1
|
Rodrigues-de-Souza DP, Casas-Castro A, Carmona-Pérez MC, García-Luque L, Alcaraz-Clariana S, Garrido-Castro JL, Alburquerque-Sendín F. Between-sexes differences in lumbopelvic muscle mechanical properties of non-climacteric adults: a cross-sectional design. Sci Rep 2023; 13:21612. [PMID: 38062151 PMCID: PMC10703780 DOI: 10.1038/s41598-023-48984-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
The lumbopelvic muscle mechanical properties (MMPs) are clinically relevant, but their dependence on sex remains unknown. Therefore, this study aimed to identify if lumbopelvic MMPs depend on the sex in a young adult population. Thirty-five healthy nulliparous women and 35 healthy men were analyzed (age range: 18-50). Lumbopelvic MMPs, that is, tone, stiffness, elasticity, relaxation and creep, assessed with MyotonPRO®, and pelvic floor (PF) health questionnaires were compared between-sexes. Intra-group correlations between sociodemographic and clinical data, and MMPs were also determined. The MMPs of PF were different between healthy non-climacteric adults of both sexes, with women showing higher values of tone and stiffness and lower values of elasticity and viscoelastic properties than men (in all cases, p < 0.03). At lumbar level, tone and stiffness were higher for men at both sides (in all cases, p < 0.04), and relaxation was lower at left side (p = 0.02). The MMPs showed few correlations with sociodemographic data within women. However, within males, there were positive correlations for PF stiffness and viscoelastic parameters with age, BMI and function (0.334 < r < 0.591) and, at lumbar level, negative correlations for tone and stiffness ( - 0.385 < r < -0.590) and positive correlations for viscoelastic properties (0.564 < r < 0.719), with BMI. This indicated that between-sexes differences of lumbopelvic MMPs depend on the specific location of assessment in healthy non-obese young individuals. Women show higher tone and stiffness and lower elasticity and viscoelasticity than men, at PF level.
Collapse
Affiliation(s)
- Daiana Priscila Rodrigues-de-Souza
- Department of Nursing, Pharmacology and Physical Therapy, Faculty of Medicine and Nursing, University of Córdoba, 14004, Córdoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Córdoba, Spain
| | - Azahara Casas-Castro
- Department of Nursing, Pharmacology and Physical Therapy, Faculty of Medicine and Nursing, University of Córdoba, 14004, Córdoba, Spain
| | - María Cristina Carmona-Pérez
- Department of Nursing, Pharmacology and Physical Therapy, Faculty of Medicine and Nursing, University of Córdoba, 14004, Córdoba, Spain
| | - Lourdes García-Luque
- Department of Nursing, Pharmacology and Physical Therapy, Faculty of Medicine and Nursing, University of Córdoba, 14004, Córdoba, Spain
| | - Sandra Alcaraz-Clariana
- Department of Nursing, Pharmacology and Physical Therapy, Faculty of Medicine and Nursing, University of Córdoba, 14004, Córdoba, Spain
| | - Juan Luis Garrido-Castro
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Córdoba, Spain
- Department of Computer Science and Numerical Analysis, Rabanales Campus, University of Córdoba, 14071, Córdoba, Spain
| | - Francisco Alburquerque-Sendín
- Department of Nursing, Pharmacology and Physical Therapy, Faculty of Medicine and Nursing, University of Córdoba, 14004, Córdoba, Spain.
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Córdoba, Spain.
| |
Collapse
|
2
|
Assessing reliability and validity of different stiffness measurement tools on a multi-layered phantom tissue model. Sci Rep 2023; 13:815. [PMID: 36646734 PMCID: PMC9842673 DOI: 10.1038/s41598-023-27742-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023] Open
Abstract
Changes in the mechanical properties (i.e., stiffness) of soft tissues have been linked to musculoskeletal disorders, pain conditions, and cancer biology, leading to a rising demand for diagnostic methods. Despite the general availability of different stiffness measurement tools, it is unclear as to which are best suited for different tissue types and the related measurement depths. The study aimed to compare different stiffness measurement tools' (SMT) reliability on a multi-layered phantom tissue model (MPTM). A polyurethane MPTM simulated the four layers of the thoracolumbar region: cutis (CUT), subcutaneous connective tissue (SCT), fascia profunda (FPR), and erector spinae (ERS), with varying stiffness parameters. Evaluated stiffness measurement tools included Shore Durometer, Semi-Electronic Tissue Compliance Meter (STCM), IndentoPRO, MyotonPRO, and ultrasound imaging. Measurements were made by two independent, blinded examiners. Shore Durometer, STCM, IndentoPRO, and MyotonPRO reliably detected stiffness changes in three of the four MPTM layers, but not in the thin (1 mm thick) layer simulating FPR. With ultrasound imaging, only stiffness changes in layers thicker than 3 mm could be measured reliably. Significant correlations ranging from 0.70 to 0.98 (all p < 0.01) were found. The interrater reliability ranged from good to excellent (ICC(2,2) = 0.75-0.98). The results are encouraging for researchers and clinical practitioners as the investigated stiffness measurement tools are easy-to-use and comparatively affordable.
Collapse
|
3
|
Asymmetries of the Muscle Mechanical Properties of the Pelvic Floor in Nulliparous and Multiparous Women, and Men: A Cross-Sectional Study. Symmetry (Basel) 2022. [DOI: 10.3390/sym14102124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This study aimed to identify if the muscle mechanical properties (MMPs) of both sides of pelvic floor muscles (PFMs) are symmetrical in different populations of both sexes. Between-sides comparisons of MMPs of PFMs, assessed with manual myotonometry, were performed in three groups, with 31 subjects each, composed of healthy nulliparous women (without any type of delivery or pregnancy), multiparous women (with at least two vaginal deliveries), and healthy adult men. Intra-group correlations between MMPs and age, body mass index (BMI), or clinical state of pelvic floor were also obtained. The nulliparous women and the men showed no between-sides differences in any MMP of PFMs. However, the multiparous women showed that the right side displayed less frequency (−0.65 Hz, 95% CI = −1.01, −0.20) and decrement (0.5, 95% CI = 0.11, 0.01), and more relaxation (1.00 ms, 95% CI = 0.47, 1.54) and creep (0.07 De, 95% CI = 0.03, 0.11), than the left side. Further, MMPs were related to age, sex, and BMI, also depending on the population, with the multiparous women being the only group with some between-sides asymmetries, which in this case were positive and of fair intensity for the left side of the PFMs, between BMI, and frequency and stiffness (rho Spearman coefficient: 0.365 and 0.366, respectively). The symmetry of MMPs of the PFMs could depend on the subject’s condition. Multiparous women show a higher tendency to asymmetries than nulliparous women and men, which should be considered in research and clinical settings.
Collapse
|
4
|
Lecardonnel T, Salmon M, Merdy O, Sarzeaud R, Matthew T. Does the inter-osseous membrane fascial dysfunction exist ? An observational study comparing palpation to ultrasound measurements. INT J OSTEOPATH MED 2022. [DOI: 10.1016/j.ijosm.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Quaghebeur J, Petros P, Wyndaele JJ, De Wachter S. Pelvic-floor function, dysfunction, and treatment. Eur J Obstet Gynecol Reprod Biol 2021; 265:143-149. [PMID: 34492609 DOI: 10.1016/j.ejogrb.2021.08.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/15/2021] [Accepted: 08/24/2021] [Indexed: 10/20/2022]
Abstract
The pelvic floor functions as a holistic entity. The organs, bladder, bowel, smooth and striated muscles, nerves, ligaments and other connective tissues are directed cortically and reflexly from various levels of the nervous system. Such holistic integration is essential for the system's multiple functions, for example, pelvic girdle stability, continence, voiding/defecation, and sexuality. Pelvic floor dysfunction (PFD) is related to a variety of pelvic pain syndromes and organ problems of continence and evacuation. Prior to treatment, it is necessary to understand which part(s) of the system may be causing the dysfunction (s) of Chronic Pelvic Pain Syndrome (CPPS), pelvic girdle pain, sexual problems, Lower Urinary Tract Symptoms (LUTS), dysfunctional voiding, constipation, prolapse and incontinence. The interpretation of pelvic floor biomechanics is complex and involves multiple theories. Non-surgical treatment of PFD requires correct diagnosis and correctly supervised pelvic floor training. The aims of this review are to analyze pelvic function and dysfunction. Because it is a holistic and entirely anatomically based system, we have accorded significant weight to the Integral Theory's explanations of function and dysfunction.
Collapse
Affiliation(s)
- Jörgen Quaghebeur
- Department of Urology, University of Antwerp, Edegem, Belgium; Faculty of Medicine and Health Sciences, University of Antwerp, Edegem, Belgium.
| | - Peter Petros
- Faculty of Medicine, University of New South Wales, Kensington, Sydney, Australia
| | | | - Stefan De Wachter
- Department of Urology, University of Antwerp, Edegem, Belgium; Faculty of Medicine and Health Sciences, University of Antwerp, Edegem, Belgium
| |
Collapse
|
6
|
Jędrzejewski G, Kasper-Jędrzejewska M, Dolibog P, Szyguła R, Schleip R, Halski T. The Rolf Method of Structural Integration on Fascial Tissue Stiffness, Elasticity, and Superficial Blood Perfusion in Healthy Individuals: The Prospective, Interventional Study. Front Physiol 2020; 11:1062. [PMID: 33041843 PMCID: PMC7522439 DOI: 10.3389/fphys.2020.01062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/31/2020] [Indexed: 12/16/2022] Open
Abstract
Introduction: There are multiple theories surrounding the physiological impact of structural integration (SI) with little evidence or research corroborating any of these. The aim of the study was to assess the effectiveness of 10 sessions of SI on fascial tissue (FT) superficial blood perfusion, stiffness, and elasticity in 13 healthy women. Methods: This was a prospective, interventional study. The primary outcome measures were FTs’ superficial blood perfusion, stiffness, and elasticity of bilateral selected FT points on the body. Data were collected before and after 10 sessions of SI intervention. Statistical analysis was performed using the non-parametric Wilcoxon test (intragroup comparison). Results: The superficial blood perfusion increased significantly in the most selected FT points on the body (p < 0.05). SI interventions produced significant decreases in selected points (brachioradialis, biceps brachii, and trapezius; p < 0.05) of FT stiffness and significant increases in elasticity (brachioradialis, biceps brachii, triceps surae, and trapezius; p < 0.05), especially in the FT of the right (dominant) upper limb. Conclusion: A 10-session of SI demonstrated positive effects on increasing superficial blood perfusion contributed to a decrease in FT stiffness and an increase in elasticity properties in the dominant upper limb. Data collection for this study is currently underway, and the trial is registered at ISRCTN.com with the identifier: ISRCTN46707309.
Collapse
Affiliation(s)
| | | | - Paweł Dolibog
- Faculty of Health Sciences, University of Opole, Opole, Poland
| | - Renata Szyguła
- Faculty of Health Sciences, University of Opole, Opole, Poland
| | - Robert Schleip
- Department of Sport and Health Sciences, Technical University Munich, Munich, Germany.,Diploma University of Applied Sciences, Bad Sooden-Allendorf, Germany
| | - Tomasz Halski
- Faculty of Health Sciences, University of Opole, Opole, Poland
| |
Collapse
|
7
|
Abraham A, Franklin E, Stecco C, Schleip R. Integrating mental imagery and fascial tissue: A conceptualization for research into movement and cognition. Complement Ther Clin Pract 2020; 40:101193. [PMID: 32891273 DOI: 10.1016/j.ctcp.2020.101193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 04/25/2020] [Accepted: 04/25/2020] [Indexed: 12/28/2022]
Abstract
Mental imagery (MI) research has mainly focused to date on mechanisms of effect and performance gains associated with muscle and neural tissues. MI's potential to affect fascia has rarely been considered. This paper conceptualizes ways in which MI might mutually interact with fascial tissue to support performance and cognitive functions. Such ways acknowledge, among others, MI's positive effect on proprioception, body schema, and pain. Drawing on cellular, physiological, and functional similarities and associations between muscle and fascial tissues, we propose that MI has the potential to affect and be affected by fascial tissue. We suggest that fascia-targeted MI (fascial mental imagery; FMI) can therefore be a useful approach for scientific as well as clinical purposes. We use the example of fascial dynamic neuro-cognitive imagery (FDNI) as a codified FMI method available for scientific and therapeutic explorations into rehabilitation and prevention of fascia-related disabling conditions.
Collapse
Affiliation(s)
- Amit Abraham
- Department of Kinesiology, College of Education, The University of Georgia, Athens, GA, USA. 330 River Road, Athens, 30602, GA, USA; Department of Medicine, Division of General Medicine and Geriatrics, Emory University School of Medicine, Atlanta, GA, USA.
| | - Eric Franklin
- The International Institute for Franklin Method, Hitnauerstrasse 40 CH-8623 Wetzikon, Zurich, Switzerland.
| | - Carla Stecco
- Department of Neurosciences, Institute of Human Anatomy, University of Padova, Via Giustiniani, 5 - 35128, Padova, Italy.
| | - Robert Schleip
- Department of Sport and Health Sciences, Technical University of Munich, Germany. Georg-Brauchle-Ring 60/62, 80802, Muenchen, Germany; Department of Sports Medicine and Health Promotion, Friedrich Schiller University Jena, Jena, Germany; Fascia Research Group, Ulm University, Experimental Anesthesiology, Ulm, Germany.
| |
Collapse
|
8
|
Zullo A, Fleckenstein J, Schleip R, Hoppe K, Wearing S, Klingler W. Structural and Functional Changes in the Coupling of Fascial Tissue, Skeletal Muscle, and Nerves During Aging. Front Physiol 2020; 11:592. [PMID: 32670080 PMCID: PMC7327116 DOI: 10.3389/fphys.2020.00592] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/11/2020] [Indexed: 12/18/2022] Open
Abstract
Aging is a one-way process associated with profound structural and functional changes in the organism. Indeed, the neuromuscular system undergoes a wide remodeling, which involves muscles, fascia, and the central and peripheral nervous systems. As a result, intrinsic features of tissues, as well as their functional and structural coupling, are affected and a decline in overall physical performance occurs. Evidence from the scientific literature demonstrates that senescence is associated with increased stiffness and reduced elasticity of fascia, as well as loss of skeletal muscle mass, strength, and regenerative potential. The interaction between muscular and fascial structures is also weakened. As for the nervous system, aging leads to motor cortex atrophy, reduced motor cortical excitability, and plasticity, thus leading to accumulation of denervated muscle fibers. As a result, the magnitude of force generated by the neuromuscular apparatus, its transmission along the myofascial chain, joint mobility, and movement coordination are impaired. In this review, we summarize the evidence about the deleterious effect of aging on skeletal muscle, fascial tissue, and the nervous system. In particular, we address the structural and functional changes occurring within and between these tissues and discuss the effect of inflammation in aging. From the clinical perspective, this article outlines promising approaches for analyzing the composition and the viscoelastic properties of skeletal muscle, such as ultrasonography and elastography, which could be applied for a better understanding of musculoskeletal modifications occurring with aging. Moreover, we describe the use of tissue manipulation techniques, such as massage, traction, mobilization as well as acupuncture, dry needling, and nerve block, to enhance fascial repair.
Collapse
Affiliation(s)
- Alberto Zullo
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
- CEINGE Advanced Biotechnologies, Naples, Italy
| | - Johannes Fleckenstein
- Department of Sports Medicine, Institute of Sports Sciences, Goethe-University Frankfurt, Frankfurt, Germany
| | - Robert Schleip
- Department of Sport and Health Sciences, Technical University Munich, Munich, Germany
- Department of Sports Medicine and Health Promotion, Friedrich-Schiller University Jena, Jena, Germany
| | - Kerstin Hoppe
- Department of Anaesthesiology, Würzburg University, Würzburg, Germany
| | - Scott Wearing
- Department of Sport and Health Sciences, Technical University Munich, Munich, Germany
- Faculty of Health School, Queensland University of Technology, Brisbane, QLD, Australia
| | - Werner Klingler
- Department of Sport and Health Sciences, Technical University Munich, Munich, Germany
- Faculty of Health School, Queensland University of Technology, Brisbane, QLD, Australia
- Fascia Research Group, Department of Experimental Anaesthesiology, Ulm University, Ulm, Germany
- Department of Anaesthesiology, SRH Hospital Sigmaringen, Sigmaringen, Germany
| |
Collapse
|
9
|
Adstrum S, Nicholson H. A history of fascia. Clin Anat 2019; 32:862-870. [DOI: 10.1002/ca.23371] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 03/13/2019] [Indexed: 01/14/2023]
Affiliation(s)
- Sue Adstrum
- Independent Anatomy Researcher Auckland New Zealand
| | - Helen Nicholson
- Department of Anatomy School of Biomedical Sciences, University of Otago Dunedin New Zealand
| |
Collapse
|