2
|
Madan B, Reddem ER, Wang P, Casner RG, Nair MS, Huang Y, Fahad AS, de Souza MO, Banach BB, López Acevedo SN, Pan X, Nimrania R, Teng I, Bahna F, Zhou T, Zhang B, Yin MT, Ho DD, Kwong PD, Shapiro L, DeKosky BJ. Antibody screening at reduced pH enables preferential selection of potently neutralizing antibodies targeting SARS-CoV-2. AIChE J 2021; 67:e17440. [PMID: 34898670 PMCID: PMC8646896 DOI: 10.1002/aic.17440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/28/2021] [Accepted: 08/19/2021] [Indexed: 12/28/2022]
Abstract
Antiviral monoclonal antibody (mAb) discovery enables the development of antibody-based antiviral therapeutics. Traditional antiviral mAb discovery relies on affinity between antibody and a viral antigen to discover potent neutralizing antibodies, but these approaches are inefficient because many high affinity mAbs have no neutralizing activity. We sought to determine whether screening for anti-SARS-CoV-2 mAbs at reduced pH could provide more efficient neutralizing antibody discovery. We mined the antibody response of a convalescent COVID-19 patient at both physiological pH (7.4) and reduced pH (4.5), revealing that SARS-CoV-2 neutralizing antibodies were preferentially enriched in pH 4.5 yeast display sorts. Structural analysis revealed that a potent new antibody called LP5 targets the SARS-CoV-2 N-terminal domain supersite via a unique binding recognition mode. Our data combine with evidence from prior studies to support antibody screening at pH 4.5 to accelerate antiviral neutralizing antibody discovery.
Collapse
Affiliation(s)
- Bharat Madan
- Department of Pharmaceutical ChemistryThe University of KansasLawrenceKansasUSA
| | - Eswar R. Reddem
- Department of Biochemistry and Molecular BiophysicsColumbia UniversityNew YorkNew YorkUSA
- Zuckerman Mind Brain Behavior InstituteColumbia UniversityNew YorkNew YorkUSA
| | - Pengfei Wang
- Aaron Diamond AIDS Research CenterColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Ryan G. Casner
- Department of Biochemistry and Molecular BiophysicsColumbia UniversityNew YorkNew YorkUSA
- Zuckerman Mind Brain Behavior InstituteColumbia UniversityNew YorkNew YorkUSA
| | - Manoj S. Nair
- Aaron Diamond AIDS Research CenterColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Yaoxing Huang
- Aaron Diamond AIDS Research CenterColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Ahmed S. Fahad
- Department of Pharmaceutical ChemistryThe University of KansasLawrenceKansasUSA
| | | | - Bailey B. Banach
- Department of Pharmaceutical ChemistryThe University of KansasLawrenceKansasUSA
| | | | - Xiaoli Pan
- Department of Pharmaceutical ChemistryThe University of KansasLawrenceKansasUSA
| | - Rajani Nimrania
- Department of Pharmaceutical ChemistryThe University of KansasLawrenceKansasUSA
| | - I‐Ting Teng
- Vaccine Research CenterNational Institute of Allergy and Infectious DiseasesBethesdaMarylandUSA
| | - Fabiana Bahna
- Department of Biochemistry and Molecular BiophysicsColumbia UniversityNew YorkNew YorkUSA
- Zuckerman Mind Brain Behavior InstituteColumbia UniversityNew YorkNew YorkUSA
| | - Tongqing Zhou
- Vaccine Research CenterNational Institute of Allergy and Infectious DiseasesBethesdaMarylandUSA
| | - Baoshan Zhang
- Vaccine Research CenterNational Institute of Allergy and Infectious DiseasesBethesdaMarylandUSA
| | - Michael T. Yin
- Department of Medicine, Division of Infectious DiseasesColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - David D. Ho
- Aaron Diamond AIDS Research CenterColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Peter D. Kwong
- Department of Biochemistry and Molecular BiophysicsColumbia UniversityNew YorkNew YorkUSA
- Vaccine Research CenterNational Institute of Allergy and Infectious DiseasesBethesdaMarylandUSA
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular BiophysicsColumbia UniversityNew YorkNew YorkUSA
- Zuckerman Mind Brain Behavior InstituteColumbia UniversityNew YorkNew YorkUSA
- Aaron Diamond AIDS Research CenterColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Brandon J. DeKosky
- Department of Pharmaceutical ChemistryThe University of KansasLawrenceKansasUSA
- Department of Chemical EngineeringThe University of KansasLawrenceKansasUSA
- The Ragon Institute of MGHMIT, and Harvard, Cambridge, MA
- Department of Chemical EngineeringMassachusetts Institute of Technology, Cambridge, MA
| |
Collapse
|
3
|
Fahad AS, Timm MR, Madan B, Burgomaster KE, Dowd KA, Normandin E, Gutiérrez-González MF, Pennington JM, De Souza MO, Henry AR, Laboune F, Wang L, Ambrozak DR, Gordon IJ, Douek DC, Ledgerwood JE, Graham BS, Castilho LR, Pierson TC, Mascola JR, DeKosky BJ. Functional Profiling of Antibody Immune Repertoires in Convalescent Zika Virus Disease Patients. Front Immunol 2021; 12:615102. [PMID: 33732238 PMCID: PMC7959826 DOI: 10.3389/fimmu.2021.615102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/07/2021] [Indexed: 01/10/2023] Open
Abstract
The re-emergence of Zika virus (ZIKV) caused widespread infections that were linked to Guillain-Barré syndrome in adults and congenital malformation in fetuses, and epidemiological data suggest that ZIKV infection can induce protective antibody responses. A more detailed understanding of anti-ZIKV antibody responses may lead to enhanced antibody discovery and improved vaccine designs against ZIKV and related flaviviruses. Here, we applied recently-invented library-scale antibody screening technologies to determine comprehensive functional molecular and genetic profiles of naturally elicited human anti-ZIKV antibodies in three convalescent individuals. We leveraged natively paired antibody yeast display and NGS to predict antibody cross-reactivities and coarse-grain antibody affinities, to perform in-depth immune profiling of IgM, IgG, and IgA antibody repertoires in peripheral blood, and to reveal virus maturation state-dependent antibody interactions. Repertoire-scale comparison of ZIKV VLP-specific and non-specific antibodies in the same individuals also showed that mean antibody somatic hypermutation levels were substantially influenced by donor-intrinsic characteristics. These data provide insights into antiviral antibody responses to ZIKV disease and outline systems-level strategies to track human antibody immune responses to emergent viral infections.
Collapse
Affiliation(s)
- Ahmed S. Fahad
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, United States
| | - Morgan R. Timm
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Bharat Madan
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, United States
| | - Katherine E. Burgomaster
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Kimberly A. Dowd
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Erica Normandin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | | | - Joseph M. Pennington
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, United States
| | | | - Amy R. Henry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Farida Laboune
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - David R. Ambrozak
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Ingelise J. Gordon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Daniel C. Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Julie E. Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Barney S. Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Leda R. Castilho
- Federal University of Rio de Janeiro, COPPE, Cell Culture Engineering Laboratory, Rio de Janeiro, Brazil
| | - Theodore C. Pierson
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Brandon J. DeKosky
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, United States
- Department of Chemical Engineering, The University of Kansas, Lawrence, KS, United States
| |
Collapse
|
4
|
Abstract
The vaccine field is pursuing diverse approaches to translate the molecular insights from analyses of effective antibodies and their targeted epitopes into immunogens capable of eliciting protective immune responses. Here we review current antibody-guided strategies including conformation-based, epitope-based, and lineage-based vaccine approaches, which are yielding promising vaccine candidates now being evaluated in clinical trials. We summarize directions being employed by the field, including the use of sequencing technologies to monitor and track developing immune responses for understanding and improving antibody-based immunity. We review opportunities and challenges to transform powerful new discoveries into safe and effective vaccines, which are encapsulated by vaccine efforts against a variety of pathogens including HIV-1, influenza A virus, malaria parasites, respiratory syncytial virus, and SARS-CoV-2. Overall, this review summarizes the extensive progress that has been made to realize antibody-guided structure-based vaccines, the considerable challenges faced, and the opportunities afforded by recently developed molecular approaches to vaccine development.
Collapse
|