1
|
Ouvrard A, Alyabyeva N, Zakaria AM, Yuan K, Dablemont C, Lazzari R, Charra F, Bourguignon B. Change of composition and surface plasmon resonance of Pd/Au core/shell nanoparticles triggered by CO adsorption. J Chem Phys 2024; 161:124713. [PMID: 39344890 DOI: 10.1063/5.0231175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024] Open
Abstract
Controlling composition and plasmonic response of bimetallic nanoparticles (NPs) is of great relevance to tune their catalytic activity. Herein, we demonstrate reversible composition and plasmonic response transitions from a core/shell to a bimetallic alloyed palladium/gold NP triggered by CO adsorption and sample temperature. The use of self-organized growth on alumina template film allows scrutinizing the impact of core size and shell thickness onto NP geometry and plasmonic response. Topography, molecular adsorption, and plasmonic response are addressed by scanning tunneling microscopy, vibrational sum frequency generation (SFG) spectroscopy, and surface differential reflectance spectroscopy, respectively. Modeling CO dipolar interaction and optical reflectivity corroborate the experimental findings. We demonstrate that probing CO adsorption sites by SFG is a remarkably sensitive and relevant method to investigate shell composition and follow in real-time Pd atom migration between the core and the shell. Pd-Au alloying is limited to the first two monolayers of the shell and no plasmonic response is found, while for a thicker shell, a plasmonic response is observed, concomitant with a lower Pd concentration in the shell. Above 10-4 mbar, at room temperature, CO adsorption triggers the shell restructuration, forming a Pd-Au alloy that weakens the plasmonic response via Pd migration from the core to the shell. NP annealing at 550 K, after pumping CO, leads to the desorption of remaining CO and gives enough mobility for Pd to migrate back inside the core and recover a pure gold shell with its original plasmonic response. This work demonstrates that surface stoichiometry and plasmonic response can be tuned by using CO adsorption and NP annealing.
Collapse
Affiliation(s)
- Aimeric Ouvrard
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Saclay, 91405 Orsay, France
| | - Natalia Alyabyeva
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Saclay, 91405 Orsay, France
| | - Abdoul-Mouize Zakaria
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Saclay, 91405 Orsay, France
| | - Keke Yuan
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Saclay, 91405 Orsay, France
| | - Céline Dablemont
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Saclay, 91405 Orsay, France
| | - Rémi Lazzari
- Institut des NanoSciences de Paris (INSP), CNRS/Sorbonne Université, 75252 Paris, France
| | - Fabrice Charra
- Service de Physique de l'État Condensé, SPEC, CEA, CNRS, Université Paris-Saclay, CEA/Saclay, F-91191 Gif sur Yvette, France
| | - Bernard Bourguignon
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
2
|
Luo Q, Wang H, Xiang Q, Lv Y, Yang J, Song L, Cao X, Wang L, Xiao FS. Polymer-Supported Pd Nanoparticles for Solvent-Free Hydrogenation. J Am Chem Soc 2024; 146:26379-26386. [PMID: 39267584 DOI: 10.1021/jacs.4c09241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Breaking the trade-off between activity and stability of supported metal catalysts has been a long-standing challenge in catalysis, especially for metal nanoparticles (NPs) with high hydrogenation activity but poor stability. Herein, we report a porous poly(divinylbenzene) polymer-supported Pd NP catalyst (Pd/PDVB) with both high activity and excellent stability for the solvent-free hydrogenation of nitrobenzene, even at ambient temperature (25 °C) and H2 pressure (0.1 MPa). Pd/PDVB gave a turnover frequency as high as 22,632 h-1 at 70 °C and 0.4 MPa, exceeding 5556 h-1 of the classical Pd/C catalyst under equivalent conditions. Mechanistic studies reveal that the polymer support benefits the desorption of the aniline product from the Pd surface, which is crucial for rapid hydrogenation under solvent-free conditions. In addition, the polymer support in Pd/PDVB efficiently hindered Pd leaching, resulting in good stability.
Collapse
Affiliation(s)
- Qingsong Luo
- Key Lab of Biomass Chemical Engineering of Ministry of Education and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Hai Wang
- Key Lab of Biomass Chemical Engineering of Ministry of Education and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Qian Xiang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yating Lv
- Key Lab of Biomass Chemical Engineering of Ministry of Education and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jiabao Yang
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Petrochemical University, Fushun 113001, China
| | - Lijuan Song
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Petrochemical University, Fushun 113001, China
| | - Xiaoming Cao
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liang Wang
- Key Lab of Biomass Chemical Engineering of Ministry of Education and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Feng-Shou Xiao
- Key Lab of Biomass Chemical Engineering of Ministry of Education and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Matsuyama T, Yatabe T, Yabe T, Yamaguchi K. Heterogeneously catalyzed thioether metathesis by a supported Au-Pd alloy nanoparticle design based on Pd ensemble control. Chem Sci 2024; 15:11884-11889. [PMID: 39092130 PMCID: PMC11290439 DOI: 10.1039/d4sc02732a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
C-S bond metathesis of thioethers has gained attention as a new approach to the late-stage diversification of already existing useful thioethers with molecular frameworks intact. However, direct or indirect thioether metathesis is scarcely reported, and heterogeneously catalyzed systems have not been explored. Here, we develop heterogeneously catalyzed direct thioether metathesis using a supported Au-Pd alloy nanoparticle catalyst with a high Au/Pd ratio. The Au-diluted Pd ensembles suppress the strong π-adsorption of diaryl thioethers on the nanoparticles and promote transmetalation via thiolate spill-over onto neighboring Au species, enabling an efficient direct thioether metathesis.
Collapse
Affiliation(s)
- Takehiro Matsuyama
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan +81-3-5841-7220
| | - Takafumi Yatabe
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan +81-3-5841-7220
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST) 4-1-8 Honcho, Kawaguchi Saitama 332-0012 Japan
| | - Tomohiro Yabe
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan +81-3-5841-7220
| | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan +81-3-5841-7220
| |
Collapse
|
4
|
Tu Y, Huang L, Cheng X, Tian B, Zhang D, Hu J, Ding H, Xu Q, Ye Y, Zhu J. Modulating Nanoparticle Structure by Metal-Metal Oxide Interfacial Interaction in a CeO 2-Supported Bimetallic System: The Ni-Cu Case. J Phys Chem Lett 2024; 15:4096-4104. [PMID: 38587484 DOI: 10.1021/acs.jpclett.4c00810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Structure-optimized bimetallic and multicomponent catalysts often outperform single-component catalysts, inspiring a detailed investigation of metal-metal and metal-support interactions in the system. We investigated the geometric and electronic structures of ceria-supported Ni-Cu particles prepared using different metal deposition sequences employing a combination of X-ray photoelectron spectroscopy, resonant photoemission spectroscopy, and infrared reflection absorption spectroscopy. The bimetallic model catalyst structure was altered by a distinct surface evolution process determined by the metal deposition sequence. The postdeposited Cu stays on the surface of Ni predeposited CeO2 and forms only a limited Ni-Cu alloy in the Cu-contacted Ni region. However, when Ni is deposited on the Cu predeposited CeO2 surface, Ni can migrate through the Cu layer to the Cu-ceria interface and form an extended Ni-Cu alloy to the whole deposited metal layer on the ceria surface. The dynamic metal diffusion in the CeO2-supported Ni-Cu system indicates that metal-support interactions can be used to achieve the rational design of a bimetallic composition distribution during catalyst preparation.
Collapse
Affiliation(s)
- Yi Tu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Luchao Huang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Xingwang Cheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Bingchu Tian
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Dongling Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Jun Hu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Honghe Ding
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Qian Xu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Yifan Ye
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China
- Department of Chemical Physics and Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230026, People's Republic of China
| |
Collapse
|
5
|
Sui J, Gao ML, Qian B, Liu C, Pan Y, Meng Z, Yuan D, Jiang HL. Bioinspired microenvironment modulation of metal-organic framework-based catalysts for selective methane oxidation. Sci Bull (Beijing) 2023; 68:1886-1893. [PMID: 37544879 DOI: 10.1016/j.scib.2023.07.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/21/2023] [Accepted: 07/07/2023] [Indexed: 08/08/2023]
Abstract
Inspiration from natural enzymes enabling creationary catalyst design is appealing yet remains extremely challenging for selective methane (CH4) oxidation. This study presents the construction of a biomimetic catalyst platform for CH4 oxidation, which is constructed by incorporating Fe-porphyrin into a robust metal-organic framework, UiO-66, furnished with saturated monocarboxylic fatty acid bearing different long alkyl chains. The catalysts demonstrate the high efficiency in the CH4 to methanol (CH3OH) conversion at 50 °C. Moreover, the selectivity to CH3OH can be effectively regulated and promoted through a fine-tuned microenvironment by hydrophobic modification around the Fe-porphyrin. The long-chain fatty acids anchored on the Zr-oxo cluster of UiO-66 can not only tune the electronic state of the Fe sites to improve CH4 adsorption, but also restrict the amount of H2O2 around the Fe sites to reduce the overoxidation. This behavior resembles the microenvironment regulation in methane monooxygenase, resulting in high CH3OH selectivity.
Collapse
Affiliation(s)
- Jianfei Sui
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Ming-Liang Gao
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Bing Qian
- National Synchrotron Radiation Laboratory (NSRL), University of Science and Technology of China, Hefei 230029, China
| | - Chengyuan Liu
- National Synchrotron Radiation Laboratory (NSRL), University of Science and Technology of China, Hefei 230029, China
| | - Yang Pan
- National Synchrotron Radiation Laboratory (NSRL), University of Science and Technology of China, Hefei 230029, China
| | - Zheng Meng
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Daqiang Yuan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Hai-Long Jiang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
6
|
Breyton G, Amara H, Nelayah J, Creuze J, Guesmi H, Alloyeau D, Wang G, Ricolleau C. Atomic-Scale Surface Segregation in Copper-Gold Nanoparticles. PHYSICAL REVIEW LETTERS 2023; 130:236201. [PMID: 37354407 DOI: 10.1103/physrevlett.130.236201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/25/2023] [Accepted: 05/12/2023] [Indexed: 06/26/2023]
Abstract
We combine electron microscopy measurements of the surface compositions in Cu-Au nanoparticles and atomistic simulations to investigate the effect of gold segregation. While this mechanism has been extensively investigated within Cu-Au in the bulk state, it was never studied at the atomic level in nanoparticles. By using energy dispersive x-ray analysis across the (100) and (111) facets of nanoparticles, we provide evidence of gold segregation in Cu_{3}Au and CuAu_{3} nanoparticles in the 10 nm size range grown by epitaxy on a salt surface with high control of the nanoparticles morphology. To get atomic-scale insights into the segregation properties in Cu-Au nanoparticles on the whole composition range, we perform Monte Carlo calculations employing N-body interatomic potentials highlighting a complete segregation of Au in the (100) and (111) facets for gold nominal composition above 70% and 60%, respectively. Furthermore, we show that there is no size effect on the segregation behavior since we evidence the same oscillating concentration profile from the surface to the nanoparticle's core as in the bulk. These results shed new light on the interpretation of the enhanced reactivity, selectivity, and stability of Cu-Au nanoparticles in various catalytic reactions.
Collapse
Affiliation(s)
- Grégoire Breyton
- Université Paris Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques (MPQ), 75013 Paris, France
- Laboratoire d'Etude des Microstructures, ONERA-CNRS, UMR104, Université Paris-Saclay, BP 72, Châtillon Cedex, 92322, France
| | - Hakim Amara
- Université Paris Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques (MPQ), 75013 Paris, France
- Laboratoire d'Etude des Microstructures, ONERA-CNRS, UMR104, Université Paris-Saclay, BP 72, Châtillon Cedex, 92322, France
| | - Jaysen Nelayah
- Université Paris Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques (MPQ), 75013 Paris, France
| | - Jérôme Creuze
- ICMMO/ESP2M, Université Paris-Saclay, UMR 8182, 17 avenue des sciences, 91405 Orsay cedex, France
| | - Hazar Guesmi
- ICGM ICMMM-Institut Charles Gerhardt Montpellier-Institut de Chimie Moléculaire et des Matériaux de Montpellier, Montpellier, France
| | - Damien Alloyeau
- Université Paris Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques (MPQ), 75013 Paris, France
| | - Guillaume Wang
- Université Paris Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques (MPQ), 75013 Paris, France
| | - Christian Ricolleau
- Université Paris Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques (MPQ), 75013 Paris, France
| |
Collapse
|
7
|
Arshadi S, Abdolahzadeh F, Vessally E. Butadiyne-linked porphyrin nanoring as a highly selective O 2 gas sensor: A fast response hybrid sensor. J Mol Graph Model 2023; 119:108371. [PMID: 36502605 DOI: 10.1016/j.jmgm.2022.108371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/20/2022]
Abstract
The butadiyne-linked six-metalloporphyrin nanoring (Mg6-P6) and it's complex with a hexapyridyl template, Mg6-P6·T6 have a great potential for employment in future nanoelectronic applications such as a nanosensor for small gas molecules. The goal of this study is to scrutinize and improvement of the CO, N2, and O2 gas sensing capacity of Mg6-P6 and Mg6-P6·T6 using DFT calculations at CAM-B3LYP/6-31G (d,p) level of theory. The geometrical structures, binding energies, band gaps, the density of states (DOS), adsorption energies, HOMO and LUMO energies, Fermi level energies (EFL), NBO, FMO and TD-DFT spectrum were calculated to predict gas adsorption properties of Mg6-P6 and Mg6-P6·T6 systems. Based on the calculated adsorption energies and remarkable decrease in the Eg, it is expected that the Mg6-P6 and Mg6-P6·T6 are sensitive to O2 molecule. Surprisingly, the Mg6-P6-O2 and specially the Mg6-P6.T6-O2 record promising values of recovery times for different attempt frequencies. Therefore, the results open a way for the development of a new and selective O2 nanosensor in the presence of CO and N2 gas molecules.
Collapse
Affiliation(s)
- Sattar Arshadi
- Department of Chemistry, Payame Noor University, 19395-4697, Tehran, Iran.
| | | | - Esmail Vessally
- Department of Chemistry, Payame Noor University, 19395-4697, Tehran, Iran
| |
Collapse
|
8
|
Roongcharoen T, Yang X, Han S, Sementa L, Vegge T, Hansen HA, Fortunelli A. Oxidation and de-alloying of PtMn particle models: a computational investigation. Faraday Discuss 2023; 242:174-192. [PMID: 36196677 DOI: 10.1039/d2fd00107a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We present a computational study of the energetics and mechanisms of oxidation of Pt-Mn systems. We use slab models and simulate the oxidation process over the most stable (111) facet at a given Pt2Mn composition to make the problem computationally affordable, and combine Density-Functional Theory (DFT) with neural network potentials and metadynamics simulations to accelerate the mechanistic search. We find, first, that Mn has a strong tendency to alloy with Pt. This tendency is optimally realized when Pt and Mn are mixed in the bulk, but, at a composition in which the Mn content is high enough such as for Pt2Mn, Mn atoms will also be found in the surface outmost layer. These surface Mn atoms can dissociate O2 and generate MnOx species, transforming the surface-alloyed Mn atoms into MnOx surface oxide structures supported on a metallic framework in which one or more vacancy sites are simultaneously created. The thus-formed vacancies promote the successive steps of the oxidation process: the vacancy sites can be filled by surface oxygen atoms, which can then interact with Mn atoms in deeper layers, or subsurface Mn atoms can intercalate into interstitial sites. Both these steps facilitate the extraction of further bulk Mn atoms into MnOx oxide surface structures, and thus the progress of the oxidation process, with typical rate-determining energy barriers in the range 0.9-1.0 eV.
Collapse
Affiliation(s)
- Thantip Roongcharoen
- CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, via G. Moruzzi 1, Pisa, 56124, Italy. .,Department of Chemistry and Industrial Chemistry, DCCI, University of Pisa, Via G. Moruzzi 13, Pisa, Italy
| | - Xin Yang
- Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej, 2800 Kgs. Lyngby, Denmark.
| | - Shuang Han
- Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej, 2800 Kgs. Lyngby, Denmark.
| | - Luca Sementa
- CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, via G. Moruzzi 1, Pisa, 56124, Italy.
| | - Tejs Vegge
- Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej, 2800 Kgs. Lyngby, Denmark.
| | - Heine Anton Hansen
- Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej, 2800 Kgs. Lyngby, Denmark.
| | - Alessandro Fortunelli
- CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, via G. Moruzzi 1, Pisa, 56124, Italy.
| |
Collapse
|
9
|
Improving Catalytic Activity towards the Direct Synthesis of H2O2 through Cu Incorporation into AuPd Catalysts. Catalysts 2022. [DOI: 10.3390/catal12111396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
With a focus on catalysts prepared by an excess-chloride wet impregnation procedure and supported on the zeolite ZSM-5(30), the introduction of low concentrations of tertiary base metals, in particular Cu, into supported AuPd nanoparticles can be observed to enhance catalytic activity towards the direct synthesis of H2O2. Indeed the optimal catalyst formulation (1%AuPd(0.975)Cu(0.025)/ZSM-5) is able to achieve rates of H2O2 synthesis (115 molH2O2kgcat−1h−1) approximately 1.7 times that of the bi-metallic analogue (69 molH2O2kgcat−1h−1) and rival that previously reported over comparable materials which use Pt as a dopant. Notably, the introduction of Cu at higher loadings results in an inhibition of performance. Detailed analysis by CO-DRFITS and XPS reveals that the improved performance observed over the optimal catalyst can be attributed to the electronic modification of the Pd species and the formation of domains of a mixed Pd2+/Pd0 oxidation state as well as structural changed within the nanoalloy.
Collapse
|
10
|
Qin W, Si D, Yin Q, Gao X, Huang Q, Feng Y, Xie L, Zhang S, Huang X, Liu T, Cao R. Reticular Synthesis of Hydrogen‐Bonded Organic Frameworks and Their Derivatives via Mechanochemistry. Angew Chem Int Ed Engl 2022; 61:e202202089. [DOI: 10.1002/anie.202202089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Wei‐Kang Qin
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fujian Fuzhou 350002 P. R. China
- University of the Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Duan‐Hui Si
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fujian Fuzhou 350002 P. R. China
| | - Qi Yin
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fujian Fuzhou 350002 P. R. China
| | - Xiang‐Yu Gao
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fujian Fuzhou 350002 P. R. China
| | - Qian‐Qian Huang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fujian Fuzhou 350002 P. R. China
- University of the Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Ya‐Nan Feng
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fujian Fuzhou 350002 P. R. China
| | - Lei Xie
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fujian Fuzhou 350002 P. R. China
- University of the Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Shuo Zhang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fujian Fuzhou 350002 P. R. China
| | - Xin‐Song Huang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fujian Fuzhou 350002 P. R. China
| | - Tian‐Fu Liu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fujian Fuzhou 350002 P. R. China
- University of the Chinese Academy of Sciences Beijing 100049 P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fujian Fuzhou 350002 P. R. China
| | - Rong Cao
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fujian Fuzhou 350002 P. R. China
- University of the Chinese Academy of Sciences Beijing 100049 P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fujian Fuzhou 350002 P. R. China
| |
Collapse
|
11
|
Abstract
A large signal of gas-phase CO overlapping with those of adsorbates is often present when investigating catalysts by operando diffuse reflectance FT-IR spectroscopy. Physically removing CO(g) from the IR cell may lead to a fast decay of adsorbate signals. Our work shows that carbonyls adsorbed on metallic Pt sites fully vanished in less than 10 min at 30 °C upon removing CO(g) when redox supports were used. In contrast, a broad band assigned to CO adsorbed on oxidized Pt sites was stable. It was concluded that physically removing CO(g) at room temperature during IR analyses will most likely lead to changes in the distribution of CO(ads) and a misrepresentation of the Pt site speciation, misguiding the development of efficient low-temperature CO oxidation catalysts. A tentative representation of the nature of the Pt phases present depending on the feed composition is also proposed.
Collapse
|
12
|
Qin W, Si D, Yin Q, Gao X, Huang Q, Feng Y, Xie L, Zhang S, Huang X, Liu T, Cao R. Reticular Synthesis of Hydrogen‐Bonded Organic Frameworks and Their Derivatives via Mechanochemistry. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wei‐Kang Qin
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fujian Fuzhou 350002 P. R. China
- University of the Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Duan‐Hui Si
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fujian Fuzhou 350002 P. R. China
| | - Qi Yin
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fujian Fuzhou 350002 P. R. China
| | - Xiang‐Yu Gao
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fujian Fuzhou 350002 P. R. China
| | - Qian‐Qian Huang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fujian Fuzhou 350002 P. R. China
- University of the Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Ya‐Nan Feng
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fujian Fuzhou 350002 P. R. China
| | - Lei Xie
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fujian Fuzhou 350002 P. R. China
- University of the Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Shuo Zhang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fujian Fuzhou 350002 P. R. China
| | - Xin‐Song Huang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fujian Fuzhou 350002 P. R. China
| | - Tian‐Fu Liu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fujian Fuzhou 350002 P. R. China
- University of the Chinese Academy of Sciences Beijing 100049 P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fujian Fuzhou 350002 P. R. China
| | - Rong Cao
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fujian Fuzhou 350002 P. R. China
- University of the Chinese Academy of Sciences Beijing 100049 P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fujian Fuzhou 350002 P. R. China
| |
Collapse
|
13
|
Zhang J, Ma J, Choksi TS, Zhou D, Han S, Liao YF, Yang HB, Liu D, Zeng Z, Liu W, Sun X, Zhang T, Liu B. Strong Metal–Support Interaction Boosts Activity, Selectivity, and Stability in Electrosynthesis of H2O2. J Am Chem Soc 2022; 144:2255-2263. [DOI: 10.1021/jacs.1c12157] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Junming Zhang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
- Nanyang Environmental & Water Research Institute (Newri), Interdisciplinary Graduate Program, Graduate School, Nanyang Technological University, Singapore 637141, Singapore
| | - Jun Ma
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tej S. Choksi
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Daojin Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shaobo Han
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yen-Fa Liao
- National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu 30076, Taiwan
| | - Hong Bin Yang
- Institute for Materials Science and Devices, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Dong Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Zhiping Zeng
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Wei Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaoming Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tianyu Zhang
- Department of Chemistry, Joint Institute for Advanced Materials, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Bin Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
- Nanyang Environmental & Water Research Institute (Newri), Interdisciplinary Graduate Program, Graduate School, Nanyang Technological University, Singapore 637141, Singapore
- Division of Chemical and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
14
|
Ricciardulli T, Adams JS, DeRidder M, van Bavel AP, Karim AM, Flaherty DW. H2O-assisted O2 reduction by H2 on Pt and PtAu bimetallic nanoparticles: Influences of composition and reactant coverages on kinetic regimes, rates, and selectivities. J Catal 2021. [DOI: 10.1016/j.jcat.2021.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Zhai P, Shi Y, Wang Q, Xia Y, Ding K. Elucidating the surface compositions of Pd@Pt nL core-shell nanocrystals through catalytic reactions and spectroscopy probes. NANOSCALE 2021; 13:18498-18506. [PMID: 34730167 DOI: 10.1039/d1nr05636k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The catalytic behaviors or properties of bimetallic catalysts are highly dependent on the surface composition, but it has been a grand challenge to acquire such information. In this work, we employ Pd@PtnL core-shell nanocrystals with an octahedral shape and tunable Pt shell thickness as a model system to elucidate their surface compositions using catalytic reactions based upon the selective hydrogenation of butadiene and acetylene. Our results indicate that the surface of the core-shell nanocrystals changed from Pt-rich to Pd-rich when they were subjected to calcination under oxygen, a critical step involved in the preparation of many industrial catalysts. The inside-out migration can be attributed to both atomic interdiffusion and the oxidation of Pd atoms during the calcination process. The changes in surface composition were further confirmed using infrared and X-ray photoelectron spectroscopy. This work offers insightful guidance for the development and optimization of bimetallic catalysts toward various reactions.
Collapse
Affiliation(s)
- Peng Zhai
- Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, USA.
| | - Yifeng Shi
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - Qiuxiang Wang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
| | - Younan Xia
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Kunlun Ding
- Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, USA.
| |
Collapse
|
16
|
Elgayyar T, Atwi R, Tuel A, Meunier FC. Contributions and limitations of IR spectroscopy of CO adsorption to the characterization of bimetallic and nanoalloy catalysts. Catal Today 2021. [DOI: 10.1016/j.cattod.2021.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Piccolo L. Restructuring effects of the chemical environment in metal nanocatalysis and single-atom catalysis. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.03.052] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Liu J, Li F, Lu J, Li R, Wang Y, Wang Y, Zhang X, Fan C, Zhang R. Atomically dispersed Palladium-Ethylene Glycol- Bismuth oxybromide for photocatalytic nitrogen fixation: Insight of molecular bridge mechanism. J Colloid Interface Sci 2021; 603:17-24. [PMID: 34186395 DOI: 10.1016/j.jcis.2021.06.108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/10/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023]
Abstract
Performance of single-atom catalysis largely depends on the interaction between the metal and the supporter. Herein, ethylene glycol (EG) was used as a molecular bridge connecting Palladium (Pd) and bismuth oxybromide (BiOBr) to form atomically dispersed Pd catalyst (Pd-EG-BiOBr) for photocatalytic nitrogen fixation under ambient conditions. Compared with 0.20 wt% Pd-BiOBr, 0.20 wt% Pd-EG-BiOBr greatly promoted the photocatalytic nitrogen fixation activity, affording an ammonia formation rate of 124.63 μmol·h-1. The molecular bridge mechanism during catalyst formation and photocatalysis is speculated based on Transmission electron microscopy, In-situ Fourier transform infrared spectra, Electron spin resonance spectra, UV-vis diffuse reflectance spectra, Photoluminescence spectra and Density Functional Theory calculations. The results show that EG not only induces the formation of atomically dispersed Pd, but also enhances the electron density of Pd and activation capacity of nitrogen molecules. This work opens a new door to applications of atomically dispersed Pd supported catalysts for high efficiency photocatalytic nitrogen fixation.
Collapse
Affiliation(s)
- Jianxin Liu
- Shanxi Province Cancer Hospital 030013, PR China; College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan Shanxi 030024, PR China
| | - Feifei Li
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan Shanxi 030024, PR China
| | - Jiangrui Lu
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan Shanxi 030024, PR China
| | - Rui Li
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan Shanxi 030024, PR China
| | - Yunfang Wang
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan Shanxi 030024, PR China
| | - Yawen Wang
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan Shanxi 030024, PR China
| | - Xiaochao Zhang
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan Shanxi 030024, PR China
| | - Caimei Fan
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan Shanxi 030024, PR China.
| | - Ruiping Zhang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences 030032 PR China
| |
Collapse
|
19
|
Hydrogen spillover-driven synthesis of high-entropy alloy nanoparticles as a robust catalyst for CO 2 hydrogenation. Nat Commun 2021; 12:3884. [PMID: 34162865 PMCID: PMC8222268 DOI: 10.1038/s41467-021-24228-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/08/2021] [Indexed: 11/08/2022] Open
Abstract
High-entropy alloys (HEAs) have been intensively pursued as potentially advanced materials because of their exceptional properties. However, the facile fabrication of nanometer-sized HEAs over conventional catalyst supports remains challenging, and the design of rational synthetic protocols would permit the development of innovative catalysts with a wide range of potential compositions. Herein, we demonstrate that titanium dioxide (TiO2) is a promising platform for the low-temperature synthesis of supported CoNiCuRuPd HEA nanoparticles (NPs) at 400 °C. This process is driven by the pronounced hydrogen spillover effect on TiO2 in conjunction with coupled proton/electron transfer. The CoNiCuRuPd HEA NPs on TiO2 produced in this work were found to be both active and extremely durable during the CO2 hydrogenation reaction. Characterization by means of various in situ techniques and theoretical calculations elucidated that cocktail effect and sluggish diffusion originating from the synergistic effect obtained by this combination of elements. Facile fabrication of high-entropy alloys (HEAs) nanoparticles (NPs) on conventional catalyst supports remains challenging. Here the authors show TiO2 is a promising platform for the low-temperature synthesis of supported CoNiCuRuPd HEA NPs with excellent activity and durability in CO2 hydrogenation.
Collapse
|
20
|
Ouyang M, Papanikolaou KG, Boubnov A, Hoffman AS, Giannakakis G, Bare SR, Stamatakis M, Flytzani-Stephanopoulos M, Sykes ECH. Directing reaction pathways via in situ control of active site geometries in PdAu single-atom alloy catalysts. Nat Commun 2021; 12:1549. [PMID: 33750788 PMCID: PMC7943817 DOI: 10.1038/s41467-021-21555-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 01/28/2021] [Indexed: 01/31/2023] Open
Abstract
The atomic scale structure of the active sites in heterogeneous catalysts is central to their reactivity and selectivity. Therefore, understanding active site stability and evolution under different reaction conditions is key to the design of efficient and robust catalysts. Herein we describe theoretical calculations which predict that carbon monoxide can be used to stabilize different active site geometries in bimetallic alloys and then demonstrate experimentally that the same PdAu bimetallic catalyst can be transitioned between a single-atom alloy and a Pd cluster phase. Each state of the catalyst exhibits distinct selectivity for the dehydrogenation of ethanol reaction with the single-atom alloy phase exhibiting high selectivity to acetaldehyde and hydrogen versus a range of products from Pd clusters. First-principles based Monte Carlo calculations explain the origin of this active site ensemble size tuning effect, and this work serves as a demonstration of what should be a general phenomenon that enables in situ control over catalyst selectivity.
Collapse
Affiliation(s)
- Mengyao Ouyang
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, USA
| | | | - Alexey Boubnov
- Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Adam S Hoffman
- Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Georgios Giannakakis
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, USA
| | - Simon R Bare
- Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Michail Stamatakis
- Thomas Young Centre and Department of Chemical Engineering, University College London, London, UK
| | | | | |
Collapse
|
21
|
Elgayyar T, Schnee J, Tuel A, Burel L, Bosselet F, Schuurman Y, Meunier FC, Delannoy L, Thomas C. Au-Modified Pd catalyst exhibits improved activity and stability for NO direct decomposition. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00301a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The promotion of a Pd catalyst with Au leads to higher and stable activity for the direct decomposition of NO, due to improved oxygen desorption.
Collapse
Affiliation(s)
- Taha Elgayyar
- Univ Lyon
- CNRS
- Université Claude Bernard Lyon
- IRCELYON
- 69626 Villeurbanne
| | - Josefine Schnee
- CNRS
- Laboratoire de Réactivité de Surface (LRS)
- Sorbonne Université
- F-75005 Paris
- France
| | - Alain Tuel
- Univ Lyon
- CNRS
- Université Claude Bernard Lyon
- IRCELYON
- 69626 Villeurbanne
| | - Laurence Burel
- Univ Lyon
- CNRS
- Université Claude Bernard Lyon
- IRCELYON
- 69626 Villeurbanne
| | | | - Yves Schuurman
- Univ Lyon
- CNRS
- Université Claude Bernard Lyon
- IRCELYON
- 69626 Villeurbanne
| | | | - Laurent Delannoy
- CNRS
- Laboratoire de Réactivité de Surface (LRS)
- Sorbonne Université
- F-75005 Paris
- France
| | - Cyril Thomas
- CNRS
- Laboratoire de Réactivité de Surface (LRS)
- Sorbonne Université
- F-75005 Paris
- France
| |
Collapse
|
22
|
Karatok M, Madix RJ, van der Hoeven JES, Aizenberg J, Reece C. Quantifying oxygen induced surface enrichment of a dilute PdAu alloy catalyst. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01337h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The surface composition of dilute PdAu catalysts is dynamic and difficult to resolve. Using CO pulse titration, we determine that after oxygen treatment a three-fold enrichment of Pd is seen on the surface of a dilute PdAu catalyst.
Collapse
Affiliation(s)
- Mustafa Karatok
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Robert J. Madix
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Jessi E. S. van der Hoeven
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Joanna Aizenberg
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Christian Reece
- Rowland Institute at Harvard, Harvard University, Cambridge, MA, USA
| |
Collapse
|
23
|
Filie A, Shirman T, Aizenberg M, Aizenberg J, Friend CM, Madix RJ. The dynamic behavior of dilute metallic alloy PdxAu1−x/SiO2 raspberry colloid templated catalysts under CO oxidation. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00469g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Dilute palladium-in-gold alloys have potential as efficient oxidation catalysts; controlling the Pd surface distribution is critical.
Collapse
Affiliation(s)
- Amanda Filie
- John A. Paulson School of Engineering and Applied Sciences
- Harvard University
- Cambridge
- USA
| | - Tanya Shirman
- John A. Paulson School of Engineering and Applied Sciences
- Harvard University
- Cambridge
- USA
| | - Michael Aizenberg
- John A. Paulson School of Engineering and Applied Sciences
- Harvard University
- Cambridge
- USA
| | - Joanna Aizenberg
- John A. Paulson School of Engineering and Applied Sciences
- Harvard University
- Cambridge
- USA
- Department of Chemistry and Chemical Biology
| | - Cynthia M. Friend
- John A. Paulson School of Engineering and Applied Sciences
- Harvard University
- Cambridge
- USA
- Department of Chemistry and Chemical Biology
| | - Robert J. Madix
- John A. Paulson School of Engineering and Applied Sciences
- Harvard University
- Cambridge
- USA
| |
Collapse
|
24
|
Garcia C, Truttmann V, Lopez I, Haunold T, Marini C, Rameshan C, Pittenauer E, Kregsamer P, Dobrezberger K, Stöger-Pollach M, Barrabés N, Rupprechter G. Dynamics of Pd Dopant Atoms inside Au Nanoclusters during Catalytic CO Oxidation. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2020; 124:23626-23636. [PMID: 33154783 PMCID: PMC7604939 DOI: 10.1021/acs.jpcc.0c05735] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/10/2020] [Indexed: 05/12/2023]
Abstract
Doping gold nanoclusters with palladium has been reported to increase their catalytic activity and stability. PdAu24 nanoclusters, with the Pd dopant atom located at the center of the Au cluster core, were supported on titania and applied in catalytic CO oxidation, showing significantly higher activity than supported monometallic Au25 nanoclusters. After pretreatment, operando DRIFTS spectroscopy detected CO adsorbed on Pd during CO oxidation, indicating migration of the Pd dopant atom from the Au cluster core to the cluster surface. Increasing the number of Pd dopant atoms in the Au structure led to incorporation of Pd mostly in the S-(M-S) n protecting staples, as evidenced by in situ XAFS. A combination of oxidative and reductive thermal pretreatment resulted in the formation of isolated Pd surface sites within the Au surface. The combined analysis of in situ XAFS, operando DRIFTS, and ex situ XPS thus revealed the structural evolution of bimetallic PdAu nanoclusters, yielding a Pd single-site catalyst of 2.7 nm average particle size with improved CO oxidation activity.
Collapse
Affiliation(s)
- Clara Garcia
- Institute
of Materials Chemistry, Technische Universität
Wien, Getreidemarkt 9/BC/165, 1060 Vienna, Austria
| | - Vera Truttmann
- Institute
of Materials Chemistry, Technische Universität
Wien, Getreidemarkt 9/BC/165, 1060 Vienna, Austria
| | - Irene Lopez
- Instituto
De Tecnología Química, Universitat
Politecnica de Valencia - Consejo Superior de Investigaciones Científicas
(UPV-CSIC), Av. de los Naranjos, s/n, 46022 Valencia, Spain
| | - Thomas Haunold
- Institute
of Materials Chemistry, Technische Universität
Wien, Getreidemarkt 9/BC/165, 1060 Vienna, Austria
| | - Carlo Marini
- ALBA
Synchrotron Light Facility, Carrer de la Llum 2-26, 08290 Cerdanyola del Valles, Barcelona, Spain
| | - Christoph Rameshan
- Institute
of Materials Chemistry, Technische Universität
Wien, Getreidemarkt 9/BC/165, 1060 Vienna, Austria
| | - Ernst Pittenauer
- Institute
of Chemical Technologies and Analytics, Technische Universität Wien, Getreidemarkt 9/164, 1060 Vienna, Austria
| | - Peter Kregsamer
- Atominstitut, Technische Universität
Wien, Stadionallee 2, 1020 Vienna, Austria
| | - Klaus Dobrezberger
- Institute
of Materials Chemistry, Technische Universität
Wien, Getreidemarkt 9/BC/165, 1060 Vienna, Austria
| | - Michael Stöger-Pollach
- University
Service Center for Transmission Electron Microscopy (USTEM), Technische Universität Wien, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria
| | - Noelia Barrabés
- Institute
of Materials Chemistry, Technische Universität
Wien, Getreidemarkt 9/BC/165, 1060 Vienna, Austria
| | - Günther Rupprechter
- Institute
of Materials Chemistry, Technische Universität
Wien, Getreidemarkt 9/BC/165, 1060 Vienna, Austria
| |
Collapse
|
25
|
Luneau M, Guan E, Chen W, Foucher AC, Marcella N, Shirman T, Verbart DMA, Aizenberg J, Aizenberg M, Stach EA, Madix RJ, Frenkel AI, Friend CM. Enhancing catalytic performance of dilute metal alloy nanomaterials. Commun Chem 2020; 3:46. [PMID: 36703362 PMCID: PMC9814734 DOI: 10.1038/s42004-020-0293-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/17/2020] [Indexed: 01/29/2023] Open
Abstract
Dilute alloys are promising materials for sustainable chemical production; however, their composition and structure affect their performance. Herein, a comprehensive study of the effects of pretreatment conditions on the materials properties of Pd0.04Au0.96 nanoparticles partially embedded in porous silica is related to the activity for catalytic hydrogenation of 1-hexyne to 1-hexene. A combination of in situ characterization and theoretical calculations provide evidence that changes in palladium surface content are induced by treatment in oxygen, hydrogen and carbon monoxide at various temperatures. In turn, there are changes in hydrogenation activity because surface palladium is necessary for H2 dissociation. These Pd0.04Au0.96 nanoparticles in the porous silica remain structurally intact under many cycles of activation and deactivation and are remarkably resistant to sintering, demonstrating that dilute alloy catalysts are highly dynamic systems that can be tuned and maintained in a active state.
Collapse
Affiliation(s)
- Mathilde Luneau
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Erjia Guan
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York, 11794, USA
| | - Wei Chen
- Department of Physics and School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Alexandre C Foucher
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nicholas Marcella
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York, 11794, USA
| | - Tanya Shirman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - David M A Verbart
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Joanna Aizenberg
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Michael Aizenberg
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Eric A Stach
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Robert J Madix
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Anatoly I Frenkel
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York, 11794, USA
- Division of Chemistry, Brookhaven National Laboratory, Upton, New York, 11973, USA
| | - Cynthia M Friend
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA.
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
26
|
Guan E, Foucher AC, Marcella N, Shirman T, Luneau M, Head AR, Verbart DMA, Aizenberg J, Friend CM, Stacchiola D, Stach EA, Frenkel AI. New Role of Pd Hydride as a Sensor of Surface Pd Distributions in Pd−Au Catalysts. ChemCatChem 2019. [DOI: 10.1002/cctc.201901847] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Erjia Guan
- Department of Materials Science and Chemical Engineering Stony Brook University Stony Brook NY-11794 USA
| | - Alexandre C. Foucher
- Materials Science and Engineering University of Pennsylvania Philadelphia PA-19104 USA
| | - Nicholas Marcella
- Department of Materials Science and Chemical Engineering Stony Brook University Stony Brook NY-11794 USA
| | - Tanya Shirman
- John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA-02138 USA
- Wyss Institute for Biologically Inspired Engineering Harvard University Cambridge MA-02138 USA
| | - Mathilde Luneau
- Department of Chemistry and Chemical Biology Harvard University Cambridge MA-02138 USA
| | - Ashley R. Head
- Center for Functional Nanomaterials Brookhaven National Laboratory Upton NY-11973 USA
| | - David M. A. Verbart
- Department of Chemistry and Chemical Biology Harvard University Cambridge MA-02138 USA
| | - Joanna Aizenberg
- John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA-02138 USA
- Wyss Institute for Biologically Inspired Engineering Harvard University Cambridge MA-02138 USA
- Department of Chemistry and Chemical Biology Harvard University Cambridge MA-02138 USA
| | - Cynthia M. Friend
- John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA-02138 USA
- Department of Chemistry and Chemical Biology Harvard University Cambridge MA-02138 USA
| | - Dario Stacchiola
- Center for Functional Nanomaterials Brookhaven National Laboratory Upton NY-11973 USA
| | - Eric A. Stach
- Materials Science and Engineering University of Pennsylvania Philadelphia PA-19104 USA
| | - Anatoly I. Frenkel
- Department of Materials Science and Chemical Engineering Stony Brook University Stony Brook NY-11794 USA
- Chemistry Division Brookhaven National Laboratory Upton NY-11973 USA
| |
Collapse
|
27
|
Papanikolaou KG, Darby MT, Stamatakis M. Engineering the Surface Architecture of Highly Dilute Alloys: An ab Initio Monte Carlo Approach. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04029] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Konstantinos G. Papanikolaou
- Thomas Young Centre and Department of Chemical Engineering, University College London, Roberts Building, Torrington Place, London WC1E 7JE, U.K
| | - Matthew T. Darby
- Thomas Young Centre and Department of Chemical Engineering, University College London, Roberts Building, Torrington Place, London WC1E 7JE, U.K
| | - Michail Stamatakis
- Thomas Young Centre and Department of Chemical Engineering, University College London, Roberts Building, Torrington Place, London WC1E 7JE, U.K
| |
Collapse
|
28
|
Smirnova NS, Markov PV, Baeva GN, Rassolov AV, Mashkovsky IS, Bukhtiyarov AV, Prosvirin IP, Panafidin MA, Zubavichus YV, Bukhtiyarov VI, Stakheev AY. CO-induced segregation as an efficient tool to control the surface composition and catalytic performance of PdAg3/Al2O3 catalyst. MENDELEEV COMMUNICATIONS 2019. [DOI: 10.1016/j.mencom.2019.09.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Abdulhussein HA, Ferrari P, Vanbuel J, Heard C, Fielicke A, Lievens P, Janssens E, Johnston RL. Altering CO binding on gold cluster cations by Pd-doping. NANOSCALE 2019; 11:16130-16141. [PMID: 31432842 DOI: 10.1039/c9nr04237g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The introduction of dopant atoms into metal nanoparticles is an effective way to control the interaction with adsorbate molecules and is important in many catalytic processes. In this work, experimental and theoretical evidence of the influence of Pd doping on the bonding between small cationic AuN+ clusters and CO is presented. The CO adsorption is studied by combining low-pressure collision cell reactivity and infrared multiple photon dissociation spectroscopy experiments with density functional theory calculations. Measured dissociation rates of cluster-CO complexes (N ≤ 21) allow the estimation of cluster-CO binding energies, showing that Pd doping increases the CO adsorption energy to an extent that is size-dependent. These trends are reproduced by theoretical calculations up to N = 13. In agreement with theory, measurements of the C-O vibrational frequency suggest that for the doped PdAuN-1+ (N = 3-5, 11) clusters, CO adsorbs on an Au atom, while for N = 6-10 and N = 12-14, CO interacts directly with the Pd dopant. A pronounced red-shifting of the C-O vibrational frequency is observed when CO interacts directly with the Pd dopant, indicating a significant back-donation of electron charge from Pd to CO. In contrast, the blue-shifted frequencies, observed when CO interacts with an Au atom, indicate that σ-donation dominates the Au-CO interaction. Studying such systems at the sub-nanometre scale enables a fundamental comprehension of the interactions between adsorbates, dopants and the host (Au) species at the atomic level.
Collapse
|
30
|
Liu H, Wu Z, Wang R, Dong M, Wang G, Qin Z, Ma J, Huang Y, Wang J, Fan W. Structural and electronic feature evolution of Au-Pd bimetallic catalysts supported on graphene and SiO2 in H2 and O2. J Catal 2019. [DOI: 10.1016/j.jcat.2019.06.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Ring-Opening Transformation of 5-Hydroxymethylfurfural Using a Golden Single-Atomic-Site Palladium Catalyst. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00489] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
32
|
Wu Z, Tang M, Li X, Luo S, Yuan W, Zhu B, Zhang H, Yang H, Gao Y, Wang Y. Surface faceting and compositional evolution of Pd@Au core–shell nanocrystals during in situ annealing. Phys Chem Chem Phys 2019; 21:3134-3139. [DOI: 10.1039/c8cp07576j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A step-wise transformation process of a Pd@Au nanoparticle both structurally and compositionally was observed. Monte Carlo simulation was used to explain the results.
Collapse
|
33
|
Abstract
The low-temperature water–gas shift reaction (LTS: CO + H2O ⇌ CO2 + H2) is a key step in the purification of H2 reformate streams that feed H2 fuel cells. Supported gold catalysts were originally identified as being active for this reaction twenty years ago, and since then, considerable advances have been made in the synthesis and characterisation of these catalysts. In this review, we identify and evaluate the progress towards solving the most important challenge in this research area: the development of robust, highly active catalysts that do not deactivate on-stream under realistic reaction conditions.
Collapse
|
34
|
Liu R, Chen HM, Fang LP, Xu C, He Z, Lai Y, Zhao H, Bekana D, Liu JF. Au@Pd Bimetallic Nanocatalyst for Carbon-Halogen Bond Cleavage: An Old Story with New Insight into How the Activity of Pd is Influenced by Au. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:4244-4255. [PMID: 29547286 DOI: 10.1021/acs.est.7b05996] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
AuPd bimetallic nanocatalysts exhibit superior catalytic performance in the cleavage of carbon-halogen bonds (C-X) in the hazardous halogenated pollutants. A better understanding of how Au atoms promote the reactivity of Pd sites rather than vaguely interpreting as bimetallic effect and determining which type of Pd sites are necessary for these reactions are crucial factors for the design of atomically precise nanocatalysts that make full use of both the Pd and Au atoms. Herein, we systematically manipulated the coordination number of Pd-Pd, d-orbital occupation state, and the Au-Pd interface of the Pd reactive centers and studied the structure-activity relationship of Au-Pd in the catalyzed cleavage of C-X bonds. It is revealed that Au enhanced the activity of Pd atoms primarily by increasing the occupation state of Pd d-orbitals. Meanwhile, among the Pd sites formed on the Au surface, five to seven contiguous Pd atoms, three or four adjacent Pd atoms, and isolated Pd atoms were found to be the most active in the cleavage of C-Cl, C-Br, and C-I bonds, respectively. Besides, neighboring Au atoms directly contribute to the weakening of the C-Br/C-I bond. This work provides new insight into the rational design of bimetallic metal catalysts with specific catalytic properties.
Collapse
Affiliation(s)
- Rui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , China
| | - Hui-Min Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , China
- Department of Chemistry, Faculty of Material Sciences and Chemistry , China University of Geosciences , Wuhan 430074 , China
| | - Li-Ping Fang
- Department of Chemistry, Faculty of Material Sciences and Chemistry , China University of Geosciences , Wuhan 430074 , China
| | - Cuihong Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , China
- Department of Chemistry, Faculty of Material Sciences and Chemistry , China University of Geosciences , Wuhan 430074 , China
| | - Zuoliang He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , China
| | - Yujian Lai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , China
| | - Huachao Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , China
| | - Deribachew Bekana
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , China
| | - Jing-Fu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , China
| |
Collapse
|
35
|
On the way of understanding the behavior of nanometer-scale metallic particles toward the adsorption of CO and NO molecules. CR CHIM 2018. [DOI: 10.1016/j.crci.2017.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
36
|
Kareem H, Shan S, Lin F, Li J, Wu Z, Prasai B, O'Brien CP, Lee IC, Tran DT, Yang L, Mott D, Luo J, Petkov V, Zhong CJ. Evolution of surface catalytic sites on thermochemically-tuned gold-palladium nanoalloys. NANOSCALE 2018; 10:3849-3862. [PMID: 29417115 DOI: 10.1039/c7nr08748a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanoscale alloying constitutes an increasingly-important pathway for design of catalysts for a wide range of technologically important reactions. A key challenge is the ability to control the surface catalytic sites in terms of the alloying composition, thermochemical treatment and phase in correlation with the catalytic properties. Herein we show novel findings of the nanoscale evolution of surface catalytic sites on thermochemically-tuned gold-palladium nanoalloys by probing CO adsorption and oxidation using in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) technique. In addition to the bimetallic composition and the support, the surface sites are shown to depend strongly on the thermochemical treatment condition, demonstrating that the ratio of three-fold vs. bridge or atop Pd sites is greatly reduced by thermochemical treatment under hydrogen in comparison with that under oxygen. This type of surface reconstruction is further supported by synchrotron high-energy X-ray diffraction coupled to atomic pair distribution function (HE-XRD/PDF) analysis of the nanoalloy structure, revealing an enhanced degree of random alloying for the catalysts thermochemically treated under hydrogen. The nanoscale alloying and surface site evolution characteristics were found to correlate strongly with the catalytic activity of CO oxidation. These findings have significant implications for the nanoalloy-based design of catalytic synergy.
Collapse
Affiliation(s)
- Haval Kareem
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Oğuz IC, Mineva T, Guesmi H. The effect of Pd ensemble structure on the O2 dissociation and CO oxidation mechanisms on Au—Pd(100) surface alloys. J Chem Phys 2018; 148:024701. [DOI: 10.1063/1.5007247] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ismail-Can Oğuz
- Institut Charles Gerhardt Montpellier, CNRS/ENSCM/UM, 240, Avenue du Professeur Emile Jeanbrau, 34090 Montpellier, France
| | - Tzonka Mineva
- Institut Charles Gerhardt Montpellier, CNRS/ENSCM/UM, 240, Avenue du Professeur Emile Jeanbrau, 34090 Montpellier, France
| | - Hazar Guesmi
- Institut Charles Gerhardt Montpellier, CNRS/ENSCM/UM, 240, Avenue du Professeur Emile Jeanbrau, 34090 Montpellier, France
| |
Collapse
|
38
|
Abstract
Platinum group metals (PGMs) serve as highly active catalysts in a variety of heterogeneous chemical processes. Unfortunately, their high activity is accompanied by a high affinity for CO and thus, PGMs are susceptible to poisoning. Alloying PGMs with metals exhibiting lower affinity to CO could be an effective strategy toward preventing such poisoning. In this work, we use density functional theory to demonstrate this strategy, focusing on highly dilute alloys of PGMs (Pd, Pt, Rh, Ir and Ni) with poison resistant coinage metal hosts (Cu, Ag, Au), such that individual PGM atoms are dispersed at the atomic limit forming single atom alloys (SAAs). We show that compared to the pure metals, CO exhibits lower binding strength on the majority of SAAs studied, and we use kinetic Monte Carlo simulation to obtain relevant temperature programed desorption spectra, which are found to be in good agreement with experiments. Additionally, we consider the effects of CO adsorption on the structure of SAAs. We calculate segregation energies which are indicative of the stability of dopant atoms in the bulk compared to the surface layer, as well as aggregation energies to determine the stability of isolated surface dopant atoms compared to dimer and trimer configurations. Our calculations reveal that CO adsorption induces dopant atom segregation into the surface layer for all SAAs considered here, whereas aggregation and island formation may be promoted or inhibited depending on alloy constitution and CO coverage. This observation suggests the possibility of controlling ensemble effects in novel catalyst architectures through CO-induced aggregation and kinetic trapping.
Collapse
|
39
|
Gubó R, Yim CM, Allan M, Pang CL, Berkó A, Thornton G. Variation of SMSI with the Au:Pd Ratio of Bimetallic Nanoparticles on TiO 2(110). Top Catal 2017; 61:308-317. [PMID: 31258302 PMCID: PMC6560464 DOI: 10.1007/s11244-017-0854-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Au/Pd nanoparticles are important in a number of catalytic processes. Here we investigate the formation of Au-Pd bimetallic nanoparticles on TiO2(110) and their susceptibility to encapsulation using scanning tunneling microscopy, as well as Auger spectroscopy and low energy electron diffraction. Sequentially depositing 5 MLE Pd and 1 MLE Au at 298 K followed by annealing to 573 K results in a bimetallic core and Pd shell, with TiOx encapsulation on annealing to ~ 800 K. Further deposition of Au on the pinwheel type TiOx layer results in a template-assisted nucleation of Au nanoclusters, while on the zigzag type TiOx layer no preferential adsorption site of Au was observed. Increasing the Au:Pd ratio to 3 MLE Pd and 2 MLE Au results in nanoparticles that are enriched in Au at their surface, which exhibit a strong resistance towards encapsulation. Hence the degree of encapsulation of the nanoparticles during sintering can be controlled by tuning the Au:Pd ratio.
Collapse
Affiliation(s)
- Richard Gubó
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich B. tér 1., 6720 Szeged, Hungary
- ELI-HU Nonprofit Kft, Extreme Light Infrastructure-ALPS, Dugonics tér 13, 6720 Szeged, Hungary
| | - Chi M. Yim
- London Centre for Nanotechnology and Chemistry Department, University College London, 20 Gordon Street, London, WC1H 0AJ UK
| | - Michael Allan
- London Centre for Nanotechnology and Chemistry Department, University College London, 20 Gordon Street, London, WC1H 0AJ UK
| | - Chi L. Pang
- London Centre for Nanotechnology and Chemistry Department, University College London, 20 Gordon Street, London, WC1H 0AJ UK
| | - András Berkó
- MTA-SZTE Reaction Kinetics and Surface Chemistry Research Group, Rerrich B. tér 1., 6720 Szeged, Hungary
| | - Geoff Thornton
- London Centre for Nanotechnology and Chemistry Department, University College London, 20 Gordon Street, London, WC1H 0AJ UK
| |
Collapse
|
40
|
Pei G, Liu X, Chai M, Wang A, Zhang T. Isolation of Pd atoms by Cu for semi-hydrogenation of acetylene: Effects of Cu loading. CHINESE JOURNAL OF CATALYSIS 2017. [DOI: 10.1016/s1872-2067(17)62847-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
|
42
|
Rassolov AV, Markov PV, Bragina GO, Baeva GN, Krivoruchenko DS, Mashkovskii IS, Yakushev IA, Vargaftik MN, Stakheev AY. Formation of Pd–Ag nanoparticles in supported catalysts based on the heterobimetallic complex PdAg2(OAc)4(HOAc)4. KINETICS AND CATALYSIS 2016. [DOI: 10.1134/s0023158416060112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Carter JH, Althahban S, Nowicka E, Freakley SJ, Morgan DJ, Shah PM, Golunski S, Kiely CJ, Hutchings GJ. Synergy and Anti-Synergy between Palladium and Gold in Nanoparticles Dispersed on a Reducible Support. ACS Catal 2016; 6:6623-6633. [PMID: 27990317 PMCID: PMC5154324 DOI: 10.1021/acscatal.6b01275] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/03/2016] [Indexed: 11/28/2022]
Abstract
Highly active and stable bimetallic Au-Pd catalysts have been extensively studied for several liquid-phase oxidation reactions in recent years, but there are far fewer reports on the use of these catalysts for low-temperature gas-phase reactions. Here we initially established the presence of a synergistic effect in a range of bimetallic Au-Pd/CeZrO4 catalysts, by measuring their activity for selective oxidation of benzyl alcohol. The catalysts were then evaluated for low-temperature WGS, CO oxidation, and formic acid decomposition, all of which are believed to be mechanistically related. A strong anti-synergy between Au and Pd was observed for these reactions, whereby the introduction of Pd to a monometallic Au catalyst resulted in a significant decrease in catalytic activity. Furthermore, monometallic Pd was more active than Pd-rich bimetallic catalysts. The nature of the anti-synergy was probed by several ex situ techniques, which all indicated a growth in metal nanoparticle size with Pd addition. However, the most definitive information was provided by in situ CO-DRIFTS, in which CO adsorption associated with interfacial sites was found to vary with the molar ratio of the metals and could be correlated with the catalytic activity of each reaction. As a similar correlation was observed between activity and the presence of Au0* (as detected by XPS), it is proposed that peripheral Au0* species form part of the active centers in the most active catalysts for the three gas-phase reactions. In contrast, the active sites for the selective oxidation of benzyl alcohol are generally thought to be electronically modified gold atoms at the surface of the nanoparticles.
Collapse
Affiliation(s)
- James H. Carter
- Cardiff Catalysis
Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - Sultan Althahban
- Department of Materials Science and Engineering, Lehigh University, 5
East Packer Avenue, Bethlehem, Pennsylvania 18015-3195, United States
| | - Ewa Nowicka
- Cardiff Catalysis
Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - Simon J. Freakley
- Cardiff Catalysis
Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - David J. Morgan
- Cardiff Catalysis
Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - Parag M. Shah
- Cardiff Catalysis
Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - Stanislaw Golunski
- Cardiff Catalysis
Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - Christopher J. Kiely
- Department of Materials Science and Engineering, Lehigh University, 5
East Packer Avenue, Bethlehem, Pennsylvania 18015-3195, United States
| | - Graham J. Hutchings
- Cardiff Catalysis
Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| |
Collapse
|
44
|
Dhifallah M, Dhouib A, Aldulaijan S, D. I. Renzo F, Guesmi H. First-principles study of Au–Cu alloy surface changes induced by gas adsorption of CO, NO, or O2. J Chem Phys 2016; 145:024701. [DOI: 10.1063/1.4955104] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Marwa Dhifallah
- Institut Charles Gerhardt Montpellier, UMR5253 UM/CNRS/ENSCM, 8 Rue de l’Ecole Normale, 34296 Montpellier,
France
- Université de Gabes, Unité de recherche environnement, Catalyse et Analyse des Procédés, 6072 Gabes,
Tunisia
| | - Adnene Dhouib
- College of Science, Department of Chemistry,
University of Dammam, Dammam, Saudi Arabia
| | - Sarah Aldulaijan
- College of Science, Department of Chemistry,
University of Dammam, Dammam, Saudi Arabia
| | - Francesco D. I. Renzo
- Institut Charles Gerhardt Montpellier, UMR5253 UM/CNRS/ENSCM, 8 Rue de l’Ecole Normale, 34296 Montpellier,
France
| | - Hazar Guesmi
- Institut Charles Gerhardt Montpellier, UMR5253 UM/CNRS/ENSCM, 8 Rue de l’Ecole Normale, 34296 Montpellier,
France
| |
Collapse
|
45
|
McCue AJ, Baker RT, Anderson JA. Acetylene hydrogenation over structured Au–Pd catalysts. Faraday Discuss 2016; 188:499-523. [DOI: 10.1039/c5fd00188a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
AuPd nanoparticles were prepared following a methodology designed to produce core–shell structures (an Au core and a Pd shell). Characterisation suggested that slow addition of the shell metal favoured deposition onto the pre-formed core, whereas more rapid addition favoured the formation of a monometallic Pd phase in addition to some nanoparticles with the core–shell morphology. When used for the selective hydrogenation of acetylene, samples that possessed monometallic Pd particles favoured over-hydrogenation to form ethane. A sample prepared by the slow addition of a small amount of Pd resulted in the formation of a core–shell structure but with an incomplete Pd shell layer. This material exhibited a completely different product selectivity with ethylene and oligomers forming as the major products as opposed to ethane. The improved performance was thought to be as a result of the absence of Pd particles, which are capable of forming a Pd-hydride phase, with enhanced oligomer selectivity associated with reaction on uncovered Au atoms.
Collapse
Affiliation(s)
- Alan J. McCue
- Surface Chemistry and Catalysis Group
- Materials and Chemical Engineering
- School of Engineering
- University of Aberdeen
- Aberdeen
| | | | - James A. Anderson
- Surface Chemistry and Catalysis Group
- Materials and Chemical Engineering
- School of Engineering
- University of Aberdeen
- Aberdeen
| |
Collapse
|
46
|
Yu Y, Xiao W, Wang J, Wang L. First-Principles Study of Mo Segregation in MoNi(111): Effects of Chemisorbed Atomic Oxygen. MATERIALS (BASEL, SWITZERLAND) 2015; 9:E5. [PMID: 28787811 PMCID: PMC5456558 DOI: 10.3390/ma9010005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 12/05/2015] [Accepted: 12/17/2015] [Indexed: 11/17/2022]
Abstract
Segregation at metal alloy surfaces is an important issue because many electrochemical and catalytic properties are directly correlated to the surface composition. We have performed density functional theory calculations for Mo segregation in MoNi(111) in the presence of chemisorbed atomic oxygen. In particular, the coverage dependence and possible adsorption-induced segregation phenomena are addressed by investigating segregation energies of the Mo atom in MoNi(111). The theoretical calculated results show that the Mo atom prefers to be embedded in the bulk for the clean MoNi(111), while it segregates to the top-most layer when the oxygen coverage is thicker than 1/9 monolayer (ML). Furthermore, we analyze the densities of states for the clean and oxygen-chemisorbed MoNi(111), and see a strong covalent bonding between Mo d-band states and O p-states. The present study provides valuable insight for exploring practical applications of Ni-based alloys as hydrogen evolution electrodes.
Collapse
Affiliation(s)
- Yanlin Yu
- General Research Institute for Nonferrous Metals, Beijing 100088, China.
| | - Wei Xiao
- General Research Institute for Nonferrous Metals, Beijing 100088, China.
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Jianwei Wang
- General Research Institute for Nonferrous Metals, Beijing 100088, China.
| | - Ligen Wang
- General Research Institute for Nonferrous Metals, Beijing 100088, China.
- Power Environmental Energy Research Institute, Covina, CA 91722, USA.
| |
Collapse
|
47
|
Zhang S, Chen CY, Jang BWL, Zhu AM. Radio-frequency H2 plasma treatment of AuPd/TiO2 catalyst for selective hydrogenation of acetylene in excess ethylene. Catal Today 2015. [DOI: 10.1016/j.cattod.2015.04.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Zhu B, Oğuz IC, Guesmi H. Investigation of finite-size effects in chemical bonding of AuPd nanoalloys. J Chem Phys 2015; 143:144309. [DOI: 10.1063/1.4932685] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Beien Zhu
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Ismail Can Oğuz
- CNRS-ICG UMR 5253, équipe MACS, 8 rue de l’Ecole Normale, 34296 Montpellier, France
| | - Hazar Guesmi
- CNRS-ICG UMR 5253, équipe MACS, 8 rue de l’Ecole Normale, 34296 Montpellier, France
| |
Collapse
|
49
|
CO induced surface segregation as a means of improving surface composition and enhancing performance of CuPd bimetallic catalysts. J Catal 2015. [DOI: 10.1016/j.jcat.2015.06.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
50
|
Sansa M, Dhouib A, Guesmi H. Density functional theory study of CO-induced segregation in gold-based alloys. J Chem Phys 2015; 141:064709. [PMID: 25134592 DOI: 10.1063/1.4891869] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This paper reports a systematic study of the effect of CO gas on the chemical composition at the surface of gold-based alloys. Using DFT periodic calculations in presence of adsorbed CO the segregation behavior of group 9-10-11 transition metals (Ag, Cu, Pt, Pd, Ni, Ir, Rh, Co) substituted in semi-infinite gold surfaces is investigated. Although, CO is found to be more strongly adsorbed on (100) than on the (111) surface, the segregation of M impurities is found to be more pronounced on the (111) surface. The results reveal two competitive effects: the effect of M on CO and the effect of CO on M. Thus, on one hand, if M exists on the (100) gold facet, CO would be strongly adsorbed on it. But if M is initially located in the bulk, it would segregate to the (111) facet instead of the (100) in order to bind to CO.
Collapse
Affiliation(s)
- Myriam Sansa
- Université de Tunis-El Manar, Laboratoire de spectroscopie Atomique Moléculaire et Applications, Le Belvédère, 1060 Tunis, Tunisie
| | - Adnene Dhouib
- Université de Carthage, Unité physico-chimie Moléculaire, IPEST- BP51, La Marsa, 2070 Tunis, Tunisie
| | - Hazar Guesmi
- CNRS-Institut Charles Gerhardt, UMR 5253, équipe MACS, 8 rue de l'Ecole Normale 34296, Montpellier, France
| |
Collapse
|