
Affiliation(s)
- Boya Liang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Xiujun Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Fang Wang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Changfeng Miao
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Yan Ji
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Zhaosong Huang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Pengfei Gu
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Xiaoli Liu
- Key Laboratory of Marine Biotechnology in Universities of Shandong, School of Life Sciences, Ludong University, Yantai, China
| | - Xiangyu Fan
- School of Biological Science and Technology, University of Jinan, Jinan, China.
| | - Qiang Li
- School of Biological Science and Technology, University of Jinan, Jinan, China.
| |
Collapse
|
8
|
Cai F, Lin M, Jin W, Chen C, Liu G. Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxvalerate) from volatile fatty acids by Cupriavidus necator. J Basic Microbiol 2023; 63:128-139. [PMID: 36192143 DOI: 10.1002/jobm.202200448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/26/2022] [Accepted: 09/10/2022] [Indexed: 02/03/2023]
Abstract
A promising strategy to alleviate the plastic pollution from traditional petroleum-based plastics is the application of biodegradable plastics, in which polyhydroxyalkanoates (PHAs) have received increasing interest owing to their considerable biodegradability. In the PHAs family, poly(3-hydroxybutyrate-co-3-hydroxvalerate) (PHBV) has better mechanical properties, which possesses broader application prospects. With this purpose, the present study adopted Cupriavidus necator to synthesize PHBV utilizing volatile fatty acids (VFAs) as sole carbon sources. Results showed that the concentration and composition of VFAs significantly influenced the production of PHAs. Especially, even carbon VFAs (acetate and butyrate) synthesized only poly(3-hydroxybutyrate) (PHB), while the addition of odd carbon VFAs (propionate and valerate) resulted in PHBV production. The 3-hydroxyvalerate (3HV) contents in PHBV were directly determined by the specific VFAs compositions, in which valerate was the preferred substrate for 3HV accumulation. After optimization by response surface methodology, the highest PHBV accumulation achieved 79.47% in dry cells, and the conversion efficiency of VFAs to PHBV reached 40%, with the PHBV production of 1.20 ± 0.05 g/L. This study revealed the metabolic rule of VFAs converting into PHAs by C. necator and figured out the optimal VFAs condition for PHBV accumulation, which provides a valuable reference for developing downstream strategies of PHBV production in industrial applications in future.
Collapse
Affiliation(s)
- Fanfan Cai
- Biomass Energy and Environmental Engineering Research Center, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Ming Lin
- Biomass Energy and Environmental Engineering Research Center, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Wenxiong Jin
- Biomass Energy and Environmental Engineering Research Center, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Chang Chen
- Biomass Energy and Environmental Engineering Research Center, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Guangqing Liu
- Biomass Energy and Environmental Engineering Research Center, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
9
|
Segura PC, Wattiez R, Vande Wouwer A, Leroy B, Dewasme L. Dynamic modeling of Rhodospirillum rubrum PHA production triggered by redox stress during VFA photoheterotrophic assimilations. J Biotechnol 2022; 360:45-54. [PMID: 36273668 DOI: 10.1016/j.jbiotec.2022.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/29/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022]
Abstract
Polyhydroxyalkanoates (PHA) represent an environmentally friendly alternative to petroleum based plastics for a broad range of applications from packaging to biomedical devices. In the prospect of an industrial PHA production, it is highly valuable to accurately control the incorporation of different repeating units into the polymer, to produce a polyester with specific material characteristics. In this study, we develop macroscopic dynamic models predicting the polymer production and composition when mixtures containing up to four volatile fatty acids (VFA) are used as substrates. These models successfully reproduce the sequential (and preferential) substrate consumption and polymer production/reconsumption patterns, experimentally observed during biomass growth, thanks to simple kinetic structures based on Monod and inhibition factors. These models can serve as a basis for numerical simulation and process analysis, as well as process intensification through model-based optimization and control.
Collapse
Affiliation(s)
| | - Ruddy Wattiez
- Laboratory of Proteomics and Microbiology, University of Mons, 7000 Mons, Belgium
| | - Alain Vande Wouwer
- Systems, Estimation, Control and Optimization Group (SECO), University of Mons, 7000 Mons, Belgium
| | - Baptiste Leroy
- Laboratory of Proteomics and Microbiology, University of Mons, 7000 Mons, Belgium
| | - Laurent Dewasme
- Systems, Estimation, Control and Optimization Group (SECO), University of Mons, 7000 Mons, Belgium.
| |
Collapse
|
10
|
Amer A, Kim Y. Modeling the growth of diverse microorganisms during feast-famine enrichment. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10803. [PMID: 36332660 DOI: 10.1002/wer.10803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Polyhydroxyalkanoates (PHAs) are biodegradable polymers that can decrease the severe environmental pollution of petroleum plastics. PHA production by mixed microbial communities has been extensively studied to lower the high PHA prices. However, the competition between distinct microbial communities during the enrichment of PHA accumulators in mixed cultures has not been widely investigated. Thus, in this work, we developed a mathematical model for the competition between PHA accumulators and non-PHA accumulators in the feast-famine enrichment strategy. The developed model successfully simulated published lab-scale experimental data for Plasticicumulans acidivorans, a well-studied PHA accumulator that can store PHA up to 90% of the cell weight. The growth kinetics for both PHA and non-PHA accumulators were estimated and compared to the values in the literature. The uncertainties in the model kinetics were studied by expanding the model to include additional sub-biomass components for each heterotrophic group. As a result, the microbial diversity of microbial communities was observed to influence the enrichment of PHA accumulators in mixed cultures. Additionally, the calibrated model was applied to investigate the cultivation conditions, such as cycle lengths, carbon-to-nitrogen ratio, and solids retention time for successful P. acidivorans enrichment in mixed cultures. The developed model can be applied to control the cultivation and enrichment of PHA accumulators in large-scale PHA production systems. PRACTITIONER POINTS: A new model for the enrichment of PHA accumulators was developed. The model can simulate PHA accumulation by enriched cultures. The model was calibrated and validated for Plasticicumulans acidivorans. The impact of microbial diversity on enriching PHA accumulators was investigated. Short cycles (<12 h) and SRT (<10 d) are suggested for successful enrichment.
Collapse
Affiliation(s)
- Abdelrahman Amer
- Department of Civil Engineering, McMaster University, Hamilton, Canada
- Civil Engineering Department, Menoufia University, Shebin ElKom, Egypt
| | - Younggy Kim
- Department of Civil Engineering, McMaster University, Hamilton, Canada
| |
Collapse
|
11
|
Extraction of low molecular weight polyhydroxyalkanoates from mixed microbial cultures using bio-based solvents. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
12
|
Lhamo P, Mahanty B. Structural Variability, Implementational Irregularities in Mathematical Modelling of Polyhydroxyalkanoates (PHAs) Production– a State of the Art Review. Biotechnol Bioeng 2022; 119:3079-3095. [DOI: 10.1002/bit.28213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/09/2022] [Accepted: 08/17/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Pema Lhamo
- Department of Biotechnology, Karunya Institute of Technology and SciencesCoimbatore641114Tamil NaduIndia
| | - Biswanath Mahanty
- Department of Biotechnology, Karunya Institute of Technology and SciencesCoimbatore641114Tamil NaduIndia
| |
Collapse
|
13
|
Cabecas Segura P, De Meur Q, Alloul A, Tanghe A, Onderwater R, Vlaeminck SE, Wouwer AV, Wattiez R, Dewasme L, Leroy B. Preferential photoassimilation of volatile fatty acids by purple non-sulfur bacteria: Experimental kinetics and dynamic modelling. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
14
|
Peng L, Lou W, Xu Y, Yu S, Liang C, Alloul A, Song K, Vlaeminck SE. Regulating light, oxygen and volatile fatty acids to boost the productivity of purple bacteria biomass, protein and co-enzyme Q10. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153489. [PMID: 35122839 DOI: 10.1016/j.scitotenv.2022.153489] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/16/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Purple non‑sulfur bacteria (PNSB) possess significant potential for bioresource recovery from wastewater. Effective operational tools are needed to boost productivity and direct the PNSB biomass towards abundant value-added substances (e.g., protein and co-enzyme Q10, CoQ10). This study aimed to investigate the impact of light, oxygen and volatile fatty acids (VFAs) on PNSB growth (i.e., Rhodobacter sphaeroides) and productivity of protein and CoQ10. Overall, the biomass yields and specific growth rates of PNSB were in the ranges of 0.57-1.08 g biomass g-1 CODremoved and 0.48-0.71 d-1, respectively. VFAs did not influence the biomass yield, yet acetate and VFA mixtures enhanced the specific growth rate with a factor of 1.2-1.5 compared to propionate and butyrate. The most PNSB biomass (1.08 g biomass g-1 CODremoved and 0.71 d-1) and the highest biomass quality (protein content of 609 mg g-1 dry cell weight (DCW) and CoQ10 content of 13.21 mg g-1 DCW) were obtained in the presence of VFA mixtures under natural light and microaerobic (low light alternated with darkness; dissolved oxygen (DO) between 0.5 and 1 mg L-1) conditions (vs. light anaerobic and dark aerobic cultivations). Further investigation on VFAs dynamics revealed that acetate was most rapidly consumed by PNSB in the individual VFA feeding (specific uptake rate of 0.76 g COD g-1 DCW d-1), while acetate as a co-substrate in the mixed VFAs feeding might accelerate the consumption of propionate and butyrate through providing additional cell metabolism precursor. Enzymes activities of succinate dehydrogenase and fructose-1,6-bisphosphatase as well as the concentration of photo pigments confirmed that light, oxygen and VFAs regulated the key enzymes in the energy metabolism and biomass synthesis to boost PNSB growth. These results provide a promising prospect for utilization of fermented waste stream for the harvest of PNSB biomass, protein and CoQ10.
Collapse
Affiliation(s)
- Lai Peng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China.
| | - Wenjing Lou
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Yifeng Xu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Siwei Yu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Chuanzhou Liang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Abbas Alloul
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Kang Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Siegfried E Vlaeminck
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| |
Collapse
|
15
|
Huang J, Pan Y, Liu L, Liang J, Wu L, Zhu H, Zhang P. High salinity slowed organic acid production from acidogenic fermentation of kitchen wastewater by shaping functional bacterial community. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 310:114765. [PMID: 35202951 DOI: 10.1016/j.jenvman.2022.114765] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
The high salinity of kitchen wastewater might have adverse effects on the production of short-chain fatty acids (SCFAs) in anaerobic fermentation. The effects and mechanisms of salinity on SCFA production in the anaerobic fermentation of kitchen wastewater were studied by varying the salt concentration, as follows: 0 g/L (S0), 2 g/L (S2), 6 g/L (S6), 10 g/L (S10), 15 g/L (S15), and 20 g/L (S20). Experimental results showed that hypersaline conditions (>10 g NaCl/L) accelerated the release of soluble proteins at the initial stage of anaerobic fermentation. They also significantly prohibited the hydrolysis and degradation of soluble proteins and carbohydrates. Compared with low salinity tests, the SCFA concentrations under hypersaline conditions (>10 g NaCl/L) only reached approximately 43% of the highest concentration on day 10, although the SCFA concentrations in all tests were very close on day 10 (14 g COD/L). High salinity delayed the production of n-butyric acid but did not change the composition of the total SCFAs. High salinity enriched Enterococcus and Bifidobacterium, the relative abundance levels of which reached 27.57% and 49.71%, respectively, before the depletion of substrate. High salinity showed a negative correlation with the relative abundance of the genera Clostridium_sensu_stricto_1, Prevotella and unclassified_f_Oscillospiraceae which are responsible for SCFA production. This study provided a theoretical basis for the fficient utilization of kitchen wastewater.
Collapse
Affiliation(s)
- Jianghao Huang
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yu Pan
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Li Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Jinsong Liang
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Linyu Wu
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Hongtao Zhu
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Panyue Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
16
|
Bryant C, Coats ER. Integrating dairy manure for enhanced resource recovery at a WRRF: Environmental life cycle and pilot-scale analyses. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:2034-2050. [PMID: 33877720 DOI: 10.1002/wer.1574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
The Twin Falls, Idaho wastewater treatment plant (WWTP), currently operates solely to achieve regulatory permit compliance. Research was conducted to evaluate conversion of the WWTP to a water resource recovery facility (WRRF) and to assess the WRRF environmental sustainability; process configurations were evaluated to produce five resources-reclaimed water, biosolids, struvite, biogas, and bioplastics (polyhydroxyalkanoates, PHA). PHA production occurred using fermented dairy manure. State-of-the-art biokinetic modeling, performed using Dynamita's SUMO process model, was coupled with environmental life cycle assessment to quantify environmental sustainability. Results indicate that electricity production via combined heat and power (CHP) was most important in achieving environmental sustainability; energy offset ranged from 43% to 60%, thereby reducing demand for external fossil fuel-based energy. While struvite production helps maintain a resilient enhanced biological phosphorus removal (EBPR) process, MgO2 production exhibits negative environmental impacts; integration with CHP negates the adverse consequences. Integrating dairy manure to produce bioplastics diversifies the resource recovery portfolio while maintaining WRRF environmental sustainability; pilot-scale evaluations demonstrated that WRRF effluent quality was not affected by the addition of effluent from PHA production. Collectively, results show that a WRRF integrating dairy manure can yield a diverse portfolio of products while operating in an environmentally sustainable manner. PRACTITIONER POINTS: Wastewater carbon recovery via anaerobic digestion with combined heat/power production significantly reduces water resource recovery facility (WRRF) environmental emissions. Wastewater phosphorus recovery is of value; however, struvite production exhibits negative environmental impacts due to MgO2 production emissions. Bioplastics production on imported organic-rich agri-food waste can diversify the WRRF portfolio. Dairy manure can be successfully integrated into a WRRF for bioplastics production without compromising WRRF performance. Diversifying the WRRF products portfolio is a strategy to maximize resource recovery from wastewater while concurrently achieving environmental sustainability.
Collapse
Affiliation(s)
| | - Erik R Coats
- Department of Civil and Environmental Engineering, University of Idaho, Moscow, ID, USA
| |
Collapse
|
17
|
Wang L, Shen N, Oehmen A, Zhou Y. The impact of temperature on the metabolism of volatile fatty acids by polyphosphate accumulating organisms (PAOs). ENVIRONMENTAL RESEARCH 2020; 188:109729. [PMID: 32521304 DOI: 10.1016/j.envres.2020.109729] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/25/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
This study investigated the effects of different carbon sources on enriched Accumulibacter PAO cultures at high temperature (30 °C) and compared the carbon transformation with low temperature (20 °C) cases reported in literature, revealing several key metabolic differences. While PAOs seemed to prefer propionate anaerobically as compared to other VFAs at high temperature, high aerobic glycogen replenishment was realized with propionate as the anaerobic carbon source, a trait not previously observed at low temperatures. Therefore, it was found that propionate is not correlated with high P removal by Accumulibacter PAO at high temperatures. A combined substrate of acetate, propionate and perhaps butyrate seemed to be a better carbon source combination, since the total VFA uptake rate increased by up to 46%, and this increased the aerobic P-removal efficiency by up to 38.4% and reduced the glycogen recovery by more than 63% compared to the use of only propionate as substrate. This study improves our understanding of how to stimulate successful EBPR operation in warm climates by augmenting the P removal performance of PAOs.
Collapse
Affiliation(s)
- Li Wang
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, 637141, Singapore; Interdisciplinary Graduate School, Nanyang Technological University, 639798, Singapore
| | - Nan Shen
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, 637141, Singapore; School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Adrian Oehmen
- School of Chemical Engineering, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Yan Zhou
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore.
| |
Collapse
|
18
|
Community profile governs substrate competition in polyhydroxyalkanoate (PHA)-producing mixed cultures. N Biotechnol 2020; 58:32-37. [DOI: 10.1016/j.nbt.2020.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 11/20/2022]
|
19
|
Wen Q, Liu B, Li F, Chen Z. Substrate strategy optimization for polyhydroxyalkanoates producing culture enrichment from crude glycerol. BIORESOURCE TECHNOLOGY 2020; 311:123516. [PMID: 32428849 DOI: 10.1016/j.biortech.2020.123516] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Crude glycerol is by-product produced from biodiesel industry and can be converted directly by mixed microbial culture (MMC) into polyhydroxyalkanoates (PHAs). This study investigated the effects of the reverse (SBR_A) and positive (SBR_B) glycerol gradient substrate strategy on PHA-accumulating culture enrichment and the maximum PHA accumulating stability under substrates with different glycerol and volatile fatty acid (VFA) proportion. The results showed that crude glycerol was mainly used for PHA production rather than biomass growth in SBR_A. The maximum qPHA was 0.65 g COD/g X-1·h-1 under sole crude glycerol condition in SBR_A, which was 2.41 times higher than that of SBR_B. Moreover, the PHA accumulating ability of the biomass from SBR_A was more stable than SBR_B. Saccharibacteria_genera_incertae_sedis was for the first time found to be the dominant genus using crude glycerol for PHA production. This research provides an insight into enrichment strategy to effectively enrich PHA-accumulating culture from crude glycerol.
Collapse
Affiliation(s)
- Qinxue Wen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Baozhen Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Fang Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
20
|
Mine M, Mizuguchi H, Takayanagi T. Kinetic analysis of substrate competition in enzymatic reactions with β-D-galactosidase by capillary electrophoresis / dynamic frontal analysis. J Pharm Biomed Anal 2020; 188:113390. [PMID: 32512255 DOI: 10.1016/j.jpba.2020.113390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 02/01/2023]
Abstract
Competitive inhibition between two substrates with an enzyme is investigated by capillary electrophoresis/dynamic frontal analysis (CE/DFA). Enzymatic hydrolyses of o-nitrophenyl β-D-galactopyranoside and p-nitrophenyl β-D-galactopyranoside with β-D-galactosidase were examined as a model competitive reaction. A sample solution containing the two substrates was injected into a capillary filled with a separation buffer containing an enzyme. Enzymatic hydrolysis occurred during the electrophoresis, and the products of o-nitrophenol and p-nitrophenol were continuously formed and resolved from the sample zone. Two-steps plateau signal was detected with the two-substrate solutions based on the difference in the effective electrophoretic mobility of o-nitrophenol and p-nitrophenol. Michaelis-Menten constants and inhibition constants were determined with the plateau heights. Usefulness of CE/DFA on competitive inhibition analysis is demonstrated in this study.
Collapse
Affiliation(s)
- Masanori Mine
- Graduate School of Advanced Technology and Science, Tokushima University, 2-1 Minamijyousanjima-cho, Tokushima 770-8506, Japan
| | - Hitoshi Mizuguchi
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijyousanjima-cho, Tokushima 770-8506, Japan
| | - Toshio Takayanagi
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijyousanjima-cho, Tokushima 770-8506, Japan.
| |
Collapse
|
21
|
Huang L, Chen Z, Wen Q, Ji Y, Wu Z, Lee DJ. Toward flexible regulation of polyhydroxyalkanoate composition based on substrate feeding strategy: Insights into microbial community and metabolic features. BIORESOURCE TECHNOLOGY 2020; 296:122369. [PMID: 31732415 DOI: 10.1016/j.biortech.2019.122369] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/01/2019] [Accepted: 11/02/2019] [Indexed: 06/10/2023]
Abstract
The suitable feeding strategy considering both substrate preference (enrichment stage) and flexible regulation (PHA accumulation stage) were investigated, respectively, based on intracellular polymers synthesis peculiarities of the three types of cultures (M-Ac, M-Pr and M-Bu), which were enriched correspondingly using acetic type, propionic type and butyric type substrate. Compared to M-Ac and M-Bu cultures, maximum PHA content (PHAm) of M-Pr exhibited the most stable responses to varying fractions of propionic acid (fPr) of the substrate. The substrate composed of acetic acid and propionic acid (Mix-AP) demonstrated higher efficiency in regulation of polymer composition than that composed of butyric acid and propionic acid (Mix-BP). For the whole process of three-stage MC PHA production, propionic acid-dominated acidification products should be used for the long-term enrichment of PHA producers, and acidification products mainly composed of propionic and acetic acid are preferred considering the regulation of polymer composition in PHA accumulation stage.
Collapse
Affiliation(s)
- Long Huang
- School of Water Conservancy and Environment Engineering, Zhengzhou University, Zhengzhou 450002, China
| | - Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qinxue Wen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Ye Ji
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zening Wu
- School of Water Conservancy and Environment Engineering, Zhengzhou University, Zhengzhou 450002, China
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan; Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
22
|
Tu W, Zhang D, Wang H. Polyhydroxyalkanoates (PHA) production from fermented thermal-hydrolyzed sludge by mixed microbial cultures: The link between phosphorus and PHA yields. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 96:149-157. [PMID: 31376958 DOI: 10.1016/j.wasman.2019.07.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
Production of polyhydroxyalkanoates (PHA) from wastes has gained increasing attention for the related low costs and high environmental benefits. Phosphorus limitation is a potential strategy used to facilitate PHA production, yet excessive limitation was previously reported to cause negative effects. This study was the first to investigate the optimum phosphorus limitation for PHA accumulation from thermal-hydrolyzed sludge. The results showed that the maximum PHA content increased from 23 wt% to 51 wt% when phosphorus concentration was limited from 127.60 to 1.35 mg/L, indicating that a lower phosphorus concentration would promote maximum PHA accumulation. Batch tests performed with synthetic substrates (containing one specific VFA for each batch) confirmed that the effect of phosphorus content on PHA production was mainly devoted by the efficiency of the conversion of acetate to PHA. The PHA yields on acetate (YPHA/ac) were 0.68 and 0.05 Cmol/Cmol under phosphorus-limited (1 mg/L) and -excess (100 mg/L) conditions, respectively. A mathematical model was developed to describe the correlation between phosphorus concentration and YPHA/ac, which can fit the experimental data and predict the results properly. Finally, further (ammonium-) nitrogen restriction did not efficiently cause the additional improvement of PHA production under the conditions of phosphorus limitation.
Collapse
Affiliation(s)
- Weiming Tu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Dandan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hui Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|