1
|
Lu Y, Liu D, Wang L, Ma Y, Fan TP, Deng H, Cai Y. Constructing High-Yielding Serratia marcescens for (-)-α-Bisabolol Production Based on the Exogenous Haloarchaeal MVA Pathway and Endogenous Molecular Chaperones. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:747-755. [PMID: 39699554 DOI: 10.1021/acs.jafc.4c10135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
(-)-α-Bisabolol exhibits analgesic, anti-inflammatory, and skin-soothing properties and is widely applied in the cosmetic and pharmaceutical industries. The use of plant essential oil distillation or chemical synthesis to produce (-)-α-bisabolol is both inefficient and unsustainable. Currently, the microbial production of (-)-α-bisabolol mainly relies on Escherichia coli and Saccharomyces cerevisiae as chassis strains; however, high concentrations of (-)-α-bisabolol have certain toxicity to the strain. This study uses synthetic biology and metabolic engineering strategies to redesign a solvent-tolerant Serratia marcescens for the efficient production of (-)-α-bisabolol. By introducing the Haloarchaea-type mevalonate (MVA) pathway and the (-)-α-bisabolol biosynthesis pathway, we successfully constructed a strain capable of producing (-)-α-bisabolol. The coexpression of the chaperone protein DnaK/J significantly enhanced the soluble expression of the (-)-α-bisabolol synthase, resulting in a 10% increase in (-)-α-bisabolol titer. Furthermore, knockout of the PhoA gene, which reduced the formation of the byproduct farnesol (FOH), further increased the (-)-α-bisabolol titer to 3.21 g/L. In a 5 L bioreactor, S. marcescens achieved a final (-)-α-bisabolol titer of 30.2 g/L, representing the highest titer reported to date. This research provides guidance for the production of (-)-α-bisabolol in nonmodel microorganisms without the requirement for induction.
Collapse
Affiliation(s)
- Yao Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Di Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Long Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yongai Ma
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Tai-Ping Fan
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1T, U.K
- School of Health Sciences, Fuyao University of Science and Technology, Fuzhou, Fujian 350300, China
| | - Huaxiang Deng
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130012, China
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Health Sciences, Fuyao University of Science and Technology, Fuzhou, Fujian 350300, China
| |
Collapse
|
2
|
Singh S, Mishra A. Linalool: Therapeutic Indication And Their Multifaceted Biomedical Applications. Drug Res (Stuttg) 2024; 74:255-268. [PMID: 38968949 DOI: 10.1055/a-2321-9571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
This comprehensive review endeavors to illuminate the nuanced facets of linalool, a prominent monoterpene found abundantly in essential oils, constituting a massive portion of their composition. The biomedical relevance of linalool is a key focus, highlighting its therapeutic attributes observed through anti-nociceptive effects, anxiolytic properties, and behavioral modulation in individuals affected by dementia. These findings underscore the compound's potential application in biomedical applications. This review further explores contemporary formulations, delineating the adaptability of linalool in nano-emulsions, microemulsions, bio-capsules, and various topical formulations, including topical gels and lotions. This review covers published and granted patents between 2018-2024 and sheds light on the evolving landscape of linalool applications, revealing advancements in dermatological, anti-inflammatory, and antimicrobial domains.
Collapse
Affiliation(s)
- Shiva Singh
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Noida, (U.P.) India
| | - Anuradha Mishra
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Noida, (U.P.) India
| |
Collapse
|
3
|
Li DX, Guo Q, Yang YX, Jiang SJ, Ji XJ, Ye C, Wang YT, Shi TQ. Recent Advances and Multiple Strategies of Monoterpenoid Overproduction in Saccharomyces cerevisiae and Yarrowia lipolytica. ACS Synth Biol 2024; 13:1647-1662. [PMID: 38860708 DOI: 10.1021/acssynbio.4c00297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Monoterpenoids are an important subclass of terpenoids that play important roles in the energy, cosmetics, pharmaceuticals, and fragrances fields. With the development of biotechnology, microbial synthesis of monoterpenoids has received great attention. Yeasts such Saccharomyces cerevisiae and Yarrowia lipolytica are emerging as potential hosts for monoterpenoids production because of unique advantages including rapid growth cycles, mature gene editing tools, and clear genetic background. Recently, advancements in metabolic engineering and fermentation engineering have significantly enhanced the accumulation of monoterpenoids in cell factories. First, this review introduces the biosynthetic pathway of monoterpenoids and comprehensively summarizes the latest production strategies, which encompass enhancing precursor flux, modulating the expression of rate-limited enzymes, suppressing competitive pathway flux, mitigating cytotoxicity, optimizing substrate utilization, and refining the fermentation process. Subsequently, this review introduces four representative monoterpenoids. Finally, we outline the future prospects for efficient construction cell factories tailored for the production of monoterpenoids and other terpenoids.
Collapse
Affiliation(s)
- Dong-Xun Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Qi Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Yu-Xin Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Shun-Jie Jiang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Yue-Tong Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| |
Collapse
|
4
|
Liu J, Lin M, Han P, Yao G, Jiang H. Biosynthesis Progress of High-Energy-Density Liquid Fuels Derived from Terpenes. Microorganisms 2024; 12:706. [PMID: 38674649 PMCID: PMC11052473 DOI: 10.3390/microorganisms12040706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
High-energy-density liquid fuels (HED fuels) are essential for volume-limited aerospace vehicles and could serve as energetic additives for conventional fuels. Terpene-derived HED biofuel is an important research field for green fuel synthesis. The direct extraction of terpenes from natural plants is environmentally unfriendly and costly. Designing efficient synthetic pathways in microorganisms to achieve high yields of terpenes shows great potential for the application of terpene-derived fuels. This review provides an overview of the current research progress of terpene-derived HED fuels, surveying terpene fuel properties and the current status of biosynthesis. Additionally, we systematically summarize the engineering strategies for biosynthesizing terpenes, including mining and engineering terpene synthases, optimizing metabolic pathways and cell-level optimization, such as the subcellular localization of terpene synthesis and adaptive evolution. This article will be helpful in providing insight into better developing terpene-derived HED fuels.
Collapse
Affiliation(s)
- Jiajia Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; (J.L.)
| | - Man Lin
- College of Biological Engineering, Sichuan University of Science and Engineering, Yibin 644005, China
| | - Penggang Han
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; (J.L.)
| | - Ge Yao
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; (J.L.)
| | - Hui Jiang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; (J.L.)
| |
Collapse
|
5
|
Li T, Liu X, Xiang H, Zhu H, Lu X, Feng B. Two-Phase Fermentation Systems for Microbial Production of Plant-Derived Terpenes. Molecules 2024; 29:1127. [PMID: 38474639 PMCID: PMC10934027 DOI: 10.3390/molecules29051127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Microbial cell factories, renowned for their economic and environmental benefits, have emerged as a key trend in academic and industrial areas, particularly in the fermentation of natural compounds. Among these, plant-derived terpenes stand out as a significant class of bioactive natural products. The large-scale production of such terpenes, exemplified by artemisinic acid-a crucial precursor to artemisinin-is now feasible through microbial cell factories. In the fermentation of terpenes, two-phase fermentation technology has been widely applied due to its unique advantages. It facilitates in situ product extraction or adsorption, effectively mitigating the detrimental impact of product accumulation on microbial cells, thereby significantly bolstering the efficiency of microbial production of plant-derived terpenes. This paper reviews the latest developments in two-phase fermentation system applications, focusing on microbial fermentation of plant-derived terpenes. It also discusses the mechanisms influencing microbial biosynthesis of terpenes. Moreover, we introduce some new two-phase fermentation techniques, currently unexplored in terpene fermentation, with the aim of providing more thoughts and explorations on the future applications of two-phase fermentation technology. Lastly, we discuss several challenges in the industrial application of two-phase fermentation systems, especially in downstream processing.
Collapse
Affiliation(s)
- Tuo Li
- Correspondence: (T.L.); (B.F.)
| | | | | | | | | | - Baomin Feng
- College of Life and Health, Dalian University, Dalian 116622, China; (X.L.); (H.X.); (H.Z.); (X.L.)
| |
Collapse
|
6
|
Taratynova MO, Tikhonova EE, Fedyaeva IM, Dementev DA, Yuzbashev TV, Solovyev AI, Sineoky SP, Yuzbasheva EY. Boosting Geranyl Diphosphate Synthesis for Linalool Production in Engineered Yarrowia lipolytica. Appl Biochem Biotechnol 2024; 196:1304-1315. [PMID: 37392322 DOI: 10.1007/s12010-023-04581-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 07/03/2023]
Abstract
Linalool is a pleasant-smelling monoterpenoid widely found in the essential oils of most flowers. Due to its biologically active properties, linalool has considerable commercial potential, especially in the food and perfume industries. In this study, the oleaginous yeast Yarrowia lipolytica was successfully engineered to produce linalool de novo. The (S)-linalool synthase (LIS) gene from Actinidia argute was overexpressed to convert geranyl diphosphate (GPP) into linalool. Flux was diverted from farnesyl diphosphate (FPP) synthesis to GPP by introducing a mutated copy of the native ERG20F88W-N119W gene, and CrGPPS gene from Catharanthus roseus on its own and as part of a fusion with LIS. Disruption of native diacylglycerol kinase enzyme, DGK1, by oligo-mediated CRISPR-Cas9 inactivation further increased linalool production. The resulting strain accumulated 109.6 mg/L of linalool during cultivation in shake flasks with sucrose as a carbon source. CrGPPS expression in Yarrowia lipolytica increased linalool accumulation more efficiently than the ERG20F88W-N119W expression, suggesting that the increase in linalool production was predominantly influenced by the level of GPP precursor supply.
Collapse
Affiliation(s)
- Maria O Taratynova
- NRC "Kurchatov Institute", Kurchatov Genomic Center, sq. Academician Kurchatova, 1, Moscow, 123182, Russia.
| | - Ekaterina E Tikhonova
- NRC "Kurchatov Institute", Kurchatov Genomic Center, sq. Academician Kurchatova, 1, Moscow, 123182, Russia
| | - Iuliia M Fedyaeva
- NRC "Kurchatov Institute", Kurchatov Genomic Center, sq. Academician Kurchatova, 1, Moscow, 123182, Russia
| | - Dmitry A Dementev
- NRC "Kurchatov Institute", Kurchatov Genomic Center, sq. Academician Kurchatova, 1, Moscow, 123182, Russia
| | - Tigran V Yuzbashev
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden, AL5 2JQ, West Common, UK
| | - Andrey I Solovyev
- Gamaleya National Research Center of Epidemiology and Microbiology, Russian Ministry of Health, Gamaleya St. 18, Moscow, 123098, Russia
| | - Sergey P Sineoky
- NRC "Kurchatov Institute", Kurchatov Genomic Center, sq. Academician Kurchatova, 1, Moscow, 123182, Russia
| | - Evgeniya Y Yuzbasheva
- BioMediCan Inc, 40471 Encyclopedia Circle, Fremont, CA, 94538, USA
- BioKai Inc, 40471 Encyclopedia Circle, Fremont, CA, 94538, USA
| |
Collapse
|
7
|
Qi Z, Tong X, Ke K, Wang X, Pei J, Bu S, Zhao L. De Novo Synthesis of Dihydro-β-ionone through Metabolic Engineering and Bacterium-Yeast Coculture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3066-3076. [PMID: 38294193 DOI: 10.1021/acs.jafc.3c07291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Dihydro-β-ionone is a common type of ionone used in the flavor and fragrance industries because of its characteristic scent. The production of flavors in microbial cell factories offers a sustainable and environmentally friendly approach to accessing them, independent of extraction from natural sources. However, the native pathway of dihydro-β-ionone remains unclear, hindering heterologous biosynthesis in microbial hosts. Herein, we devised a microbial platform for de novo syntheses of dihydro-β-ionone from a simple carbon source with glycerol. The complete dihydro-β-ionone pathway was reconstructed in Escherichia coli with multiple metabolic engineering strategies to generate a strain capable of producing 8 mg/L of dihydro-β-ionone, although this was accompanied by a surplus precursor β-ionone in culture. To overcome this issue, Saccharomyces cerevisiae was identified as having a conversion rate for transforming β-ionone to dihydro-β-ionone that was higher than that of E. coli via whole-cell catalysis. Consequently, the titer of dihydro-β-ionone was increased using the E. coli-S. cerevisiae coculture to 27 mg/L. Our study offers an efficient platform for biobased dihydro-β-ionone production and extends coculture engineering to overproducing target molecules in extended metabolic pathways.
Collapse
Affiliation(s)
- Zhipeng Qi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
- College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Xinyi Tong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
- College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
| | - Kaixuan Ke
- College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xinyi Wang
- College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Jianjun Pei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
- College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
| | - Su Bu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Linguo Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
- College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing 210037, China
| |
Collapse
|
8
|
Luckie BA, Kashyap M, Pearson AN, Chen Y, Liu Y, Valencia LE, Carrillo Romero A, Hudson GA, Tao XB, Wu B, Petzold CJ, Keasling JD. Development of Corynebacterium glutamicum as a monoterpene production platform. Metab Eng 2024; 81:110-122. [PMID: 38056688 DOI: 10.1016/j.ymben.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Monoterpenes are commonly known for their role in the flavors and fragrances industry and are also gaining attention for other uses like insect repellant and as potential renewable fuels for aviation. Corynebacterium glutamicum, a Generally Recognized as Safe microbe, has been a choice organism in industry for the annual million ton-scale bioproduction of amino acids for more than 50 years; however, efforts to produce monoterpenes in C. glutamicum have remained relatively limited. In this study, we report a further expansion of the C. glutamicum biosynthetic repertoire through the development and optimization of a mevalonate-based monoterpene platform. In the course of our plasmid design iterations, we increased flux through the mevalonate-based bypass pathway, measuring isoprenol production as a proxy for monoterpene precursor abundance and demonstrating the highest reported titers in C. glutamicum to date at 1504.6 mg/L. Our designs also evaluated the effects of backbone, promoter, and GPP synthase homolog origin on monoterpene product titers. Monoterpene production was further improved by disrupting competing pathways for isoprenoid precursor supply and by implementing a biphasic production system to prevent volatilization. With this platform, we achieved 321.1 mg/L of geranoids, 723.6 mg/L of 1,8-cineole, and 227.8 mg/L of linalool. Furthermore, we determined that C. glutamicum first oxidizes geraniol through an aldehyde intermediate before it is asymmetrically reduced to citronellol. Additionally, we demonstrate that the aldehyde reductase, AdhC, possesses additional substrate promiscuity for acyclic monoterpene aldehydes.
Collapse
Affiliation(s)
- Bridget A Luckie
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Meera Kashyap
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Allison N Pearson
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Yan Chen
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yuzhong Liu
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
| | - Luis E Valencia
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Joint Program in Bioengineering, University of California, Berkeley, San Francisco, CA, 94720, USA
| | - Alexander Carrillo Romero
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Graham A Hudson
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
| | - Xavier B Tao
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Bryan Wu
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Christopher J Petzold
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jay D Keasling
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA; Joint Program in Bioengineering, University of California, Berkeley, San Francisco, CA, 94720, USA; Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark; Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institutes for Advanced Technologies, Shenzhen, China.
| |
Collapse
|
9
|
Chou MY, Andersen TB, Mechan Llontop ME, Beculheimer N, Sow A, Moreno N, Shade A, Hamberger B, Bonito G. Terpenes modulate bacterial and fungal growth and sorghum rhizobiome communities. Microbiol Spectr 2023; 11:e0133223. [PMID: 37772854 PMCID: PMC10580827 DOI: 10.1128/spectrum.01332-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/05/2023] [Indexed: 09/30/2023] Open
Abstract
Terpenes are among the oldest and largest class of plant-specialized bioproducts that are known to affect plant development, adaptation, and biological interactions. While their biosynthesis, evolution, and function in aboveground interactions with insects and individual microbial species are well studied, how different terpenes impact plant microbiomes belowground is much less understood. Here we designed an experiment to assess how belowground exogenous applications of monoterpenes (1,8-cineole and linalool) and a sesquiterpene (nerolidol) delivered through an artificial root system impacted its belowground bacterial and fungal microbiome. We found that the terpene applications had significant and variable impacts on bacterial and fungal communities, depending on terpene class and concentration; however, these impacts were localized to the artificial root system and the fungal rhizosphere. We complemented this experiment with pure culture bioassays on responsive bacteria and fungi isolated from the sorghum rhizobiome. Overall, higher concentrations (200 µM) of nerolidol were inhibitory to Ferrovibrium and tested Firmicutes. While fungal isolates of Penicillium and Periconia were also more inhibited by higher concentrations (200 µM) of nerolidol, Clonostachys was enhanced at this higher level and together with Humicola was inhibited by the lower concentration tested (100 µM). On the other hand, 1,8-cineole had an inhibitory effect on Orbilia at both tested concentrations but had a promotive effect at 100 µM on Penicillium and Periconia. Similarly, linalool at 100 µM had significant growth promotion in Mortierella, but an inhibitory effect for Orbilia. Together, these results highlight the variable direct effects of terpenes on single microbial isolates and demonstrate the complexity of microbe-terpene interactions in the rhizobiome. IMPORTANCE Terpenes represent one of the largest and oldest classes of plant-specialized metabolism, but their role in the belowground microbiome is poorly understood. Here, we used a "rhizobox" mesocosm experimental set-up to supply different concentrations and classes of terpenes into the soil compartment with growing sorghum for 1 month to assess how these terpenes affect sorghum bacterial and fungal rhizobiome communities. Changes in bacterial and fungal communities between treatments belowground were characterized, followed by bioassays screening on bacterial and fungal isolates from the sorghum rhizosphere against terpenes to validate direct microbial responses. We found that microbial growth stimulatory and inhibitory effects were localized, terpene specific, dose dependent, and transient in time. This work paves the way for engineering terpene metabolisms in plant microbiomes for improved sustainable agriculture and bioenergy crop production.
Collapse
Affiliation(s)
- Ming-Yi Chou
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, USA
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey, USA
| | - Trine B. Andersen
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Marco E. Mechan Llontop
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Nick Beculheimer
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Alassane Sow
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Nick Moreno
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Ashley Shade
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
- Research Group on Bacterial Efflux and Environmental Resistance, CNRS, INRAe, École Nationale Véterinaire de Lyon and Université Lyon 1, Université de Lyon, Villeurbanne, France
| | - Bjoern Hamberger
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Gregory Bonito
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
10
|
Wei J, Yang Y, Peng Y, Wang S, Zhang J, Liu X, Liu J, Wen B, Li M. Biosynthesis and the Transcriptional Regulation of Terpenoids in Tea Plants ( Camellia sinensis). Int J Mol Sci 2023; 24:ijms24086937. [PMID: 37108101 PMCID: PMC10138656 DOI: 10.3390/ijms24086937] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/26/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Terpenes, especially volatile terpenes, are important components of tea aroma due to their unique scents. They are also widely used in the cosmetic and medical industries. In addition, terpene emission can be induced by herbivory, wounding, light, low temperature, and other stress conditions, leading to plant defense responses and plant-plant interactions. The transcriptional levels of important core genes (including HMGR, DXS, and TPS) involved in terpenoid biosynthesis are up- or downregulated by the MYB, MYC, NAC, ERF, WRKY, and bHLH transcription factors. These regulators can bind to corresponding cis-elements in the promoter regions of the corresponding genes, and some of them interact with other transcription factors to form a complex. Recently, several key terpene synthesis genes and important transcription factors involved in terpene biosynthesis have been isolated and functionally identified from tea plants. In this work, we focus on the research progress on the transcriptional regulation of terpenes in tea plants (Camellia sinensis) and thoroughly detail the biosynthesis of terpene compounds, the terpene biosynthesis-related genes, the transcription factors involved in terpene biosynthesis, and their importance. Furthermore, we review the potential strategies used in studying the specific transcriptional regulation functions of candidate transcription factors that have been discriminated to date.
Collapse
Affiliation(s)
- Junchi Wei
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Yun Yang
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Ye Peng
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Shaoying Wang
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Jing Zhang
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Xiaobo Liu
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Jianjun Liu
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Beibei Wen
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Meifeng Li
- College of Tea Science, Guizhou University, Guiyang 550025, China
| |
Collapse
|
11
|
Jiang H, Wang X. Biosynthesis of monoterpenoid and sesquiterpenoid as natural flavors and fragrances. Biotechnol Adv 2023; 65:108151. [PMID: 37037288 DOI: 10.1016/j.biotechadv.2023.108151] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/27/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2023]
Abstract
Terpenoids are a large class of plant-derived compounds, that constitute the main components of essential oils and are widely used as natural flavors and fragrances. The biosynthesis approach presents a promising alternative route in terpenoid production compared to plant extraction or chemical synthesis. In the past decade, the production of terpenoids using biotechnology has attracted broad attention from both academia and the industry. With the growing market of flavor and fragrance, the production of terpenoids directed by synthetic biology shows great potential in promoting future market prospects. Here, we reviewed the latest advances in terpenoid biosynthesis. The engineering strategies for biosynthetic terpenoids were systematically summarized from the enzyme, metabolic, and cellular dimensions. Additionally, we analyzed the key challenges from laboratory production to scalable production, such as key enzyme improvement, terpenoid toxicity, and volatility loss. To provide comprehensive technical guidance, we collected milestone examples of biosynthetic mono- and sesquiterpenoids, compared the current application status of chemical synthesis and biosynthesis in terpenoid production, and discussed the cost drivers based on the data of techno-economic assessment. It is expected to provide critical insights into developing translational research of terpenoid biomanufacturing.
Collapse
Affiliation(s)
- Hui Jiang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, PR China
| | - Xi Wang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, PR China; College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, PR China.
| |
Collapse
|
12
|
Kianersi F, Amin Azarm D, Fatemi F, Pour-Aboughadareh A, Poczai P. Methyl Jasmonate Induces Genes Involved in Linalool Accumulation and Increases the Content of Phenolics in Two Iranian Coriander (Coriandrum sativum L.) Ecotypes. Genes (Basel) 2022; 13:genes13101717. [PMID: 36292602 PMCID: PMC9602312 DOI: 10.3390/genes13101717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
The medicinal herb coriander (Coriandrum sativum L.), with a high linalool (LIN) content, is widely recognized for its therapeutic benefits. As a novel report, the goals of this study were to determine how methyl jasmonate (MeJA) affects total phenolic content (TPC), LIN content, flavonoid content (TFC), and changes in gene expression involved in the linalool biosynthesis pathway (CsγTRPS and CsLINS). Our findings showed that, in comparison to the control samples, MeJA treatment substantially enhanced the TPC, LIN, and TFC content in both ecotypes. Additionally, for both Iranian coriander ecotypes, treatment-induced increases in CsγTRPS and CsLINS expression were connected to LIN accumulation in all treatments. A 24 h treatment with 150 µM MeJA substantially increased the LIN content in the Mashhad and Zanjan ecotypes, which was between 1.48 and 1.69 times greater than that in untreated plants, according to gas chromatography–mass spectrometry (GC-MS) analysis. Our findings demonstrated that MeJA significantly affects the accumulation of LIN, TPC, and TFC in Iranian C. sativum treated with MeJA, which is likely the consequence of gene activation from the monoterpene biosynthesis pathway. Our discoveries have improved the understanding of the molecular mechanisms behind LIN synthesis in coriander plants.
Collapse
Affiliation(s)
- Farzad Kianersi
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
- Correspondence: (F.K.); (P.P.)
| | - Davood Amin Azarm
- Department of Horticulture Crop Research, Isfahan Agricultural and Natural Resources Research and Education Center, AREEO, Isfahan P.O. Box 81785-199, Iran
| | - Farzaneh Fatemi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Bu-Ali Sina University, Hamedan P.O. Box 6517838695, Iran
| | - Alireza Pour-Aboughadareh
- Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj P.O. Box 3158854119, Iran
| | - Peter Poczai
- Botany Unit, Finnish Museum of Natural History, University of Helsinki, P.O. Box 7, FI-00014 Helsinki, Finland
- Correspondence: (F.K.); (P.P.)
| |
Collapse
|
13
|
Zhai R, Ma J, An Y, Wen Z, Liu Y, Sun Q, Xie P, Zhao S. Ultra-stable Linalool/water Pickering Emulsions: A Combined Experimental and Simulation Study. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Usuda Y, Nishio Y, Nonaka G, Hara Y. Microbial Production Potential of Pantoea ananatis: From Amino Acids to Secondary Metabolites. Microorganisms 2022; 10:microorganisms10061133. [PMID: 35744651 PMCID: PMC9231021 DOI: 10.3390/microorganisms10061133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022] Open
Abstract
Pantoea ananatis, a gram-negative bacterium belonging to the Erwiniaceae family, is a well-known phytopathogen isolated from many ecological niches and plant hosts. However, this bacterium also provides us with various beneficial characteristics, such as the growth promotion of their host plants and increased crop yield. Some isolated non-pathogenic strains are promising for the microbial production of useful substances. P. ananatis AJ13355 was isolated as an acidophilic bacterium and was used as an excellent host to produce L-glutamic acid under acidic conditions. The genome sequence of P. ananatis AJ13355 was determined, and specific genome-engineering technologies were developed. As a result, P. ananatis was successfully used to construct a bacterial strain that produces cysteine, a sulfur-containing amino acid that has been difficult to produce through fermentation because of complex regulation. Furthermore, by heterologous expression including plant-derived genes, construction of a strain that produces isoprenoids such as isoprene and linalool as secondary metabolites was achieved. P. ananatis is shown to be a useful host for the production of secondary metabolites, as well as amino acids, and is expected to be used as a platform for microbial production of bioactive substances, aromatic substances, and other high-value-added substances of plant origin in the future.
Collapse
Affiliation(s)
- Yoshihiro Usuda
- Research and Business Planning Department, Ajinomoto Co., Inc., Tokyo 104-8315, Japan
- Correspondence: ; Tel.: +81-70-4361-3762; Fax: +81-3-5250-8352
| | - Yousuke Nishio
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki 210-8681, Japan; (Y.N.); (Y.H.)
| | - Gen Nonaka
- Ajinomoto-Genetika Research Institute, Moscow 117545, Russia;
| | - Yoshihiko Hara
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki 210-8681, Japan; (Y.N.); (Y.H.)
| |
Collapse
|
15
|
Hu Q, Zhang T, Yu H, Ye L. Selective biosynthesis of retinol in S. cerevisiae. BIORESOUR BIOPROCESS 2022; 9:22. [PMID: 38647788 PMCID: PMC10991881 DOI: 10.1186/s40643-022-00512-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/02/2022] [Indexed: 11/10/2022] Open
Abstract
The vitamin A component retinol has become an increasingly sought-after cosmetic ingredient. In previous efforts for microbial biosynthesis of vitamin A, a mixture of retinoids was produced. In order to efficiently produce retinol at high purity, the precursor and NADPH supply was first enhanced to improve retinoids accumulation in the S. cerevisiae strain constructed from a β-carotene producer by introducing β-carotene 15,15'-dioxygenase, following by screening of heterologous and endogenous oxidoreductases for retinal reduction. Env9 was found as an endogenous retinal reductase and its activity was verified in vitro. By co-expressing Env9 with the E. coli ybbO, as much as 443.43 mg/L of retinol was produced at 98.76% purity in bi-phasic shake-flask culture when the antioxidant butylated hydroxytoluene was added to prevent retinoids degradation. The retinol titer reached 2479.34 mg/L in fed-batch fermentation. The success in selective biosynthesis of retinol would lay a solid foundation for its biotechnological production.
Collapse
Affiliation(s)
- Qiongyue Hu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Tanglei Zhang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hongwei Yu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Lidan Ye
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, China.
| |
Collapse
|
16
|
Wang Z, Gao T, He Z, Zeng M, Qin F, Chen J. Reduction of off-flavor volatile compounds in okara by fermentation with four edible fungi. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112941] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Investigation of the Volatile Profile of Red Jujube by Using GC-IMS, Multivariate Data Analysis, and Descriptive Sensory Analysis. Foods 2022; 11:foods11030421. [PMID: 35159572 PMCID: PMC8834224 DOI: 10.3390/foods11030421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 01/08/2023] Open
Abstract
The aroma characteristics of six red jujube cultivars (Jinchang-'JC', Junzao-'JZ', Huizao-'HZ', Qiyuexian-'QYX', Hetiandazao-'HTDZ', and Yuanzao-'YZ'), cultivated in Xinjiang Province, China, were studied by E-nose and GC-IMS. The presence of acetoin, E-2-hexanol, hexanal, acetic acid, and ethyl acetate played an important role in the classification results. JC, JZ, HZ, and YZ were different from others, while QYX and HTDZ were similar to each other. HZ had the most abundant specific VOCs, including linalool, nonanoic acid, methyl myristoleate, 2-acetylfuran, 1-octen-3-one, E-2-heptenal, 2-heptenone, 7-octenoic acid, and 2-pentanone. HZ had higher intensity in jujube ID, floral, sweet, and fruity attributes. Correlation analysis showed that jujube ID (identity) might be related to phenylacetaldehyde and isobutanoic acid that formed by the transamination or dehydrogenation of amino acids; meanwhile, the sweet attribute was correlated with amino acids, including threonine, glutamic acid, glycine, alanine, valine, leucine, tyrosine, phenylalanine, lysine, histidine, and arginine.
Collapse
|
18
|
Liu Y, Ma X, Liang H, Stephanopoulos G, Zhou K. Monoterpenoid biosynthesis by engineered microbes. J Ind Microbiol Biotechnol 2021; 48:6380491. [PMID: 34601590 DOI: 10.1093/jimb/kuab065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/27/2021] [Indexed: 11/14/2022]
Abstract
Monoterpenoids are C10 isoprenoids and constitute a large family of natural products. They have been used as ingredients in food, cosmetics and therapeutic products. Many monoterpenoids such as linalool, geraniol, limonene and pinene are volatile and can be found in plant essential oils. Conventionally, these bioactive compounds are obtained from plant extracts by using organic solvents or by distillation method, which are costly and laborious if high purity product is desired. In recent years, microbial biosynthesis has emerged as alternative source of monoterpenoids with great promise for meeting the increasing global demand for these compounds. However, current methods of production are not yet at levels required for commercialization. Production efficiency of monoterpenoids in microbial hosts is often restricted by high volatility of the monoterpenoids, a lack of enzymatic activity and selectivity, and/or product cytotoxicity to the microbial hosts. In this review, we summarize advances in microbial production of monoterpenoids over the past three years with particular focus on the key metabolic engineering strategies for different monoterpenoid products. We also provide our perspective on the promise of future endeavors to improve monoterpenoid productivity.
Collapse
Affiliation(s)
- Yurou Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore.,Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore
| | - Xiaoqiang Ma
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| | - Hong Liang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore.,Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore
| | - Gregory Stephanopoulos
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kang Zhou
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore.,Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore
| |
Collapse
|
19
|
Lei D, Qiu Z, Qiao J, Zhao GR. Plasticity engineering of plant monoterpene synthases and application for microbial production of monoterpenoids. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:147. [PMID: 34193244 PMCID: PMC8247113 DOI: 10.1186/s13068-021-01998-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 06/18/2021] [Indexed: 05/17/2023]
Abstract
Plant monoterpenoids with structural diversities have extensive applications in food, cosmetics, pharmaceuticals, and biofuels. Due to the strong dependence on the geographical locations and seasonal annual growth of plants, agricultural production for monoterpenoids is less effective. Chemical synthesis is also uneconomic because of its high cost and pollution. Recently, emerging synthetic biology enables engineered microbes to possess great potential for the production of plant monoterpenoids. Both acyclic and cyclic monoterpenoids have been synthesized from fermentative sugars through heterologously reconstructing monoterpenoid biosynthetic pathways in microbes. Acting as catalytic templates, plant monoterpene synthases (MTPSs) take elaborate control of the monoterpenoids production. Most plant MTPSs have broad substrate or product properties, and show functional plasticity. Thus, the substrate selectivity, product outcomes, or enzymatic activities can be achieved by the active site mutations and domain swapping of plant MTPSs. This makes plasticity engineering a promising way to engineer MTPSs for efficient production of natural and non-natural monoterpenoids in microbial cell factories. Here, this review summarizes the key advances in plasticity engineering of plant MTPSs, including the fundamental aspects of functional plasticity, the utilization of natural and non-natural substrates, and the outcomes from product isomers to complexity-divergent monoterpenoids. Furthermore, the applications of plasticity engineering for improving monoterpenoids production in microbes are addressed.
Collapse
Affiliation(s)
- Dengwei Lei
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China
| | - Zetian Qiu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China
| | - Jianjun Qiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China
| | - Guang-Rong Zhao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China.
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China.
| |
Collapse
|
20
|
Nitta N, Tajima Y, Yamamoto Y, Moriya M, Matsudaira A, Hoshino Y, Nishio Y, Usuda Y. Fermentative production of enantiopure (S)-linalool using a metabolically engineered Pantoea ananatis. Microb Cell Fact 2021; 20:54. [PMID: 33653319 PMCID: PMC7923825 DOI: 10.1186/s12934-021-01543-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/18/2021] [Indexed: 01/08/2023] Open
Abstract
Background Linalool, an acyclic monoterpene alcohol, is extensively used in the flavor and fragrance industries and exists as two enantiomers, (S)- and (R)-linalool, which have different odors and biological properties. Linalool extraction from natural plant tissues suffers from low product yield. Although linalool can also be chemically synthesized, its enantioselective production is difficult. Microbial production of terpenes has recently emerged as a novel, environmental-friendly alternative. Stereoselective production can also be achieved using this approach via enzymatic reactions. We previously succeeded in producing enantiopure (S)-linalool using a metabolically engineered Pantoea ananatis, a member of the Enterobacteriaceae family of bacteria, via the heterologous mevalonate pathway with the highest linalool titer ever reported from engineered microbes. Results Here, we genetically modified a previously developed P. ananatis strain expressing the (S)-linalool synthase (AaLINS) from Actinidia arguta to further improve (S)-linalool production. AaLINS was mostly expressed as an insoluble form in P. ananatis; its soluble expression level was increased by N-terminal fusion of a halophilic β-lactamase from Chromohalobacter sp. 560 with hexahistidine. Furthermore, in combination with elevation of the precursor supply via the mevalonate pathway, the (S)-linalool titer was increased approximately 1.4-fold (4.7 ± 0.3 g/L) in comparison with the original strain (3.4 ± 0.2 g/L) in test-tube cultivation with an aqueous-organic biphasic fermentation system using isopropyl myristate as the organic solvent for in situ extraction of cytotoxic and semi-volatile (S)-linalool. The most productive strain, IP04S/pBLAAaLINS-ispA*, produced 10.9 g/L of (S)-linalool in “dual-phase” fed-batch fermentation, which was divided into a growth-phase and a subsequent production-phase. Thus far, this is the highest reported titer in the production of not only linalool but also all monoterpenes using microbes. Conclusions This study demonstrates the potential of our metabolically engineered P. ananatis strain as a platform for economically feasible (S)-linalool production and provides insights into the stereoselective production of terpenes with high efficiency. This system is an environmentally friendly and economically valuable (S)-linalool production alternative. Mass production of enantiopure (S)-linalool can also lead to accurate assessment of its biological properties by providing an enantiopure substrate for study. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01543-0.
Collapse
Affiliation(s)
- Nobuhisa Nitta
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Japan.
| | - Yoshinori Tajima
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Japan
| | - Yoko Yamamoto
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Japan
| | - Mika Moriya
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Japan
| | - Akiko Matsudaira
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Japan
| | - Yasushi Hoshino
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Japan
| | - Yousuke Nishio
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Japan
| | - Yoshihiro Usuda
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Japan
| |
Collapse
|
21
|
Matsudaira A, Hoshino Y, Uesaka K, Takatani N, Omata T, Usuda Y. Production of glutamate and stereospecific flavors, (S)-linalool and (+)-valencene, by Synechocystis sp. PCC6803. J Biosci Bioeng 2020; 130:464-470. [PMID: 32713813 DOI: 10.1016/j.jbiosc.2020.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/24/2020] [Accepted: 06/28/2020] [Indexed: 12/24/2022]
Abstract
Cyanobacteria can grow photoautotrophically, producing a range of substances by absorbing sunlight and utilizing carbon dioxide, and can potentially be used as industrial microbes that have minimal sugar requirements. To evaluate this potential, we explored the possibility of l-glutamate production using the Synechocystis sp. PCC6803. The ybjL gene encoding the putative l-glutamate exporter from Escherichia coli was introduced, and l-glutamate production reached 2.3 g/L in 143 h (34°C, 100 μmol m-2 s-1). Then, we attempted to produce two flavor substances, (S)-linalool, a monoterpene alcohol, and the sesquiterpene (+)-valencene. The Synechocystis sp. PCC6803 strain in which the linalool synthase gene (LINS) from Actinidia arguta (AaLINS) was expressed under control of the tac promoter (GT0846K-Ptac-AaLINS) produced 11.4 mg/L (S)-linalool in 160 h (30°C, 50 μmol m-2 s-1). The strain in which AaLINS2 and the mutated farnesyl diphosphate synthase gene ispA∗ (S80F) from E. coli (GT0846K-PpsbA2-AaLINS-ispA∗) were expressed from the PpsbA2 promoter accumulated 11.6 mg/L (S)-linalool in 160 h. Genome analysis revealed that both strains had mutations in slr1270, suggesting that loss of Slr1270 function was necessary for high linalool accumulation. For sesquiterpene production, the valencene synthase gene from Callitropsis nootkatensis and the fernesyl diphosphate synthase (ispA) gene from E. coli were introduced, and the resultant strain produced 9.6 mg/L of (+)-valencene in 166 h (30°C, 50 μmol m-2 s-1). This study highlights the production efficiency of engineered cyanobacteria, providing insight into potential industrial applications.
Collapse
Affiliation(s)
- Akiko Matsudaira
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co. Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki 210-8681, Japan
| | - Yasushi Hoshino
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co. Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki 210-8681, Japan
| | - Kazuma Uesaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Nobuyuki Takatani
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Tatsuo Omata
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Yoshihiro Usuda
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co. Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki 210-8681, Japan.
| |
Collapse
|