1
|
Sinha S, Vegge T, Winther KT, Hansen HA. Understanding the Electronic and Structural Effects in ORR Intermediate Binding on Anion-Substituted Zirconia Surfaces. Chemphyschem 2024; 25:e202300865. [PMID: 38391116 DOI: 10.1002/cphc.202300865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 02/24/2024]
Abstract
For oxygen reduction reaction (ORR), the surface adsorption energies of O and OH* intermediates are key descriptors for catalytic activity. In this work, we investigate anion-substituted zirconia catalyst surfaces and determine that adsorption energies of O and OH* intermediates is governed by both structural and electronic effects. When the adsorption energies are not influenced by the structural effects of the catalyst surface, they exhibit a linear correlation with integrated crystal orbital Hamiltonian population (ICOHP) of the adsorbate-surface bond. The influence of structural effects, due to the re-optimisation slab geometry after adsorption of intermediate species, leads to stronger adsorption of intermediates. Our calculations show that there is a change in the bond order to accommodate the incoming adsorbate species which leads to stronger adsorption when both structural and electronic effects influence the adsorption phenomena. The insights into the catalyst-adsorbate interactions can guide the design of future ORR catalysts.
Collapse
Affiliation(s)
- Sukanya Sinha
- Department of Energy Storage and Conversion, Technical University of Denmark, 2800, Kongens, Lyngby, Denmark
| | - Tejs Vegge
- Department of Energy Storage and Conversion, Technical University of Denmark, 2800, Kongens, Lyngby, Denmark
| | - Kirsten T Winther
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California, 94025, United States
| | - Heine Anton Hansen
- Department of Energy Storage and Conversion, Technical University of Denmark, 2800, Kongens, Lyngby, Denmark
| |
Collapse
|
2
|
Razzaq S, Exner KS. Why efficient bifunctional hydrogen electrocatalysis requires a change in the reaction mechanism. iScience 2024; 27:108848. [PMID: 38313059 PMCID: PMC10837630 DOI: 10.1016/j.isci.2024.108848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/31/2023] [Accepted: 01/04/2024] [Indexed: 02/06/2024] Open
Abstract
Hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR) are both two-electron processes that culminate in the formation or consumption of gaseous hydrogen in an electrolyzer or a fuel cell, respectively. Unitized regenerative proton exchange membrane fuel cells merge these two functionalities into one device, allowing to switch between the two modes of operation. This prompts the quest for efficient bifunctional electrode materials catalyzing the HER and HOR with reasonable reaction rates at low overpotentials. In the present study using a data-driven framework, we identify a general criterion for efficient bifunctional performance in the hydrogen electrocatalysis, which refers to a change in the reaction mechanism when switching from cathodic to anodic working conditions. The obtained insight can be used in future studies based on density functional theory to pave the design of efficient HER and HOR catalysts by a dedicated consideration of the kinetics in the analysis of reaction mechanisms.
Collapse
Affiliation(s)
- Samad Razzaq
- University Duisburg-Essen, Faculty of Chemistry, Theoretical Inorganic Chemistry, Universitätsstraße 5, 45141 Essen, Germany
| | - Kai S Exner
- University Duisburg-Essen, Faculty of Chemistry, Theoretical Inorganic Chemistry, Universitätsstraße 5, 45141 Essen, Germany
- Cluster of Excellence RESOLV, Bochum, Germany
- Center for Nanointegration (CENIDE) Duisburg-Essen, Duisburg, Germany
| |
Collapse
|
3
|
Couce PM, Madsen TK, Plaza-Mayoral E, Kristoffersen HH, Chorkendorff I, Dalby KN, van der Stam W, Rossmeisl J, Escudero-Escribano M, Sebastián-Pascual P. Tailoring the facet distribution on copper with chloride. Chem Sci 2024; 15:1714-1725. [PMID: 38303937 PMCID: PMC10829013 DOI: 10.1039/d3sc05988j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/20/2023] [Indexed: 02/03/2024] Open
Abstract
Electrocatalytic reactions are sensitive to the catalyst surface structure. Therefore, finding methods to determine active surface sites with different geometry is essential to address the structure-electrocatalytic performance relationships. In this work, we propose a simple methodology to tune and quantify the surface structure on copper catalysts. We tailor the distribution and ratio of facets on copper by electrochemically oxidizing and reducing the surface in chloride-rich aqueous solutions. We then address the formation of new facets with voltammetric lead (Pb) underpotential deposition (UPD). We first record the voltammetric lead UPD on different single facets, which have intense peaks at different potential values. We use this data to decouple each facet peak-contribution in the lead (Pb) UPD curves of the tailored and multifaceted copper surfaces and determine the geometry of the active sites. We combine experiments with density functional theory (DFT) calculations to assess the ligand effect of chloride anions on the copper facet distribution during the surface oxidation/electrodeposition treatment. Our experiments and Wulff constructions suggest that chloride preferentially adsorbs on the (310) facet, reducing the number of (111) sites and inducing the growth of (310) or n(100) × (110) domains. Our work provides a tool to correlate active sites with copper geometries, which is needed to assess the structure-performance relationships in electrocatalysis. We also demonstrate an easy method for selectively tailoring the facet distribution of copper, which is essential to design a well-defined nanostructured catalyst.
Collapse
Affiliation(s)
- Pedro Mazaira Couce
- Department of Chemistry, Center for High Entropy Catalysis (CHEAC), University of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| | - Thor Kongstad Madsen
- Department of Chemistry, Center for High Entropy Catalysis (CHEAC), University of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| | - Elena Plaza-Mayoral
- Department of Chemistry, Center for High Entropy Catalysis (CHEAC), University of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| | - Henrik H Kristoffersen
- Department of Chemistry, Center for High Entropy Catalysis (CHEAC), University of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| | - Ib Chorkendorff
- Department of Physics, Surface Physics and Catalysis, Technical University of Denmark Fysikvej DK-2800 Lyngby Denmark
| | | | - Ward van der Stam
- Utrecht University, Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science Netherlands
| | - Jan Rossmeisl
- Department of Chemistry, Center for High Entropy Catalysis (CHEAC), University of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| | - María Escudero-Escribano
- Department of Chemistry, Center for High Entropy Catalysis (CHEAC), University of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, Barcelona Institute of Science and Technology UAB Campus, 08193 Bellaterra Barcelona Spain
- ICREA Pg. Lluís Companys 23 08010 Barcelona Spain
| | - Paula Sebastián-Pascual
- Department of Chemistry, Center for High Entropy Catalysis (CHEAC), University of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| |
Collapse
|
4
|
Anastasiadou D, Ligt B, He Y, van de Poll RCJ, Simons JFM, Figueiredo MC. Carbon dioxide and nitrate co-electroreduction to urea on CuO xZnO y. Commun Chem 2023; 6:199. [PMID: 37726395 PMCID: PMC10509248 DOI: 10.1038/s42004-023-01001-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2023] Open
Abstract
Urea is a commonly used nitrogen fertiliser synthesised from ammonia and carbon dioxide using thermal catalysis. This process results in high carbon dioxide emissions associated with the required amounts of ammonia. Electrocatalysis provides an alternative method to urea production with reduced carbon emissions while utilising waste products like nitrate. This manuscript reports on urea synthesis from the electroreduction of nitrate and carbon dioxide using CuOxZnOy electrodes under mild conditions. Catalysts with different ratios of CuO and ZnO, synthesised via flame spray pyrolysis, were explored for the reaction. The results revealed that all the CuOxZnOy electrocatalyst compositions produce urea, but the efficiency strongly depends on the metal ratio composition of the catalysts. The CuO50ZnO50 composition had the best performance in terms of selectivity (41% at -0.8 V vs RHE) and activity (0.27 mA/cm2 at -0.8 V vs RHE) towards urea production. Thus, this material is one of the most efficient electrocatalysts for urea production reported so far. This study systematically evaluates bimetallic catalysts with varying compositions for urea synthesis from carbon dioxide and nitrate.
Collapse
Affiliation(s)
- Dimitra Anastasiadou
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO Box 513, Eindhoven, 5600 MB, the Netherlands
| | - Bianca Ligt
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO Box 513, Eindhoven, 5600 MB, the Netherlands
| | - Yunyang He
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO Box 513, Eindhoven, 5600 MB, the Netherlands
| | - Rim C J van de Poll
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO Box 513, Eindhoven, 5600 MB, the Netherlands
| | - Jérôme F M Simons
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO Box 513, Eindhoven, 5600 MB, the Netherlands
| | - Marta Costa Figueiredo
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO Box 513, Eindhoven, 5600 MB, the Netherlands.
- Eindhoven Institute of Renewable Energy Systems (EIRES), Eindhoven University of Technology, PO Box 513, Eindhoven, 5600 MB, the Netherlands.
| |
Collapse
|
5
|
Li P, Li W, Huang Y, Huang Q, Li F, Tian S. Surface Engineering over Metal-Organic Framework Nanoarray to Realize Boosted and Sustained Urea Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2305585. [PMID: 37574265 DOI: 10.1002/smll.202305585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/31/2023] [Indexed: 08/15/2023]
Abstract
Facilitating C─N bond cleavage and promoting *COO desorption are essential yet challenging in urea oxidation reactions (UORs). Herein a novel interfacial coordination assembly protocol is established to modify the Co-phytate coordination complex on the Ni-based metal-organic framework (MOF) nanosheet array (CC/Ni-BDC@Co-PA) toward boosted and sustained UOR electrocatalysis. Comprehensive experimental and theoretical investigations unveil that surface Co-PA modification over Ni-BDC can manipulate the electronic state of Ni sites, and in situ evolved charge-redistributed surface can promote urea adsorption and the subsequent C─N bond cleavage. Impressively, Co-PA functionalization can impart a negatively charged catalyst surface with improved aerophobicity, not only weakening *COO adsorption and promoting CO2 departure, but also repelling CO3 2- approaching to deactivate Ni species, eventually alleviating CO2 poisoning and enhancing operational durability. Beyond that, improved hydrophilic and aerophobic characteristics would also contribute to better mass transfer kinetics. Consequently, CC/Ni-BDC@Co-PA exhibits prominent UOR performance with an ultralow potential of 1.300 V versus RHE to attain 10 mA cm-2 , a small Tafel slope of 45 mV dec-1 , and strong durability, comparable to the best Ni-based electrocatalysts documented thus far. This work affords a novel paradigm to construct MOF-based materials for promoted and sustained UOR catalysis through elegant surface engineering based on a metal-PA complex.
Collapse
Affiliation(s)
- Ping Li
- School of Environment Science and Engineering, Sun Yat-Sen (Zhongshan) University, Guangzhou, 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, P. R. China
| | - Wenqin Li
- School of Environment Science and Engineering, Sun Yat-Sen (Zhongshan) University, Guangzhou, 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, P. R. China
| | - Yuqi Huang
- School of Environment Science and Engineering, Sun Yat-Sen (Zhongshan) University, Guangzhou, 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, P. R. China
| | - Quhua Huang
- School of Environment Science and Engineering, Sun Yat-Sen (Zhongshan) University, Guangzhou, 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, P. R. China
| | - Fengli Li
- School of Environment Science and Engineering, Sun Yat-Sen (Zhongshan) University, Guangzhou, 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, P. R. China
| | - Shuanghong Tian
- School of Environment Science and Engineering, Sun Yat-Sen (Zhongshan) University, Guangzhou, 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, P. R. China
| |
Collapse
|
6
|
Wang H, Huang J, Cai J, Wei Y, Cao A, Liu B, Lu S. In Situ/Operando Methods for Understanding Electrocatalytic Nitrate Reduction Reaction. SMALL METHODS 2023:e2300169. [PMID: 37035954 DOI: 10.1002/smtd.202300169] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/09/2023] [Indexed: 06/19/2023]
Abstract
With the development of industrial and agricultural, a large amount of nitrate is produced, which not only disrupts the natural nitrogen cycle, but also endangers public health. Among the commonly used nitrate treatment techniques, the electrochemical nitrate reduction reaction (eNRR) has attracted extensive attention due to its mild conditions, pollution-free nature, and other advantages. An in-depth understanding of the eNRR mechanism is the prerequisite for designing highly efficient electrocatalysts. However, some traditional characterization tools cannot comprehensively and deeply study the reaction process. It is necessary to develop in situ and operando techniques to reveal the reaction mechanism at the time-resolved and atomic level. This review discusses the eNRR mechanism and summarizes the possible in situ techniques used in eNRR. A detailed introduction of various in situ techniques and their help in understanding the reaction mechanism is provided. Finally, the current challenges and future opportunities in this research area are discussed and highlighted.
Collapse
Affiliation(s)
- Huimin Wang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Jingjing Huang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Jinmeng Cai
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yingying Wei
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Ang Cao
- Department of Physics, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Baozhong Liu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Siyu Lu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
7
|
Yuan S, Xue Y, Ma R, Ma Q, Chen Y, Fan J. Advances in iron-based electrocatalysts for nitrate reduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161444. [PMID: 36621470 DOI: 10.1016/j.scitotenv.2023.161444] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/26/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Excessive nitrate has been a critical issue in the water environment, originating from the burning of fossil fuels, inefficient use of nitrogen fertilizers, and discharge of domestic and industrial wastewater. Among the effective treatments for nitrate reduction, electrocatalysis has become an advanced technique because it uses electrons as green reducing agents and can achieve high selectivity through cathode potential control. The effectiveness of electrocatalytic nitrate reduction (NO3RR) mainly lies in the electrocatalyst. Iron-based catalysts have the advantages of high activity and low cost, which are well-used in the field of electrocatalytic nitrates. A comprehensive overview of the electrocatalytic mechanism and the iron-based materials for NO3RR are given in terms of monometallic iron-based materials as well as bimetallic and oxide iron-based materials. A detailed introduction to NO3RR on zero valent iron, single-atom iron catalysts, and Cu/Fe-based bimetallic electrocatalysts are provided, as they are essential for the improvement of NO3RR performance. Finally, the advantages of iron-based materials for NO3RR and the problems in current applications are summarized, and the development prospects of efficient iron-based catalysts are proposed.
Collapse
Affiliation(s)
- Shiyin Yuan
- State key laboratory of pollution control and Resource reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yinghao Xue
- State key laboratory of pollution control and Resource reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Raner Ma
- State key laboratory of pollution control and Resource reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Qian Ma
- State key laboratory of pollution control and Resource reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yanyan Chen
- State key laboratory of pollution control and Resource reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jianwei Fan
- State key laboratory of pollution control and Resource reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
8
|
Razzaq S, Exner KS. Materials Screening by the Descriptor G max(η): The Free-Energy Span Model in Electrocatalysis. ACS Catal 2023; 13:1740-1758. [PMID: 36776387 PMCID: PMC9903997 DOI: 10.1021/acscatal.2c03997] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/05/2022] [Indexed: 01/18/2023]
Abstract
To move from fossil-based energy resources to a society based on renewables, electrode materials free of precious noble metals are required to efficiently catalyze electrochemical processes in fuel cells, batteries, or electrolyzers. Materials screening operating at minimal computational cost is a powerful method to assess the performance of potential electrode compositions based on heuristic concepts. While the thermodynamic overpotential in combination with the volcano concept refers to the most popular descriptor-based analysis in the literature, this notion cannot reproduce experimental trends reasonably well. About two years ago, the concept of G max(η), based on the idea of the free-energy span model, has been proposed as a universal approach for the screening of electrocatalysts. In contrast to other available descriptor-based methods, G max(η) factors overpotential and kinetic effects by a dedicated evacuation scheme of adsorption free energies into an analysis of trends. In the present perspective, we discuss the application of G max(η) to different electrocatalytic processes, including the oxygen evolution and reduction reactions, the nitrogen reduction reaction, and the selectivity problem of the competing oxygen evolution and peroxide formation reactions, and we outline the advantages of this screening approach over previous investigations.
Collapse
Affiliation(s)
- Samad Razzaq
- University
Duisburg-Essen, Faculty of Chemistry, Theoretical Inorganic Chemistry, Universitätsstraße 5, 45141 Essen, Germany
| | - Kai S. Exner
- University
Duisburg-Essen, Faculty of Chemistry, Theoretical Inorganic Chemistry, Universitätsstraße 5, 45141 Essen, Germany
- Cluster
of Excellence RESOLV, 44801 Bochum, Germany
- Center
for Nanointegration (CENIDE) Duisburg-Essen, 47057 Duisburg, Germany
| |
Collapse
|
9
|
Single Metal Atoms Embedded in the Surface of Pt Nanocatalysts: The Effect of Temperature and Hydrogen Pressure. Catalysts 2022. [DOI: 10.3390/catal12121669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Embedding energetically stable single metal atoms in the surface of Pt nanocatalysts exposed to varied temperature (T) and hydrogen pressure (P) could open up new possibilities in selective and dynamical engineering of alloyed Pt catalysts, particularly interesting for hydrogenation reactions. In this work, an environmental segregation energy model is developed to predict the stability and the surface composition evolution of 24 Metal M-promoted Pt surfaces (with M: Cu, Ag, Au, Ni, Pd, Co, Rh and Ir) under varied T and P. Counterintuitive to expectations, the results show that the more reactive alloy component (i.e., the one forming the strongest chemical bond with the hydrogen) is not the one that segregates to the surface. Moreover, using DFT-based Multi-Scaled Reconstruction (MSR) method and by extrapolation of M-promoted Pt nanoparticles (NPs), the shape dynamics of M-Pt are investigated under the same ranges of T and P. The results show that under low hydrogen pressure and high temperature ranges, Ag and Au—single atoms (and Cu to a less extent) are energetically stable on the surface of truncated octahedral and/or cuboctahedral shaped NPs. This indicated that coinage single-atoms might be used to tune the catalytic properties of Pt surface under hydrogen media. In contrast, bulk stability within wide range of temperature and pressure is predicted for all other M-single atoms, which might act as bulk promoters. This work provides insightful guides and understandings of M-promoted Pt NPs by predicting both the evolution of the shape and the surface compositions under reaction gas condition.
Collapse
|
10
|
Hossain SS, Ahmad Alwi MM, Saleem J, Al-Odail F, Basu A, Mozahar Hossain M. Recent Advances in Anode Electrocatalysts for Direct Formic Acid Fuel Cell-II-Platinum-Based Catalysts. CHEM REC 2022; 22:e202200156. [PMID: 36073789 DOI: 10.1002/tcr.202200156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/19/2022] [Indexed: 12/14/2022]
Abstract
Platinum-based catalysts have a long history of application in formic acid oxidation (FAO). The single metal Pt is active in FAO but expensive, scarce, and rapidly deactivates. Understanding the mechanism of FAO over Pt important for the rational design of catalysts. Pt nanomaterials rapidly deactivate because of the CO poisoning of Pt active sites via the dehydration pathway. Alloying with another transition metal improves the performance of Pt-based catalysts through bifunctional, ensemble, and steric effects. Supporting Pt catalysts on a high-surface-area support material is another technique to improve their overall catalytic activity. This review summarizes recent findings on the mechanism of FAO over Pt and Pt-based alloy catalysts. It also summarizes and analyzes binary and ternary Pt-based catalysts to understand their catalytic activity and structure relationship.
Collapse
Affiliation(s)
- Sk Safdar Hossain
- Department of Chemical Engineering, College of Engineering, King Faisal University, Al-Ahsa, 31982, Kingdom of Saudi Arabia
| | - Muhammad Mudassir Ahmad Alwi
- Department of Materials Engineering, College of Engineering, King Faisal University, Al-Ahsa, 31982, Kingdom of Saudi Arabia
| | - Junaid Saleem
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Faisal Al-Odail
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, 31982, Kingdom of Saudi Arabia
| | - Avijit Basu
- Department of Chemical Engineering, College of Engineering, King Faisal University, Al-Ahsa, 31982, Kingdom of Saudi Arabia
| | - Mohammad Mozahar Hossain
- Department of Chemical Engineering, College of Engineering, King Fahd University of Petroleum & Minerals, Dhahran, 31612, Kingdom of Saudi Arabia
| |
Collapse
|
11
|
Guimarães VP, Nandenha J, Orzari LO, Fatibello-Filho O, Neto AO, Janegitz BC, Vicentini FC, Assumpção MHMT. Effect of TiO2 and Synthesis Strategies on Formate Oxidation: Electrochemical and Fuel Cell Approaches. Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00789-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Orzari LO, Assumpção MHMT, Nandenha J, Neto AO, Junior LHM, Bergamini M, Janegitz BC. Pd, Ag and Bi carbon-supported electrocatalysts as electrochemical multifunctional materials for ethanol oxidation and dopamine determination. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Safdar Hossain SK, Saleem J, Mudassir Ahmad Alwi M, Al-Odail FA, Mozahar Hossain M. Recent Advances in Anode Electrocatalysts for Direct Formic Acid Fuel Cells - Part I - Fundamentals and Pd Based Catalysts. CHEM REC 2022; 22:e202200045. [PMID: 35733082 DOI: 10.1002/tcr.202200045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/25/2022] [Indexed: 11/11/2022]
Abstract
Direct formic acid fuel cells (DFAFCs) have gained immense importance as a source of clean energy for portable electronic devices. It outperforms other fuel cells in several key operational and safety parameters. However, slow kinetics of the formic acid oxidation at the anode remains the main obstacle in achieving a high power output in DFAFCs. Noble metal-based electrocatalysts are effective, but are expensive and prone to CO poisoning. Recently, a substantial volume of research work have been dedicated to develop inexpensive, high activity and long lasting electrocatalysts. Herein, recent advances in the development of anode electrocatalysts for DFAFCs are presented focusing on understanding the relationship between activity and structure. This review covers the literature related to the electrocatalysts based on noble metals, non-noble metals, metal-oxides, synthesis route, support material, and fuel cell performance. The future prospects and bottlenecks in the field are also discussed at the end.
Collapse
Affiliation(s)
- S K Safdar Hossain
- Department of Chemical Engineering, College of Engineering, King Faisal University, Al-Ahsa, 31982, Kingdom of Saudi Arabia
| | - Junaid Saleem
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - M Mudassir Ahmad Alwi
- Department of Materials Engineering, College of Engineering, King Faisal University, Al-Ahsa, 31982, Kingdom of Saudi Arabia
| | - Faisal A Al-Odail
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, 31982, Kingdom of Saudi Arabia
| | - Mohammad Mozahar Hossain
- Department of Chemical Engineering, College of Engineering, King Fahd University of Petroleum & Minerals, Dhahran, 31612, Kingdom of Saudi Arabia
| |
Collapse
|
14
|
Chatenet M, Pollet BG, Dekel DR, Dionigi F, Deseure J, Millet P, Braatz RD, Bazant MZ, Eikerling M, Staffell I, Balcombe P, Shao-Horn Y, Schäfer H. Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chem Soc Rev 2022; 51:4583-4762. [PMID: 35575644 PMCID: PMC9332215 DOI: 10.1039/d0cs01079k] [Citation(s) in RCA: 213] [Impact Index Per Article: 106.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 12/23/2022]
Abstract
Replacing fossil fuels with energy sources and carriers that are sustainable, environmentally benign, and affordable is amongst the most pressing challenges for future socio-economic development. To that goal, hydrogen is presumed to be the most promising energy carrier. Electrocatalytic water splitting, if driven by green electricity, would provide hydrogen with minimal CO2 footprint. The viability of water electrolysis still hinges on the availability of durable earth-abundant electrocatalyst materials and the overall process efficiency. This review spans from the fundamentals of electrocatalytically initiated water splitting to the very latest scientific findings from university and institutional research, also covering specifications and special features of the current industrial processes and those processes currently being tested in large-scale applications. Recently developed strategies are described for the optimisation and discovery of active and durable materials for electrodes that ever-increasingly harness first-principles calculations and machine learning. In addition, a technoeconomic analysis of water electrolysis is included that allows an assessment of the extent to which a large-scale implementation of water splitting can help to combat climate change. This review article is intended to cross-pollinate and strengthen efforts from fundamental understanding to technical implementation and to improve the 'junctions' between the field's physical chemists, materials scientists and engineers, as well as stimulate much-needed exchange among these groups on challenges encountered in the different domains.
Collapse
Affiliation(s)
- Marian Chatenet
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Bruno G Pollet
- Hydrogen Energy and Sonochemistry Research group, Department of Energy and Process Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU) NO-7491, Trondheim, Norway
- Green Hydrogen Lab, Institute for Hydrogen Research (IHR), Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G9A 5H7, Canada
| | - Dario R Dekel
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
- The Nancy & Stephen Grand Technion Energy Program (GTEP), Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Fabio Dionigi
- Department of Chemistry, Chemical Engineering Division, Technical University Berlin, 10623, Berlin, Germany
| | - Jonathan Deseure
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Pierre Millet
- Paris-Saclay University, ICMMO (UMR 8182), 91400 Orsay, France
- Elogen, 8 avenue du Parana, 91940 Les Ulis, France
| | - Richard D Braatz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Michael Eikerling
- Chair of Theory and Computation of Energy Materials, Division of Materials Science and Engineering, RWTH Aachen University, Intzestraße 5, 52072 Aachen, Germany
- Institute of Energy and Climate Research, IEK-13: Modelling and Simulation of Materials in Energy Technology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Iain Staffell
- Centre for Environmental Policy, Imperial College London, London, UK
| | - Paul Balcombe
- Division of Chemical Engineering and Renewable Energy, School of Engineering and Material Science, Queen Mary University of London, London, UK
| | - Yang Shao-Horn
- Research Laboratory of Electronics and Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Helmut Schäfer
- Institute of Chemistry of New Materials, The Electrochemical Energy and Catalysis Group, University of Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany.
| |
Collapse
|
15
|
Yang Z, Gao W. Applications of Machine Learning in Alloy Catalysts: Rational Selection and Future Development of Descriptors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2106043. [PMID: 35229986 PMCID: PMC9036033 DOI: 10.1002/advs.202106043] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/02/2022] [Indexed: 05/28/2023]
Abstract
At present, alloys have broad application prospects in heterogeneous catalysis, due to their various catalytic active sites produced by their vast element combinations and complex geometric structures. However, it is the diverse variables of alloys that lead to the difficulty in understanding the structure-property relationship for conventional experimental and theoretical methods. Fortunately, machine learning methods are helpful to address the issue. Machine learning can not only deal with a large number of data rapidly, but also help establish the physical picture of reactions in multidimensional heterogeneous catalysis. The key challenge in machine learning is the exploration of suitable general descriptors to accurately describe various types of alloy catalysts, which help reasonably design catalysts and efficiently screen candidates. In this review, several kinds of machine learning methods commonly used in the design of alloy catalysts is introduced, and the applications of various reactivity descriptors corresponding to different alloy systems is summarized. Importantly, this work clarifies the existing understanding of physical picture of heterogeneous catalysis, and emphasize the significance of rational selection of universal descriptors. Finally, the development of heterogeneous catalytic descriptors for machine learning are presented.
Collapse
Affiliation(s)
- Ze Yang
- School of Materials Science and EngineeringJilin UniversityChangchun130022P. R. China
| | - Wang Gao
- School of Materials Science and EngineeringJilin UniversityChangchun130022P. R. China
| |
Collapse
|
16
|
Razzaq S, Exner KS. Statistical analysis of breaking scaling relation in the oxygen evolution reaction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Razzaq S, Exner KS. Method to Determine the Bifunctional Index for the Oxygen Electrocatalysis from Theory. ChemElectroChem 2022. [DOI: 10.1002/celc.202101603] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Samad Razzaq
- University of Duisburg-Essen: Universitat Duisburg-Essen Theoretical Inorganic Chemistry Universitaetsstrasse 5 45141 Essen GERMANY
| | - Kai Steffen Exner
- Universität Duisburg-Essen: Universitat Duisburg-Essen Theoretical Inorganic Chemistry Universitätsstr. 5 45141 Essen GERMANY
| |
Collapse
|
18
|
Ding X, Scieszka D, Watzele S, Xue S, Garlyyev B, Haid RW, Bandarenka AS. A Systematic Study of the Influence of Electrolyte Ions on the Electrode Activity. ChemElectroChem 2022. [DOI: 10.1002/celc.202101088] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xing Ding
- Physics of Energy Conversion and Storage Technical University of Munich James-Franck-Strasse 1 85748 Garching Germany
| | - Daniel Scieszka
- Physics of Energy Conversion and Storage Technical University of Munich James-Franck-Strasse 1 85748 Garching Germany
| | - Sebastian Watzele
- Physics of Energy Conversion and Storage Technical University of Munich James-Franck-Strasse 1 85748 Garching Germany
| | - Song Xue
- Physics of Energy Conversion and Storage Technical University of Munich James-Franck-Strasse 1 85748 Garching Germany
| | - Batyr Garlyyev
- Physics of Energy Conversion and Storage Technical University of Munich James-Franck-Strasse 1 85748 Garching Germany
| | - Richard W. Haid
- Physics of Energy Conversion and Storage Technical University of Munich James-Franck-Strasse 1 85748 Garching Germany
| | - Aliaksandr S. Bandarenka
- Physics of Energy Conversion and Storage Technical University of Munich James-Franck-Strasse 1 85748 Garching Germany
- Catalysis Research Center TUM Technical University of Munich Ernst-Otto-Fischer-Strasse 1 85748 Garching Germany
| |
Collapse
|
19
|
Hess F. Is There a Stable Deacon Catalyst? Computational Screening Approach for the Stability of Oxide Catalysts under Harsh Conditions. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Franziska Hess
- Institute of Chemistry, Technical University Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| |
Collapse
|
20
|
Wang C, Liu Z, Li C, Guo C. Progress on electrocatalytic reduction of nitrate on copper-based catalysts. CHINESE SCIENCE BULLETIN-CHINESE 2021. [DOI: 10.1360/tb-2021-0333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Huang J, Li M, Eslamibidgoli MJ, Eikerling M, Groß A. Cation Overcrowding Effect on the Oxygen Evolution Reaction. JACS AU 2021; 1:1752-1765. [PMID: 34723278 PMCID: PMC8549051 DOI: 10.1021/jacsau.1c00315] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Indexed: 05/05/2023]
Abstract
The influence of electrolyte ions on the catalytic activity of electrode/electrolyte interfaces is a controversial topic for many electrocatalytic reactions. Herein, we focus on an effect that is usually neglected, namely, how the local reaction conditions are shaped by nonspecifically adsorbed cations. We scrutinize the oxygen evolution reaction (OER) at nickel (oxy)hydroxide catalysts, using a physicochemical model that integrates density functional theory calculations, a microkinetic submodel, and a mean-field submodel of the electric double layer. The aptness of the model is verified by comparison with experiments. The robustness of model-based insights against uncertainties and variations in model parameters is examined, with a sensitivity analysis using Monto Carlo simulations. We interpret the decrease in OER activity with the increasing effective size of electrolyte cations as a consequence of cation overcrowding near the negatively charged electrode surface. The same reasoning could explain why the OER activity increases with solution pH on the RHE scale and why the OER activity decreases in the presence of bivalent cations. Overall, this work stresses the importance of correctly accounting for local reaction conditions in electrocatalytic reactions to obtain an accurate picture of factors that determine the electrode activity.
Collapse
Affiliation(s)
- Jun Huang
- Institute
of Theoretical Chemistry, Ulm University, 89069 Ulm, Germany
- Institute
of Energy and Climate Research, IEK-13: Theory and Computation of
Energy Materials, Forschungszentrum Jülich
GmbH, 52425 Jülich, Germany
| | - Mengru Li
- Institute
of Theoretical Chemistry, Ulm University, 89069 Ulm, Germany
| | - Mohammad J. Eslamibidgoli
- Institute
of Energy and Climate Research, IEK-13: Theory and Computation of
Energy Materials, Forschungszentrum Jülich
GmbH, 52425 Jülich, Germany
| | - Michael Eikerling
- Institute
of Energy and Climate Research, IEK-13: Theory and Computation of
Energy Materials, Forschungszentrum Jülich
GmbH, 52425 Jülich, Germany
- Jülich
Aachen Research Alliance: JARA-Energy, 52425 Jülich, Germany
| | - Axel Groß
- Institute
of Theoretical Chemistry, Ulm University, 89069 Ulm, Germany
- Helmholtz
Institute Ulm (HIU) Electrochemical Energy Storage, 89069 Ulm, Germany
| |
Collapse
|
22
|
Devendra BK, Praveen BM, Tripathi VS, Nagaraju DH, Nayana KO. Hydrogen Evolution Reaction by Platinum Coating. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY, TRANSACTIONS A: SCIENCE 2021. [DOI: 10.1007/s40995-021-01220-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Ding X, Garlyyev B, Watzele SA, Kobina Sarpey T, Bandarenka AS. Spotlight on the Effect of Electrolyte Composition on the Potential of Maximum Entropy: Supporting Electrolytes Are Not Always Inert. Chemistry 2021; 27:10016-10020. [PMID: 34050569 PMCID: PMC8361723 DOI: 10.1002/chem.202101537] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Indexed: 12/02/2022]
Abstract
The influence of electrolyte pH, the presence of alkali metal cations (Na+ , K+ ), and the presence of O2 on the interfacial water structure of polycrystalline gold electrodes has been experimentally studied in detail. The potential of maximum entropy (PME) was determined by the laser-induced current transient (LICT) technique. Our results demonstrate that increasing the electrolyte pH and introducing O2 shift the PME to more positive potentials. Interestingly, the PME exhibits a higher sensitivity to the pH change in the presence of K+ than Na+ . Altering the pH of the K2 SO4 solution from 4 to 6 can cause a drastic shift in the PME. These findings reveal that, for example, K2 SO4 and Na2 SO4 cannot be considered as equal supporting electrolytes: it is not a viable assumption. This can likely be extrapolated to other common "inert" supporting electrolytes. Beyond this, knowledge about the near-ideal electrolyte composition can be used to optimize electrochemical devices such as electrolyzers, fuel cells, batteries, and supercapacitors.
Collapse
Affiliation(s)
- Xing Ding
- Physics of Energy Conversion and StorageTechnical University of MunichJames-Franck-Strasse 185748GarchingGermany
| | - Batyr Garlyyev
- Physics of Energy Conversion and StorageTechnical University of MunichJames-Franck-Strasse 185748GarchingGermany
| | - Sebastian A. Watzele
- Physics of Energy Conversion and StorageTechnical University of MunichJames-Franck-Strasse 185748GarchingGermany
| | - Theophilus Kobina Sarpey
- Physics of Energy Conversion and StorageTechnical University of MunichJames-Franck-Strasse 185748GarchingGermany
| | - Aliaksandr S. Bandarenka
- Physics of Energy Conversion and StorageTechnical University of MunichJames-Franck-Strasse 185748GarchingGermany
- Catalysis Research Center TUMTechnical University of MunichErnst-Otto-Fischer-Strasse 185748GarchingGermany
| |
Collapse
|
24
|
Clausen CM, Batchelor TAA, Pedersen JK, Rossmeisl J. What Atomic Positions Determines Reactivity of a Surface? Long-Range, Directional Ligand Effects in Metallic Alloys. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003357. [PMID: 33977047 PMCID: PMC8097360 DOI: 10.1002/advs.202003357] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Ligand and strain effects can tune the adsorption energy of key reaction intermediates on a catalyst surface to speed up rate-limiting steps of the reaction. As novel fields like high-entropy alloys emerge, understanding these effects on the atomic structure level is paramount: What atoms near the binding site determine the reactivity of the alloy surface? By statistical analysis of 2000 density functional theory calculations and subsequent host/guest calculations, it is shown that three atomic positions in the third layer of an fcc(111) metallic structure fourth-nearest to the adsorption site display significantly increased influence on reactivity over any second or third nearest atomic positions. Subsequently observed in multiple facets and host metals, the effect cannot be explained simply through the d-band model or a valence configuration model but rather by favorable directions of interaction determined by lattice geometry and the valence difference between host and guest elements. These results advance the general understanding of how the electronic interaction of different elements affect adsorbate-surface interactions and will contribute to design principles for rational catalyst discovery of better, more stable and energy efficient catalysts to be employed in energy conversion, fuel cell technologies, and industrial processes.
Collapse
Affiliation(s)
| | | | - Jack K. Pedersen
- Department of ChemistryUniversity of CopenhagenKøbenhavn Ø2100Denmark
| | - Jan Rossmeisl
- Department of ChemistryUniversity of CopenhagenKøbenhavn Ø2100Denmark
| |
Collapse
|
25
|
Wu J, Li JH, Yu YX. Theoretical Exploration of Electrochemical Nitrate Reduction Reaction Activities on Transition-Metal-Doped h-BP. J Phys Chem Lett 2021; 12:3968-3975. [PMID: 33872506 DOI: 10.1021/acs.jpclett.1c00855] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Electrocatalytic conversion of nitrate (NO3-) into ammonia can not only eliminate harmful pollutant but also provide a green method for a low-temperature ammonia synthesis. The electrochemical NO3- reduction reactions (NO3RRs) of a series of transition-metal-doped hexagonal boron phosphide (h-BP) monolayers were comprehensively evaluated using density functional theory. The V-doped h-BP monolayer was found to stand near the top of the volcano plot with the limiting potential of -0.22 V versus a reversible hydrogen electrode, exhibiting the lowest overpotential among the investigated systems in this work. Besides, the competing hydrogen evolution reaction is significantly suppressed due to the weak adsorption of the H atom. Importantly, the structure of the V-doped h-BP monolayer can be retained very well until 900 K, illustrating the initial indication of high thermal stability and great promise for synthesis. This study not only offers an eligible NO3RR electrocatalyst but also provides an atomic understanding of the behind mechanisms of the NO3RR process.
Collapse
Affiliation(s)
- Jie Wu
- Laboratory of Chemical Engineering Thermodynamics, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jia-Hui Li
- Laboratory of Chemical Engineering Thermodynamics, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yang-Xin Yu
- Laboratory of Chemical Engineering Thermodynamics, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
26
|
Lemoine C, Holade Y, Dubois L, Napporn TW, Servat K, Kokoh KB. New insights on the selective electroconversion of the cellulosic biomass-derived glucose at PtAu nanocatalysts in an anion exchange membrane fuel cell. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
27
|
Sebastián-Pascual P, Jordão Pereira I, Escudero-Escribano M. Tailored electrocatalysts by controlled electrochemical deposition and surface nanostructuring. Chem Commun (Camb) 2020; 56:13261-13272. [PMID: 33104137 DOI: 10.1039/d0cc06099b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Controlled electrodeposition and surface nanostructuring are very promising approaches to tailor the structure of the electrocatalyst surface, with the aim to enhance their efficiency for sustainable energy conversion reactions. In this highlight, we first summarise different strategies to modify the structure of the electrode surface at the atomic and sub-monolayer level for applications in electrocatalysis. We discuss aspects such as structure sensitivity and electronic and geometric effects in electrocatalysis. Nanostructured surfaces are finally introduced as more scalable electrocatalysts, where morphology, cluster size, shape and distribution play an essential role and can be finely tuned. Controlled electrochemical deposition and selective engineering of the surface structure are key to design more active, selective and stable electrocatalysts towards a decarbonised energy scheme.
Collapse
Affiliation(s)
- Paula Sebastián-Pascual
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark.
| | - Inês Jordão Pereira
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark.
| | - María Escudero-Escribano
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark.
| |
Collapse
|
28
|
Investigation of Electrocatalysts Produced by a Novel Thermal Spray Deposition Method. MATERIALS 2020; 13:ma13122746. [PMID: 32560385 PMCID: PMC7345183 DOI: 10.3390/ma13122746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/01/2022]
Abstract
Common methods to produce supported catalysts include impregnation, precipitation, and thermal spray techniques. Supported electrocatalysts produced by a novel method for thermal spray deposition were investigated with respect to their structural properties, elemental composition, and electrochemical performance. This was done using electron microscopy, X-ray photoelectron spectroscopy, and cyclic voltammetry. Various shapes and sizes of catalyst particles were found. The materials exhibit different activity towards oxidation and reduction of Fe. The results show that this preparation method enables the selection of particle coverage as well as size and shape of the catalyst material. Due to the great variability of support and catalyst materials accessible with this technique, this approach is a useful extension to other preparation methods for electrocatalysts.
Collapse
|
29
|
Abstract
Electrochemical reduction of CO2 to value-added chemicals and fuels is a promising approach to store renewable energy while closing the anthropogenic carbon cycle. Despite significant advances in developing new electrocatalysts, this system still lacks enough energy conversion efficiency to become a viable technology for industrial applications. To develop an active and selective electrocatalyst and engineer the reaction environment to achieve high energy conversion efficiency, we need to improve our knowledge of the reaction mechanism and material structure under reaction conditions. In situ spectroscopies are among the most powerful tools which enable measurements of the system under real conditions. These methods provide information about reaction intermediates and possible reaction pathways, electrocatalyst structure and active sites, as well as the effect of the reaction environment on products distribution. This review aims to highlight the utilization of in situ spectroscopic methods that enhance our understanding of the CO2 reduction reaction. Infrared, Raman, X-ray absorption, X-ray photoelectron, and mass spectroscopies are discussed here. The critical challenges associated with current state-of-the-art systems are identified and insights on emerging prospects are discussed.
Collapse
|
30
|
Büchele S, Martín AJ, Mitchell S, Krumeich F, Collins SM, Xi S, Borgna A, Pérez-Ramírez J. Structure Sensitivity and Evolution of Nickel-Bearing Nitrogen-Doped Carbons in the Electrochemical Reduction of CO2. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05333] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Simon Büchele
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
| | - Antonio J. Martín
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
| | - Sharon Mitchell
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
| | - Frank Krumeich
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
| | - Sean M. Collins
- Department of Materials Science and Metallurgy, University of Cambridge, CB3 0FS Cambridge, United Kingdom
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong
Island, 627833 Singapore
| | - Armando Borgna
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong
Island, 627833 Singapore
| | - Javier Pérez-Ramírez
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
| |
Collapse
|
31
|
Sun D, Xu X, Qin Y, Jiang SP, Shao Z. Rational Design of Ag-Based Catalysts for the Electrochemical CO 2 Reduction to CO: A Review. CHEMSUSCHEM 2020; 13:39-58. [PMID: 31696641 DOI: 10.1002/cssc.201902061] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/05/2019] [Indexed: 06/10/2023]
Abstract
The selective electrochemical CO2 reduction (ECR) to CO in aqueous electrolytes has gained significant interest in recent years due to its capability to mitigate the environmental issues associated with CO2 emission and to convert renewable energy such as wind and solar power into chemical energy as well as its potential to realize the commercial use of CO2 . In view of the thermodynamic stability and kinetic inertness of CO2 molecules, the exploitation of active, selective, and stable catalysts for the ECR to CO is crucial to promote the reaction efficiency. Indeed, plenty of electrocatalysts for the selective ECR to CO have been explored, of which Ag is known as the most promising electrocatalyst for large-scale ECR to CO due to several competitive advantages including high catalytic performance, low price, and rich reserves compared with other metal counterparts. To provide useful guidelines for the further development of efficient catalysts for the ECR to CO, a comprehensive summary of the recent progress of Ag-based electrocatalysts is presented in this Review. Different modification strategies of Ag-based electrocatalysts are highlighted, including exposure of crystal facets, tuning of morphology and size, introduction of support materials, alloying with other metals, and surface modification with functional groups. The reaction mechanisms involved in these different modification strategies of Ag-based electrocatalysts are also discussed. Finally, the prospects for the development of next-generation Ag-based electrocatalysts are proposed in an effort to facilitate the industrialization of ECR to CO.
Collapse
Affiliation(s)
- Dalei Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6845, Australia
| | - Xiaomin Xu
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6845, Australia
| | - Yanling Qin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - San Ping Jiang
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6845, Australia
| | - Zongping Shao
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6845, Australia
- College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China
| |
Collapse
|
32
|
Synthesis of silver nanoparticles assisted by chitosan and its application to catalyze the reduction of 4-nitroaniline. Int J Biol Macromol 2019; 135:752-759. [DOI: 10.1016/j.ijbiomac.2019.05.209] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/25/2019] [Accepted: 05/28/2019] [Indexed: 12/15/2022]
|
33
|
Liang Y, Csoklich C, McLaughlin D, Schneider O, Bandarenka AS. Revealing Active Sites for Hydrogen Evolution at Pt and Pd Atomic Layers on Au Surfaces. ACS APPLIED MATERIALS & INTERFACES 2019; 11:12476-12480. [PMID: 30864772 DOI: 10.1021/acsami.8b22146] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Identification of the most active surface sites is one of the key tasks in the development of new electrocatalytic materials. This is in many cases both time and resource consuming due to methodological difficulties of in situ detection of centers of this kind. In this work, we use the recently developed approach based on the analysis of the tunneling current noise recorded by electrochemical scanning tunneling microscopy (n-ECSTM) to compare the nature of the most active hydrogen evolution catalytic sites in a system consisting of sub-monolayers of platinum on a Au substrate to the one of palladium on Au. Our n-ECSTM measurements performed under reaction conditions show that in striking contrast to Pd islands on gold, where the most active centers are located close to the boundary between Au and palladium atoms, all Pt ad-atoms contribute to the overall activity rather equally at pH 1. Methodological aspects related to the use of n-ECSTM in electrocatalytic research are also discussed.
Collapse
Affiliation(s)
- Yunchang Liang
- Physik-Department ECS , Technische Universität München , James-Franck-Str. 1 , 85748 Garching , Germany
| | - Christoph Csoklich
- Physik-Department ECS , Technische Universität München , James-Franck-Str. 1 , 85748 Garching , Germany
| | - David McLaughlin
- Physik-Department ECS , Technische Universität München , James-Franck-Str. 1 , 85748 Garching , Germany
| | - Oliver Schneider
- Institut für Informatik VI , Technische Universität München , Schleißheimer Straße 90a , 85748 Garching , Germany
| | - Aliaksandr S Bandarenka
- Physik-Department ECS , Technische Universität München , James-Franck-Str. 1 , 85748 Garching , Germany
- Nanosystems Initiative Munich (NIM) , Schellingstraße 4 , 80799 Munich , Germany
- Catalysis Research Center TUM , Ernst-Otto-Fischer-Straße 1 , 85748 Garching , Germany
| |
Collapse
|
34
|
Metallic Iridium Thin-Films as Model Catalysts for the Electrochemical Oxygen Evolution Reaction (OER)—Morphology and Activity. SURFACES 2018. [DOI: 10.3390/surfaces1010012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Iridium (Ir) oxide is known to be one of the best electrocatalysts for the oxygen evolution reaction (OER) in acidic media. Ir oxide-based materials are thus of great scientific interest in current research on electrochemical energy conversion. In the present study, we applied Ir metal films as model systems for electrochemical water splitting, obtained by inductive heating in a custom-made setup using two different synthesis approaches. X-ray photoelectron spectroscopy (XPS) and selected area electron diffraction (SAED) confirmed that all films were consistently metallic. The effects of reductive heating time of calcined and uncalcined Ir acetate films on OER activity were investigated using a rotating disk electrode (RDE) setup. The morphology of all films was determined by scanning electron microscopy (SEM). The films directly reduced from the acetate precursor exhibited a strong variability of their morphology and electrochemical properties depending on heating time. The additional oxidation step prior to reductive heating accelerates the final structure formation.
Collapse
|
35
|
Garlyyev B, Xue S, Pohl MD, Reinisch D, Bandarenka AS. Oxygen Electroreduction at High-Index Pt Electrodes in Alkaline Electrolytes: A Decisive Role of the Alkali Metal Cations. ACS OMEGA 2018; 3:15325-15331. [PMID: 31458194 PMCID: PMC6643383 DOI: 10.1021/acsomega.8b00298] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 09/13/2018] [Indexed: 06/10/2023]
Abstract
Currently, platinum group metals play a central role in the electrocatalysis of the oxygen reduction reaction (ORR). Successful design and synthesis of new highly active materials for this process mainly rely on understanding of the so-called electrified electrode/electrolyte interface. It is widely accepted that the catalytic properties of this interface are only dependent on the electrode surface composition and structure. Therefore, there are limited studies about the effects of the electrolyte components on electrocatalytic activity. By now, however, several key points related to the electrolyte composition have become important for many electrocatalytic reactions, including the ORR. It is essential to understand how certain "spectator ions" (e.g., alkali metal cations) influence the electrocatalytic activity and what is the contribution of the electrode surface structure when, for instance, changing the pH of the electrolyte. In this work, the ORR activity of model stepped Pt [n(111) × (111)] surfaces (where n is equal to either 3 or 4 and denotes the atomic width of the (111) terraces of the Pt electrodes) was explored in various alkali metal (Li+, Na+, K+, Rb+, and Cs+) hydroxide solutions. The activity of these electrodes was unexpectedly strongly dependent not only on the surface structure but also on the type of the alkali metal cation in the solutions with the same pH, being the highest in potassium hydroxide solutions (i.e., K+ ≫ Na+ > Cs+ > Rb+ ≈ Li+). A possible reason for the observed ORR activity of Pt [n(111) × (111)] electrodes is discussed as an interplay between structural effects and noncovalent interactions between alkali metal cations and reaction intermediates adsorbed at active catalytic sites.
Collapse
Affiliation(s)
- Batyr Garlyyev
- Physik-Department
ECS, Technische Universität München, James-Franck-Str. 1, D-85748 Garching, Germany
| | - Song Xue
- Physik-Department
ECS, Technische Universität München, James-Franck-Str. 1, D-85748 Garching, Germany
| | - Marcus D. Pohl
- Physik-Department
ECS, Technische Universität München, James-Franck-Str. 1, D-85748 Garching, Germany
| | - David Reinisch
- Physik-Department
ECS, Technische Universität München, James-Franck-Str. 1, D-85748 Garching, Germany
| | - Aliaksandr S. Bandarenka
- Physik-Department
ECS, Technische Universität München, James-Franck-Str. 1, D-85748 Garching, Germany
- Nanosystems
Initiative Munich (NIM), Schellingstraße 4, 80799 Munich, Germany
- Catalysis
Research Center TUM, Ernst-Otto-Fischer-Straße 1, 85748 Garching, Germany
| |
Collapse
|
36
|
Davodi F, Mühlhausen E, Tavakkoli M, Sainio J, Jiang H, Gökce B, Marzun G, Kallio T. Catalyst Support Effect on the Activity and Durability of Magnetic Nanoparticles: toward Design of Advanced Electrocatalyst for Full Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2018; 10:31300-31311. [PMID: 30113811 PMCID: PMC6150642 DOI: 10.1021/acsami.8b08830] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/16/2018] [Indexed: 06/08/2023]
Abstract
Earth-abundant element-based inorganic-organic hybrid materials are attractive alternatives for electrocatalyzing energy conversion reactions. Such material structures do not only increase the surface area and stability of metal nanoparticles (NPs) but also modify the electrocatalytic performance. Here, we introduce, for the first time, multiwall carbon nanotubes (MWNTs) functionalized with nitrogen-rich emeraldine salt (ES) (denoted as ES-MWNT) as a promising catalyst support to boost the electrocatalytic activity of magnetic maghemite (γ-Fe2O3) NPs. The latter component has been synthesized by a simple and upscalable one-step pulsed laser ablation method on Ni core forming the core-shell Ni@γ-Fe2O3 NPs. The catalyst (Ni@γ-Fe2O3/ES-MWNT) is formed via self-assembly as strong interaction between ES-MWNT and Ni@γ-Fe2O3 results in NPs' encapsulation in a thin C-N shell. We further show that Ni does not directly function as an active site in the electrocatalyst but it has a crucial role in synthesizing the maghemite shell. The strong interaction between the NPs and the support improves notably the NPs' catalytic activity toward oxygen evolution reaction (OER) in terms of both onset potential and current density, ranking it among the most active catalysts reported so far. Furthermore, this material shows a superior durability to most of the current excellent OER electrocatalysts as the activity, and the structure, remains almost intact after 5000 OER stability cycles. On further characterization, the same trend has been observed for hydrogen evolution reaction, the other half-reaction of water splitting.
Collapse
Affiliation(s)
- Fatemeh Davodi
- Electrochemical
Energy Conversion Group, Department of Chemistry and Materials Science,
School of Chemical Engineering, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Elisabeth Mühlhausen
- University
of Duisburg-Essen, Technical Chemistry I and Center for Nanointegration
Duisburg-Essen (CENIDE), Universitätsstr. 7, 45141 Essen, Germany
| | - Mohammad Tavakkoli
- Electrochemical
Energy Conversion Group, Department of Chemistry and Materials Science,
School of Chemical Engineering, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Jani Sainio
- Department
of Applied Physics, School of Science, Aalto
University, P.O. Box 15100, FI 00076 Aalto, Finland
| | - Hua Jiang
- Department
of Applied Physics, School of Science, Aalto
University, P.O. Box 15100, FI 00076 Aalto, Finland
| | - Bilal Gökce
- University
of Duisburg-Essen, Technical Chemistry I and Center for Nanointegration
Duisburg-Essen (CENIDE), Universitätsstr. 7, 45141 Essen, Germany
| | - Galina Marzun
- University
of Duisburg-Essen, Technical Chemistry I and Center for Nanointegration
Duisburg-Essen (CENIDE), Universitätsstr. 7, 45141 Essen, Germany
| | - Tanja Kallio
- Electrochemical
Energy Conversion Group, Department of Chemistry and Materials Science,
School of Chemical Engineering, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| |
Collapse
|
37
|
McCrum IT, Chen X, Schwarz KA, Janik MJ, Koper MTM. Effect of Step Density and Orientation on the Apparent pH Dependence of Hydrogen and Hydroxide Adsorption on Stepped Platinum Surfaces. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2018; 122:16756-16764. [PMID: 30258524 PMCID: PMC6150671 DOI: 10.1021/acs.jpcc.8b03660] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/11/2018] [Indexed: 06/02/2023]
Abstract
The effect of the alkali-metal cation (Li+, Na+, K+, and Cs+) on the non-Nernstian pH shift of the Pt(554) and Pt(533) step-associated voltammetric peak is elucidated over a wide pH window (1-13), through computation and experiment. In conjunction with our previously reported study on Pt(553), the non-Nernstian pH shift of the step-induced peak is found to be independent of the step density and the step orientation. In our prior work, we explained the sharp peak as due to the exchange between adsorbed hydrogen and hydroxyl along the step and the non-Nernstian shift as a result of the adsorption of an alkali-metal cation and its subsequent weakening of hydroxyl adsorption. Our density functional theory results support this same mechanism on Pt(533) and capture the effect of alkali-metal cation identity and alkali cation coverage well, where increasing electrolyte pH and cation concentration leads to increased cation coverage and a greater weakening effect on hydroxide adsorption. This work paints a consistent picture for the mechanism of these effects, expanding our fundamental understanding of the electrode/electrolyte interface and practical ability to control hydrogen and hydroxyl adsorption thermodynamics via the electrolyte composition, important for improving fuel cell and electrolyzer performance.
Collapse
Affiliation(s)
- Ian T. McCrum
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Xiaoting Chen
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Kathleen A. Schwarz
- Material
Measurement Laboratory, National Institute
of Standards and Technology, 100 Bureau Dr., Gaithersburg, Maryland 20899, United States
| | - Michael J. Janik
- Department
of Chemical Engineering, The Pennsylvania
State University, 51
Greenberg Complex, University Park, Pennsylvania 16802, United States
| | - Marc T. M. Koper
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
38
|
Abstract
Chemical reactor modelling based on insights and data on a molecular level has become reality over the last few years. Multiscale models describing elementary reaction steps and full microkinetic schemes, pore structures, multicomponent adsorption and diffusion inside pores, and entire reactors have been presented. Quantum mechanical (QM) approaches, molecular simulations (Monte Carlo and molecular dynamics), and continuum equations have been employed for this purpose. Some recent developments in these approaches are presented, in particular time-dependent QM methods, calculation of van der Waals forces, new approaches for force field generation, automatic setup of reaction schemes, and pore modelling. Multiscale simulations are discussed. Applications of these approaches to heterogeneous catalysis are demonstrated for examples that have found growing interest over the last few years, such as metal-support interactions, influence of pore geometry on reactions, noncovalent bonding, reaction dynamics, dynamic changes in catalyst nanoparticle structure, electrocatalysis, solvent effects in catalysis, and multiscale modelling.
Collapse
Affiliation(s)
- Frerich J. Keil
- Department of Chemical Engineering, Hamburg University of Technology, D-21073 Hamburg, Germany
| |
Collapse
|
39
|
Perazzolo V, Brandiele R, Durante C, Zerbetto M, Causin V, Rizzi GA, Cerri I, Granozzi G, Gennaro A. Density Functional Theory (DFT) and Experimental Evidences of Metal–Support Interaction in Platinum Nanoparticles Supported on Nitrogen- and Sulfur-Doped Mesoporous Carbons: Synthesis, Activity, and Stability. ACS Catal 2018. [DOI: 10.1021/acscatal.7b03942] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Valentina Perazzolo
- Department
of Chemical Sciences, University of Padua, Via Marzolo 1, 35131 Padova, Italy
| | - Riccardo Brandiele
- Department
of Chemical Sciences, University of Padua, Via Marzolo 1, 35131 Padova, Italy
| | - Christian Durante
- Department
of Chemical Sciences, University of Padua, Via Marzolo 1, 35131 Padova, Italy
| | - Mirco Zerbetto
- Department
of Chemical Sciences, University of Padua, Via Marzolo 1, 35131 Padova, Italy
| | - Valerio Causin
- Department
of Chemical Sciences, University of Padua, Via Marzolo 1, 35131 Padova, Italy
| | - Gian Andrea Rizzi
- Department
of Chemical Sciences, University of Padua, Via Marzolo 1, 35131 Padova, Italy
| | - Isotta Cerri
- Toyota Motor Europe, Hoge Wei
33, 1930 Zaventem, Belgium
| | - Gaetano Granozzi
- Department
of Chemical Sciences, University of Padua, Via Marzolo 1, 35131 Padova, Italy
| | - Armando Gennaro
- Department
of Chemical Sciences, University of Padua, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
40
|
Chen X, McCrum IT, Schwarz KA, Janik MJ, Koper MTM. Co-adsorption of Cations as the Cause of the Apparent pH Dependence of Hydrogen Adsorption on a Stepped Platinum Single-Crystal Electrode. Angew Chem Int Ed Engl 2017; 56:15025-15029. [PMID: 28987066 PMCID: PMC5991472 DOI: 10.1002/anie.201709455] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/05/2017] [Indexed: 11/10/2022]
Abstract
The successful deployment of advanced energy-conversion systems depends critically on our understanding of the fundamental interactions of the key adsorbed intermediates (hydrogen *H and hydroxyl *OH) at electrified metal-aqueous electrolyte interfaces. The effect of alkali metal cations (Li+ , Na+ , K+ , Cs+ ) on the non-Nernstian pH shift of the step-related voltammetric peak of the Pt(553) electrode is investigated over a wide pH window (1 to 13) by means of experimental and computational methods. The co-adsorbed alkali cations along the step weaken the OH adsorption at the step sites, causing a positive shift of the potential of the step-related peak on Pt(553). Density functional calculations explain the observations on the identity and concentration of alkali cations on the non-Nernstian pH shift, and demonstrate that cation-hydroxyl co-adsorption causes the apparent pH dependence of "hydrogen" adsorption in the step sites of platinum electrodes.
Collapse
Affiliation(s)
- Xiaoting Chen
- Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA, Leiden, The Netherlands
| | - Ian T McCrum
- Department of Chemical Engineering, The Pennsylvania State University, 51 Greenberg Complex, University Park, PA, 16802, USA
| | - Kathleen A Schwarz
- National Institute of Standards and Technology, Material Measurement Laboratory, 100 Bureau Dr., Gaithersburg, MD, 20899, USA
| | - Michael J Janik
- Department of Chemical Engineering, The Pennsylvania State University, 51 Greenberg Complex, University Park, PA, 16802, USA
| | - Marc T M Koper
- Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA, Leiden, The Netherlands
| |
Collapse
|
41
|
Tavakkoli M, Nosek M, Sainio J, Davodi F, Kallio T, Joensuu PM, Laasonen K. Functionalized Carbon Nanotubes with Ni(II) Bipyridine Complexes as Efficient Catalysts for the Alkaline Oxygen Evolution Reaction. ACS Catal 2017. [DOI: 10.1021/acscatal.7b02878] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mohammad Tavakkoli
- Physical
Chemistry Group, Department of Chemistry and Material Sciences, School
of Chemical Engineering, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Magdalena Nosek
- Organic
Chemistry Group, Department of Chemistry and Material Sciences, School
of Chemical Engineering, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Jani Sainio
- Department
of Applied Physics, School of Science, Aalto University, P.O. Box 15100, FI-00076 Aalto, Finland
| | - Fatemeh Davodi
- Physical
Chemistry Group, Department of Chemistry and Material Sciences, School
of Chemical Engineering, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Tanja Kallio
- Physical
Chemistry Group, Department of Chemistry and Material Sciences, School
of Chemical Engineering, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Pekka M Joensuu
- Organic
Chemistry Group, Department of Chemistry and Material Sciences, School
of Chemical Engineering, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Kari Laasonen
- Physical
Chemistry Group, Department of Chemistry and Material Sciences, School
of Chemical Engineering, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| |
Collapse
|
42
|
Chen X, McCrum IT, Schwarz KA, Janik MJ, Koper MTM. Co‐adsorption of Cations as the Cause of the Apparent pH Dependence of Hydrogen Adsorption on a Stepped Platinum Single‐Crystal Electrode. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201709455] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiaoting Chen
- Leiden Institute of Chemistry Leiden University PO Box 9502 2300 RA Leiden The Netherlands
| | - Ian T. McCrum
- Department of Chemical Engineering The Pennsylvania State University 51 Greenberg Complex University Park PA 16802 USA
| | - Kathleen A. Schwarz
- National Institute of Standards and Technology Material Measurement Laboratory 100 Bureau Dr. Gaithersburg MD 20899 USA
| | - Michael J. Janik
- Department of Chemical Engineering The Pennsylvania State University 51 Greenberg Complex University Park PA 16802 USA
| | - Marc T. M. Koper
- Leiden Institute of Chemistry Leiden University PO Box 9502 2300 RA Leiden The Netherlands
| |
Collapse
|
43
|
Larrazábal GO, Martín AJ, Pérez-Ramírez J. Building Blocks for High Performance in Electrocatalytic CO 2 Reduction: Materials, Optimization Strategies, and Device Engineering. J Phys Chem Lett 2017; 8:3933-3944. [PMID: 28763228 DOI: 10.1021/acs.jpclett.7b01380] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In recent years, screening of materials has yielded large gains in catalytic performance for the electroreduction of CO2. However, the diversity of approaches and a still immature mechanistic understanding make it challenging to assess the real potential of each concept. In addition, achieving high performance in CO2 (photo)electrolyzers requires not only favorable electrokinetics but also precise device engineering. In this Perspective, we analyze a broad set of literature reports to construct a set of design-performance maps that suggest patterns between performance figures and different classes of materials and optimization strategies. These maps facilitate the screening of different approaches to electrocatalyst design and the identification of promising avenues for future developments. At the device level, analysis of the network of limiting phenomena in (photo)electrochemical cells leads us to propose a straightforward performance metric based on the concepts of maximum energy efficiency and maximum product formation rate, enabling the comparison of different technologies.
Collapse
Affiliation(s)
- Gastón O Larrazábal
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich , Vladimir-Prelog-Weg 1, CH-8093 Zurich, Switzerland
| | - Antonio J Martín
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich , Vladimir-Prelog-Weg 1, CH-8093 Zurich, Switzerland
| | - Javier Pérez-Ramírez
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich , Vladimir-Prelog-Weg 1, CH-8093 Zurich, Switzerland
| |
Collapse
|
44
|
Electrochemical performance of α-Mo2C as catalyst for the hydrogen evolution reaction. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.01.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
On the pH Dependence of the Potential of Maximum Entropy of Ir(111) Electrodes. Sci Rep 2017; 7:1246. [PMID: 28455496 PMCID: PMC5430915 DOI: 10.1038/s41598-017-01295-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/27/2017] [Indexed: 11/08/2022] Open
Abstract
Studies over the entropy of components forming the electrode/electrolyte interface can give fundamental insights into the properties of electrified interphases. In particular, the potential where the entropy of formation of the double layer is maximal (potential of maximum entropy, PME) is an important parameter for the characterization of electrochemical systems. Indeed, this parameter determines the majority of electrode processes. In this work, we determine PMEs for Ir(111) electrodes. The latter currently play an important role to understand electrocatalysis for energy provision; and at the same time, iridium is one of the most stable metals against corrosion. For the experiments, we used a combination of the laser induced potential transient to determine the PME, and CO charge-displacement to determine the potentials of zero total charge, (EPZTC). Both PME and EPZTC were assessed for perchlorate solutions in the pH range from 1 to 4. Surprisingly, we found that those are located in the potential region where the adsorption of hydrogen and hydroxyl species takes place, respectively. The PMEs demonstrated a shift by ~30 mV per a pH unit (in the RHE scale). Connections between the PME and electrocatalytic properties of the electrode surface are discussed.
Collapse
|
46
|
Alvarenga GM, Coutinho Gallo IB, Villullas HM. Enhancement of ethanol oxidation on Pd nanoparticles supported on carbon-antimony tin oxide hybrids unveils the relevance of electronic effects. J Catal 2017. [DOI: 10.1016/j.jcat.2017.02.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
47
|
Rüdiger C, Favaro M, Valero-Vidal C, Calvillo L, Bozzolo N, Jacomet S, Hein J, Gregoratti L, Agnoli S, Granozzi G, Kunze-Liebhäuser J. Substrate Grain-Dependent Chemistry of Carburized Planar Anodic TiO 2 on Polycrystalline Ti. ACS OMEGA 2017; 2:631-640. [PMID: 31457460 PMCID: PMC6641173 DOI: 10.1021/acsomega.6b00472] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 01/27/2017] [Indexed: 06/10/2023]
Abstract
Mixtures or composites of titania and carbon have gained considerable research interest as innovative catalyst supports for low- and intermediate-temperature proton-exchange membrane fuel cells. For applications in electrocatalysis, variations in the local physicochemical properties of the employed materials can have significant effects on their behavior as catalyst supports. To assess microscopic heterogeneities in composition, structure, and morphology, a microscopic multitechnique approach is required. In this work, compact anodic TiO2 films on planar polycrystalline Ti substrates are converted into carbon/titania composites or multiphase titanium oxycarbides through carbothermal treatment in an acetylene/argon atmosphere in a flow reactor. The local chemical composition, structure, and morphology of the converted films are studied with scanning photoelectron microscopy, micro-Raman spectroscopy, and scanning electron microscopy and are related with the crystallographic orientations of the Ti substrate grains by means of electron backscatter diffraction. Different annealing temperatures, ranging from 550 to 850 °C, are found to yield different substrate grain-dependent chemical compositions, structures, and morphologies. The present study reveals individual time scales for the carbothermal conversion and subsequent surface re-oxidation on substrate grains of a given orientation. Furthermore, it demonstrates the power of a microscopic multitechnique approach for studying polycrystalline heterogeneous materials for electrocatalytic applications.
Collapse
Affiliation(s)
- Celine Rüdiger
- Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Marco Favaro
- Dipartimento
di Scienze Chimiche, Università di
Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Carlos Valero-Vidal
- Institut
für Physikalische Chemie, Leopold-Franzens-Universität
Innsbruck, Innrain 52c, 6020 Innsbruck, Austria
| | - Laura Calvillo
- Dipartimento
di Scienze Chimiche, Università di
Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Nathalie Bozzolo
- CEMEF
- Centre de Mise en Forme des Matériaux, MINES ParisTech,
PSL Research University, CNRS UMR 7635, CS 10207 Rue Claude Daunesse, 06904 Sophia Antipolis Cedex, France
| | - Suzanne Jacomet
- CEMEF
- Centre de Mise en Forme des Matériaux, MINES ParisTech,
PSL Research University, CNRS UMR 7635, CS 10207 Rue Claude Daunesse, 06904 Sophia Antipolis Cedex, France
| | - Jennifer Hein
- Lehrstuhl
für Technische Chemie II, Technische
Universität München, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Luca Gregoratti
- Elettra
− Sincrotrone Trieste SCpA, SS14-Km163.5 in Area Science Park, 34149 Trieste, Italy
| | - Stefano Agnoli
- Dipartimento
di Scienze Chimiche, Università di
Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Gaetano Granozzi
- Dipartimento
di Scienze Chimiche, Università di
Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Julia Kunze-Liebhäuser
- Institut
für Physikalische Chemie, Leopold-Franzens-Universität
Innsbruck, Innrain 52c, 6020 Innsbruck, Austria
| |
Collapse
|
48
|
Wang H, Jiang B, Zhao TT, Jiang K, Yang YY, Zhang J, Xie Z, Cai WB. Electrocatalysis of Ethylene Glycol Oxidation on Bare and Bi-Modified Pd Concave Nanocubes in Alkaline Solution: An Interfacial Infrared Spectroscopic Investigation. ACS Catal 2017. [DOI: 10.1021/acscatal.6b03108] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Han Wang
- Shanghai
Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative
Innovation Center of Chemistry for Energy Materials, Department of
Chemistry, Fudan University, Shanghai 200433, China
| | - Bei Jiang
- Shanghai
Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative
Innovation Center of Chemistry for Energy Materials, Department of
Chemistry, Fudan University, Shanghai 200433, China
| | - Ting-Ting Zhao
- Shanghai
Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative
Innovation Center of Chemistry for Energy Materials, Department of
Chemistry, Fudan University, Shanghai 200433, China
| | - Kun Jiang
- Shanghai
Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative
Innovation Center of Chemistry for Energy Materials, Department of
Chemistry, Fudan University, Shanghai 200433, China
| | - Yao-Yue Yang
- College
of Chemistry and Environmental Protection Engineering, Southwest University for Nationalities, Chengdu 610041, China
| | - Jiawei Zhang
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, Department
of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhaoxiong Xie
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, Department
of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Wen-Bin Cai
- Shanghai
Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative
Innovation Center of Chemistry for Energy Materials, Department of
Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
49
|
Kim D, Kim J. Effect of Anionic Electrolytes and Precursor Concentrations on the Electrodeposited Pt Structures. ELECTROANAL 2017. [DOI: 10.1002/elan.201600346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Dajeong Kim
- Department of Chemistry; Chungbuk National University; Cheongju Chungbuk 28644 Korea
| | - Jongwon Kim
- Department of Chemistry; Chungbuk National University; Cheongju Chungbuk 28644 Korea
| |
Collapse
|
50
|
Farias MJS, Busó-Rogero C, Vidal-Iglesias FJ, Solla-Gullón J, Camara GA, Feliu JM. Mobility and Oxidation of Adsorbed CO on Shape-Controlled Pt Nanoparticles in Acidic Medium. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:865-871. [PMID: 28075603 DOI: 10.1021/acs.langmuir.6b03612] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The knowledge about how CO occupies and detaches from specific surface sites on well-structured Pt surfaces provides outstanding information on both dynamics/mobility of COads and oxidation of this molecule under electrochemical conditions. This work reports how the potentiostatic growth of different coverage CO adlayers evolves with time on both cubic and octahedral Pt nanoparticles in acidic medium. Data suggest that during the growth of the CO adlayer, COads molecules slightly shift toward low coordination sites only on octahedral Pt nanoparticles, so that these undercoordinated sites are the first filled on octahedral Pt nanoparticles. Conversely, on cubic Pt nanoparticles, adsorbed CO behaves as an immobile species, and low coordinated sites as well as (100) terraces are apparently filled uniformly and simultaneously. However, once the adlayer is complete, irrespectively of whether the CO is oxidized in a single step or in a sequence of different potential steps, results suggest that COads behaves as an immobile species during its oxidation on both octahedral and cubic Pt nanoparticles.
Collapse
Affiliation(s)
- Manuel J S Farias
- Departamento de Química, Universidade Federal do Maranhão , Avenida dos Portugueses, 1966, CEP 65080-805, São Luís - MA, Brazil
| | - Carlos Busó-Rogero
- Instituto de Electroquímica, Universidad de Alicante , Ap. 99, E-03080, Alicante, Spain
| | | | - José Solla-Gullón
- Instituto de Electroquímica, Universidad de Alicante , Ap. 99, E-03080, Alicante, Spain
| | - Giuseppe A Camara
- Instituto de Química, Universidade Federal de Mato Grosso do Sul , C.P. 549, 79070-900, Campo Grande, Brazil
| | - Juan M Feliu
- Instituto de Electroquímica, Universidad de Alicante , Ap. 99, E-03080, Alicante, Spain
| |
Collapse
|