1
|
Ristea ME, Zarnescu O. Indigo Carmine: Between Necessity and Concern. J Xenobiot 2023; 13:509-528. [PMID: 37754845 PMCID: PMC10532910 DOI: 10.3390/jox13030033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/08/2023] [Accepted: 09/16/2023] [Indexed: 09/28/2023] Open
Abstract
Dyes, such as indigo carmine, have become indispensable to modern life, being widely used in the food, textile, pharmaceutical, medicine, and cosmetic industry. Although indigo carmine is considered toxic and has many adverse effects, it is found in many foods, and the maximum permitted level is 500 mg/kg. Indigo carmine is one of the most used dyes in the textile industry, especially for dyeing denim, and it is also used in medicine due to its impressive applicability in diagnostic methods and surgical procedures, such as in gynecological and urological surgeries and microsurgery. It is reported that indigo carmine is toxic for humans and can cause various pathologies, such as hypertension, hypotension, skin irritations, or gastrointestinal disorders. In this review, we discuss the structure and properties of indigo carmine; its use in various industries and medicine; the adverse effects of its ingestion, injection, or skin contact; the effects on environmental pollution; and its toxicity testing. For this review, 147 studies were considered relevant. Most of the cited articles were those about environmental pollution with indigo carmine (51), uses of indigo carmine in medicine (45), and indigo carmine as a food additive (17).
Collapse
Affiliation(s)
| | - Otilia Zarnescu
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, R-050095 Bucharest, Romania;
| |
Collapse
|
2
|
Leone L, Muñoz-García AB, D'Alonzo D, Pavone V, Nastri F, Lombardi A. Peptide-based metalloporphyrin catalysts: unveiling the role of the metal ion in indole oxidation. J Inorg Biochem 2023; 246:112298. [PMID: 37379767 DOI: 10.1016/j.jinorgbio.2023.112298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 06/30/2023]
Abstract
Over the last decades, much effort has been devoted to the construction of protein and peptide-based metalloporphyrin catalysts capable of promoting difficult transformations with high selectivity. In this context, mechanistic studies are fundamental to elucidate all the factors that contribute to catalytic performances and product selectivity. In our previous work, we selected the synthetic peptide-porphyrin conjugate MnMC6*a as a proficient catalyst for indole oxidation, promoting the formation of a 3-oxindole derivative with unprecedented selectivity. In this work, we have evaluated the role of the metal ion in affecting reaction outcome, by replacing manganese with iron in the MC6*a scaffold. Even though product selectivity is not altered upon metal substitution, FeMC6*a shows a lower substrate conversion and prolonged reaction times with respect to its manganese analogue. Experimental and theoretical studies have enabled us to delineate the reaction free energy profiles for both catalysts, indicating different thermodynamic limiting steps, depending on the nature of the metal ion.
Collapse
Affiliation(s)
- Linda Leone
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cintia, 80126 Naples, Italy
| | - Ana Belén Muñoz-García
- Department of Physics "Ettore Pancini", University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cintia, 80126 Naples, Italy
| | - Daniele D'Alonzo
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cintia, 80126 Naples, Italy
| | - Vincenzo Pavone
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cintia, 80126 Naples, Italy
| | - Flavia Nastri
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cintia, 80126 Naples, Italy.
| | - Angela Lombardi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cintia, 80126 Naples, Italy.
| |
Collapse
|
3
|
Mondal P, Rajapakse S, Wijeratne GB. Following Nature's Footprint: Mimicking the High-Valent Heme-Oxo Mediated Indole Monooxygenation Reaction Landscape of Heme Enzymes. J Am Chem Soc 2022; 144:3843-3854. [PMID: 35112858 DOI: 10.1021/jacs.1c11068] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pathways for direct conversion of indoles to oxindoles have accumulated considerable interest in recent years due to their significance in the clear comprehension of various pathogenic processes in humans and the multipotent therapeutic value of oxindole pharmacophores. Heme enzymes are predominantly responsible for this conversion in biology and are thought to proceed with a compound-I active oxidant. These heme-enzyme-mediated indole monooxygenation pathways are rapidly emerging therapeutic targets; however, a clear mechanistic understanding is still lacking. Additionally, such knowledge holds promise in the rational design of highly specific indole monooxygenation synthetic protocols that are also cost-effective and environmentally benign. We herein report the first examples of synthetic compound-I and activated compound-II species that can effectively monooxygenate a diverse array of indoles with varied electronic and steric properties to exclusively produce the corresponding 2-oxindole products in good to excellent yields. Rigorous kinetic, thermodynamic, and mechanistic interrogations clearly illustrate an initial rate-limiting epoxidation step that takes place between the heme oxidant and indole substrate, and the resulting indole epoxide intermediate undergoes rearrangement driven by a 2,3-hydride shift on indole ring to ultimately produce 2-oxindole. The complete elucidation of the indole monooxygenation mechanism of these synthetic heme models will help reveal crucial insights into analogous biological systems, directly reinforcing drug design attempts targeting those heme enzymes. Moreover, these bioinspired model compounds are promising candidates for the future development of better synthetic protocols for the selective, efficient, and sustainable generation of 2-oxindole motifs, which are already known for a plethora of pharmacological benefits.
Collapse
Affiliation(s)
- Pritam Mondal
- Department of Chemistry and O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35205, United States
| | - Shanuk Rajapakse
- Department of Chemistry and O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35205, United States
| | - Gayan B Wijeratne
- Department of Chemistry and O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35205, United States
| |
Collapse
|
4
|
Synthesis of Indigo-Dyes from Indole Derivatives by Unspecific Peroxygenases and Their Application for In-Situ Dyeing. Catalysts 2021. [DOI: 10.3390/catal11121495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Tyrian purple (also known as royal or imperial purple) is the oldest known commercial pigment and still one of the most expensive dyes, often associated with the wardrobes of clergy and royalty. It is a brominated derivative of indigo, a natural dye that has been used since 4000 BC. Moreover, just recently, the therapeutic value of indigoids for the treatment of several disorders was discovered. The manufacturing of indigo derivatives by the existing chemical routes has become increasingly uninteresting due to the use of aggressive reagents, expensive starting materials and high-energy costs. Thus, both dyestuff manufacturers and the pharmaceutical industry are interested in the development of gentle preparation methods of indigoids from simple precursors. Here, we describe a simple enzymatic method for the one-step synthesis of Tyrian purple and other indigo derivatives with fungal peroxygenases (UPO, EC 1.11.2.1). The reaction does not require complex co-substrates and works well in phosphate buffers with H2O2 (<0.1 wt%) and less than 5% (v/v) acetonitrile as co-solvent. We demonstrate the scaling up of the reaction to 10 Liters and established thereupon an environmentally friendly combined synthesis and in-situ dyeing process, further simplifying the manufacturing of vat-dyed fabrics. Eventually, we screened a number of halogen-substituted indoles in the search for novel indigo derivatives, which may be of interest for pharmaceutical and/or dyeing purposes.
Collapse
|
5
|
Yin H, Chen H, Yan M, Li Z, Yang R, Li Y, Wang Y, Guan J, Mao H, Wang Y, Zhang Y. Efficient Bioproduction of Indigo and Indirubin by Optimizing a Novel Terpenoid Cyclase XiaI in Escherichia coli. ACS OMEGA 2021; 6:20569-20576. [PMID: 34396002 PMCID: PMC8359145 DOI: 10.1021/acsomega.1c02679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Blue indigo dye, an important natural colorant, is used for textiles and food additives worldwide, while another red isomer, indirubin, is the major active ingredient of a traditional Chinese medicine named "Danggui Longhui Wan" for treating various diseases including granulocytic leukemia, cancer, and Alzheimer's disease. In this work, we constructed a new and highly efficient indigoid production system by optimizing a novel terpenoid cyclase, XiaI, from the xiamycin biosynthetic pathway. Through introducing the flavin-reducing enzyme Fre, tryptophan-lysing and -importing enzymes TnaA and TnaB, and H2O2-degrading enzyme KatE and optimizing the fermentation parameters including temperature, the concentration of isopropyl-β-d-thiogalactopyranoside, and feeding of the l-tryptophan precursor, the final maximum productivity of indigoids by the recombinant strain Escherichia coli BL21(DE3) (XiaI-Fre-TnaAB-KatE) was apparently improved to 101.9 mg/L, an approximately 60-fold improvement to that of the starting strain E. coli BL21(DE3) (XiaI) (1.7 mg/L). In addition, when the fermentation system was enlarged to 1 L in the flask (feeding with 5 mM tryptophan and 10 mM 2-hydroxyindole), the indigoid productivity further increased to 276.7 mg/L at 48 h, including an indigo productivity of 26.0 mg/L and an indirubin productivity of 250.7 mg/L, which has been the highest productivity of indirubin so far. This work provided a basis for the commercial production of bio-indigo and the clinical drug indirubin in the future.
Collapse
Affiliation(s)
- Huifang Yin
- School
of Life Sciences and Technology, Xinxiang
Medical University, Xinxiang, 453003 Henan, China
- Synthetic
Biology Engineering Lab of Henan Province, Xinxiang, 453003 Henan, China
| | - Hongping Chen
- School
of Life Sciences and Technology, Xinxiang
Medical University, Xinxiang, 453003 Henan, China
| | - Meng Yan
- School
of Life Sciences and Technology, Xinxiang
Medical University, Xinxiang, 453003 Henan, China
| | - Zhikun Li
- School
of Life Sciences and Technology, Xinxiang
Medical University, Xinxiang, 453003 Henan, China
| | - Rongdi Yang
- School
of Life Sciences and Technology, Xinxiang
Medical University, Xinxiang, 453003 Henan, China
| | - Yanjiao Li
- School
of Life Sciences and Technology, Xinxiang
Medical University, Xinxiang, 453003 Henan, China
| | - Yanfang Wang
- School
of Life Sciences and Technology, Xinxiang
Medical University, Xinxiang, 453003 Henan, China
| | - Jianyi Guan
- School
of Life Sciences and Technology, Xinxiang
Medical University, Xinxiang, 453003 Henan, China
- Synthetic
Biology Engineering Lab of Henan Province, Xinxiang, 453003 Henan, China
| | - Huili Mao
- School
of Life Sciences and Technology, Xinxiang
Medical University, Xinxiang, 453003 Henan, China
| | - Yan Wang
- School
of Life Sciences and Technology, Xinxiang
Medical University, Xinxiang, 453003 Henan, China
- Synthetic
Biology Engineering Lab of Henan Province, Xinxiang, 453003 Henan, China
| | - Yuyang Zhang
- School
of Life Sciences and Technology, Xinxiang
Medical University, Xinxiang, 453003 Henan, China
- Synthetic
Biology Engineering Lab of Henan Province, Xinxiang, 453003 Henan, China
| |
Collapse
|
6
|
Leone L, D’Alonzo D, Maglio O, Pavone V, Nastri F, Lombardi A. Highly Selective Indole Oxidation Catalyzed by a Mn-Containing Artificial Mini-Enzyme. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01985] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Linda Leone
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 21, Napoli 80126, Italy
| | - Daniele D’Alonzo
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 21, Napoli 80126, Italy
| | - Ornella Maglio
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 21, Napoli 80126, Italy
- Institute of Biostructures and Bioimages—National Research Council, Via Mezzocannone 16, Napoli 80134, Italy
| | - Vincenzo Pavone
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 21, Napoli 80126, Italy
| | - Flavia Nastri
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 21, Napoli 80126, Italy
| | - Angela Lombardi
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 21, Napoli 80126, Italy
| |
Collapse
|
7
|
Cheng LT, Luo SQ, Hong BC, Chen CL, Li WS, Lee GH. Oxidative trimerization of indoles via water-assisted visible-light photoredox catalysis and the study of their anti-cancer activities. Org Biomol Chem 2020; 18:6247-6252. [PMID: 32735638 DOI: 10.1039/d0ob01298j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Incorporation of water has been revealed to successfully facilitate visible-light photoredox catalysis of indole leading to increased production of C2-quaternary indolinone. The water-promoted photoreaction of indole under catalyst-free conditions by a household compact fluorescence light was also demonstrated. The antiproliferative activity of the synthesized indolinones was evaluated against three human cancer cell lines.
Collapse
Affiliation(s)
- Li-Ting Cheng
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 621, Taiwan.
| | - Sheng-Qi Luo
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 621, Taiwan.
| | - Bor-Cherng Hong
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 621, Taiwan.
| | - Chia-Ling Chen
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.
| | - Wen-Shan Li
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.
| | - Gene-Hsiang Lee
- Instrumentation Center, National Taiwan University, Taipei, 106, Taiwan
| |
Collapse
|
8
|
Pattanaik L, Duraivadivel P, Hariprasad P, Naik SN. Utilization and re-use of solid and liquid waste generated from the natural indigo dye production process - A zero waste approach. BIORESOURCE TECHNOLOGY 2020; 301:122721. [PMID: 31986372 DOI: 10.1016/j.biortech.2019.122721] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/24/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
The main aim of this work is focused towards possible reuse of both solid and liquid waste generated from the natural indigo dye production process. The solid waste (C/N:15.01) was utilized to produce stable compost with possible re-use in Indigofera cultivation. Among seven compost combinations (C1-C7) using jeevamrutha (JA) and cow-dung (CD) as inoculum, C4 with 8% JA showed higher biomass degradation (51%) and plant growth potential (GI > 125%). Whereas the undiluted liquid waste was treated using algal consortia, bacteria, and indigenous microbial population, achieved a maximum removal of 90% ammonia, 82% nitrate, and 88% phosphorus for its re-use in the dye production process. Hence, incorporation of suitable waste management strategies in natural indigo dye production could help to achieve a zero waste sustainable process.
Collapse
Affiliation(s)
- Lopa Pattanaik
- Centre for Rural Development & Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - P Duraivadivel
- Centre for Rural Development & Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - P Hariprasad
- Centre for Rural Development & Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Satya Narayan Naik
- Centre for Rural Development & Technology, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
9
|
Biomimetic Oxidation of Benzofurans with Hydrogen Peroxide Catalyzed by Mn(III) Porphyrins. Catalysts 2020. [DOI: 10.3390/catal10010062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The modelling of metabolic activation of the benzofuran nucleus is important to obtain eco-sustainable degradation methods and to understand the related mechanisms. The present work reports the catalytic oxidation of benzofuran, 2-methylbenzofuran, and 3-methylbenzofuran by hydrogen peroxide, at room temperature, in the presence of different Mn(III) porphyrins as models of cytochrome P450 enzymes. Conversions above 95% were attained for all the substrates. The key step is the formation of epoxides, which undergo different reaction pathways depending on factors, such as the position of the methyl group and the reaction and work-up conditions used.
Collapse
|
10
|
Fabara AN, Fraaije MW. An overview of microbial indigo-forming enzymes. Appl Microbiol Biotechnol 2019; 104:925-933. [PMID: 31834440 PMCID: PMC6962290 DOI: 10.1007/s00253-019-10292-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/23/2019] [Accepted: 11/28/2019] [Indexed: 11/03/2022]
Abstract
Indigo is one of the oldest textile dyes and was originally prepared from plant material. Nowadays, indigo is chemically synthesized at a large scale to satisfy the demand for dyeing jeans. The current indigo production processes are based on fossil feedstocks; therefore, it is highly attractive to develop a more sustainable and environmentally friendly biotechnological process for the production of this popular dye. In the past decades, a number of natural and engineered enzymes have been identified that can be used for the synthesis of indigo. This mini-review provides an overview of the various microbial enzymes which are able to produce indigo and discusses the advantages and disadvantages of each biocatalytic system.
Collapse
Affiliation(s)
- Andrea N Fabara
- Molecular Enzymology group, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Marco W Fraaije
- Molecular Enzymology group, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
11
|
Rebelo SL, Moniz T, Medforth CJ, de Castro B, Rangel M. EPR spin trapping studies of H2O2 activation in metaloporphyrin catalyzed oxygenation reactions: Insights on the biomimetic mechanism. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.110500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
|
13
|
Crocker L, Fruk L. Flavin Conjugated Polydopamine Nanoparticles Displaying Light-Driven Monooxygenase Activity. Front Chem 2019; 7:278. [PMID: 31080793 PMCID: PMC6497766 DOI: 10.3389/fchem.2019.00278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/04/2019] [Indexed: 11/13/2022] Open
Abstract
A hybrid of flavin and polydopamine (PDA) has been explored as a photocatalyst, drawing inspiration from natural flavoenzymes. Light-driven monoxygenase activity has been demonstrated through the oxidation of indole under blue light irradiation in ambient conditions, to afford indigo and indirubin dyes. Compared to riboflavin, a flavin-polydopamine hybrid is shown to be more resistant to photobleaching and more selective toward dye production. In addition, it has been demonstrated that it can be recycled from the solution and used for up to four cycles without a marked loss of activity, which is a significant improvement compared to other heterogenous flavin catalysts. The mechanism of action has been explored, indicating that the PDA shell plays an important role in the stabilization of the intermediate flavin-peroxy species, an active component of the catalytic system rather than acting only as a passive nanocarrier of active centers.
Collapse
Affiliation(s)
- Leander Crocker
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Ljiljana Fruk
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
14
|
Yum JH, Park S, Sugiyama H. G-quadruplexes as versatile scaffolds for catalysis. Org Biomol Chem 2019; 17:9547-9561. [DOI: 10.1039/c9ob01876j] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review summarizes the beginning, progress, and prospects of non-canonical DNA-based hybrid catalysts focusing on G-quadruplexes as versatile scaffolds for catalysis.
Collapse
Affiliation(s)
- Ji Hye Yum
- Department of Chemistry
- Graduate School of Science
- Kyoto University
- Kyoto 606-8502
- Japan
| | - Soyoung Park
- Department of Chemistry
- Graduate School of Science
- Kyoto University
- Kyoto 606-8502
- Japan
| | - Hiroshi Sugiyama
- Department of Chemistry
- Graduate School of Science
- Kyoto University
- Kyoto 606-8502
- Japan
| |
Collapse
|
15
|
Knoll DM, Wiesner TB, Marschner SM, Hassan Z, Weis P, Kappes M, Nieger M, Bräse S. Synthesis and characterization of rigid [2.2]paracyclophane–porphyrin conjugates as scaffolds for fixed-distance bimetallic complexes. RSC Adv 2019; 9:30541-30544. [PMID: 35530211 PMCID: PMC9072197 DOI: 10.1039/c9ra07055a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 09/09/2019] [Indexed: 01/29/2023] Open
Abstract
This work presents a new approach to prepare mono- and disubstituted linear rigid bimetallic [2.2]paracyclophane–porphyrin conjugates via palladium-mediated Stille cross-coupling reaction. The metalated porphyrin moiety can be varied allowing convenient access to modular metal–metal fixed-distance Cu/Zn complexes. Design and synthesis of mono- and disubstituted linear rigid metalated [2.2]paracyclophane–porphyrin conjugates is presented.![]()
Collapse
Affiliation(s)
- Daniel M. Knoll
- Institute of Organic Chemistry
- Karlsruhe Institute of Technology (KIT)
- 76131 Karlsruhe
- Germany
| | - Thomas B. Wiesner
- Institute of Organic Chemistry
- Karlsruhe Institute of Technology (KIT)
- 76131 Karlsruhe
- Germany
| | - Stefan M. Marschner
- Institute of Organic Chemistry
- Karlsruhe Institute of Technology (KIT)
- 76131 Karlsruhe
- Germany
| | - Zahid Hassan
- Institute of Organic Chemistry
- Karlsruhe Institute of Technology (KIT)
- 76131 Karlsruhe
- Germany
| | - Patrick Weis
- Institute of Physical Chemistry
- Karlsruhe Institute of Technology (KIT)
- 76131 Karlsruhe
- Germany
| | - Manfred Kappes
- Institute of Physical Chemistry
- Karlsruhe Institute of Technology (KIT)
- 76131 Karlsruhe
- Germany
- Institute of Nanotechnology
| | - Martin Nieger
- Department of Chemistry
- University of Helsinki
- 00014 Helsinki
- Finland
| | - Stefan Bräse
- Institute of Organic Chemistry
- Karlsruhe Institute of Technology (KIT)
- 76131 Karlsruhe
- Germany
- Institute of Toxicology and Genetics
| |
Collapse
|
16
|
Liu C, Xu J, Gao SQ, He B, Wei CW, Wang XJ, Wang Z, Lin YW. Green and efficient biosynthesis of indigo from indole by engineered myoglobins. RSC Adv 2018; 8:33325-33330. [PMID: 35548150 PMCID: PMC9086478 DOI: 10.1039/c8ra07825d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 11/21/2022] Open
Abstract
With the demand nowadays for blue dyes, it is of practical importance to develop a green and efficient biocatalyst for the production of indigo. The design of artificial enzymes has been shown to be attractive in recent years. In a previous study, we engineered a single mutant of sperm whale myoglobin, F43Y Mb, with a novel Tyr-heme cross-link. In this study, we found that it can efficiently catalyze the oxidation of indole to indigo, with a yield as high as 54% compared to the highest yield (∼20%) reported to date in the literature. By further modifying the heme active site, we engineered a double mutant of F43Y/H64D Mb, which exhibited the highest catalytic efficiency (198 M-1 s-1) among the artificial enzymes designed in Mb. Moreover, both F43Y Mb and F43Y/H64D Mb were found to produce the indigo product with a chemoselectivity as high as ∼80%. Based on the reaction system, we also established a convenient and green dyeing method by dyeing a cotton textile during the biosynthesis of indigo, followed by further spraying the concentrated indigo, without the need of strong acids/bases or any reducing agents. The successful application of dyeing a white cotton textile with a blue color further indicates that the designed enzyme and the dyeing method have practical applications in the future.
Collapse
Affiliation(s)
- Can Liu
- School of Chemistry and Chemical Engineering, University of South China Hengyang 421001 China
| | - Jiakun Xu
- Yellow Sea Fisheries Research Institute Qingdao 266071 China
| | - Shu-Qin Gao
- Laboratory of Protein Structure and Function, University of South China Hengyang 421001 China
| | - Bo He
- School of Chemistry and Chemical Engineering, University of South China Hengyang 421001 China
| | - Chuan-Wan Wei
- School of Chemistry and Chemical Engineering, University of South China Hengyang 421001 China
| | - Xiao-Juan Wang
- School of Chemistry and Chemical Engineering, University of South China Hengyang 421001 China
| | - Zhonghua Wang
- College of Chemistry and Chemical Engineering, China West Normal University Nanchong 637002 China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China Hengyang 421001 China
- Laboratory of Protein Structure and Function, University of South China Hengyang 421001 China
| |
Collapse
|
17
|
Heydari-turkmani A, Zakavi S. The first solid state porphyrin-weak acid molecular complex: A novel metal free, nanosized and porous photocatalyst for large scale aerobic oxidations in water. J Catal 2018. [DOI: 10.1016/j.jcat.2018.06.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Calvete MJF, Piñeiro M, Dias LD, Pereira MM. Hydrogen Peroxide and Metalloporphyrins in Oxidation Catalysis: Old Dogs with Some New Tricks. ChemCatChem 2018. [DOI: 10.1002/cctc.201800587] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Mário J. F. Calvete
- Centro de Química de Coimbra (CQC); Department of Chemistry; University of Coimbra; Rua Larga 3004-535 Coimbra Portugal
| | - Marta Piñeiro
- Centro de Química de Coimbra (CQC); Department of Chemistry; University of Coimbra; Rua Larga 3004-535 Coimbra Portugal
| | - Lucas D. Dias
- Centro de Química de Coimbra (CQC); Department of Chemistry; University of Coimbra; Rua Larga 3004-535 Coimbra Portugal
| | - Mariette M. Pereira
- Centro de Química de Coimbra (CQC); Department of Chemistry; University of Coimbra; Rua Larga 3004-535 Coimbra Portugal
| |
Collapse
|
19
|
Rebelo SLH, Pires SMG, Simões MMQ, Medforth CJ, Cavaleiro JAS, Neves MGPMS. A Green and Versatile Route to Highly Functionalized Benzofuran Derivatives Using Biomimetic Oxygenation. ChemistrySelect 2018. [DOI: 10.1002/slct.201702643] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Susana L. H. Rebelo
- LAQV-REQUIMTE Departamento de Química e Bioquímica Faculdade de Ciências Universidade do Porto Rua do Campo Alegre 4169-007 Porto Portugal
| | - Sónia M. G. Pires
- QOPNA Department of Chemistry University of Aveiro 3810-193 Aveiro Portugal
| | - Mário M. Q. Simões
- QOPNA Department of Chemistry University of Aveiro 3810-193 Aveiro Portugal
| | - Craig J. Medforth
- UCIBIO-REQUIMTE Departamento de Química e Bioquímica Faculdade de Ciências Universidade do Porto, Rua do Campo Alegre, 4169–007 Porto
| | | | | |
Collapse
|
20
|
Almeida J, Silva AMN, Rebelo SLH, Cunha-Silva L, Rangel M, de Castro B, Leite A, Silva AMG. Synthesis and coordination studies of 5-(4′-carboxyphenyl)-10,15,20-tris(pentafluorophenyl)porphyrin and its pyrrolidine-fused chlorin derivative. NEW J CHEM 2018. [DOI: 10.1039/c7nj05165d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
An efficient strategy was developed to obtain carboxyphenyl porphyrin, chlorins and metal complexes, with potential applications in photonics and biology.
Collapse
Affiliation(s)
- José Almeida
- LAQV/REQUIMTE
- Departamento de Química e Bioquímica, Faculdade de Ciências
- Universidade do Porto
- 4169-007 Porto
- Portugal
| | - André M. N. Silva
- LAQV/REQUIMTE
- Departamento de Química e Bioquímica, Faculdade de Ciências
- Universidade do Porto
- 4169-007 Porto
- Portugal
| | - Susana L. H. Rebelo
- LAQV/REQUIMTE
- Departamento de Química e Bioquímica, Faculdade de Ciências
- Universidade do Porto
- 4169-007 Porto
- Portugal
| | - Luís Cunha-Silva
- LAQV/REQUIMTE
- Departamento de Química e Bioquímica, Faculdade de Ciências
- Universidade do Porto
- 4169-007 Porto
- Portugal
| | - Maria Rangel
- LAQV/REQUIMTE
- Instituto de Ciências Biomédicas de Abel Salazar
- 4099-003 Porto
- Portugal
| | - Baltazar de Castro
- LAQV/REQUIMTE
- Departamento de Química e Bioquímica, Faculdade de Ciências
- Universidade do Porto
- 4169-007 Porto
- Portugal
| | - Andreia Leite
- LAQV/REQUIMTE
- Departamento de Química e Bioquímica, Faculdade de Ciências
- Universidade do Porto
- 4169-007 Porto
- Portugal
| | - Ana M. G. Silva
- LAQV/REQUIMTE
- Departamento de Química e Bioquímica, Faculdade de Ciências
- Universidade do Porto
- 4169-007 Porto
- Portugal
| |
Collapse
|
21
|
Striegler S, Fan QH, Rath NP. Binuclear copper(II) complexes discriminating epimeric glycosides and α- and β-glycosidic bonds in aqueous solution. J Catal 2016; 338:349-364. [PMID: 27667854 DOI: 10.1016/j.jcat.2015.12.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Two chiral binuclear copper(II) complexes were synthesized and characterized for the first time as efficient chemoselective catalysts for the hydrolysis of aryl glycosides and disaccharides in aqueous solution at near neutral pH. Under these conditions, discrimination of epimeric aryl α-glycopyranosides was observed both by 29-fold different reaction rates and 3-fold different proficiency of the catalyst. Additionally, large differentiation of the nature of α- and β- glycosidic bond in aryl glycosides as model compounds is apparent, but also noted in selected disaccharides. The influence of the chirality of the complexes and the role of the configuration of the carbohydrate upon interaction with the catalyst is discussed in detail. Lastly, a putative mechanism for the metal complex-catalyzed hydrolysis is derived from the experimental evidence pointing at deprotonation of the hydroxyl group at C-2 as a pre-requisite for glycoside hydrolysis.
Collapse
Affiliation(s)
- Susanne Striegler
- Department of Chemistry and Biochemistry, University of Arkansas, 345 N Campus Drive, Fayetteville, AR 72701, USA
| | - Qiu-Hua Fan
- Department of Chemistry and Biochemistry, University of Arkansas, 345 N Campus Drive, Fayetteville, AR 72701, USA
| | - Nigam P Rath
- Department of Chemistry and Biochemistry and Center for Nanoscience, University of Missouri - St. Louis, St. Louis, MO 63121, USA
| |
Collapse
|
22
|
Zucca P, Neves CMB, Simões MMQ, Neves MDGPMS, Cocco G, Sanjust E. Immobilized Lignin Peroxidase-Like Metalloporphyrins as Reusable Catalysts in Oxidative Bleaching of Industrial Dyes. Molecules 2016; 21:E964. [PMID: 27455229 PMCID: PMC6272862 DOI: 10.3390/molecules21070964] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/17/2016] [Accepted: 07/19/2016] [Indexed: 02/03/2023] Open
Abstract
Synthetic and bioinspired metalloporphyrins are a class of redox-active catalysts able to emulate several enzymes such as cytochromes P450, ligninolytic peroxidases, and peroxygenases. Their ability to perform oxidation and degradation of recalcitrant compounds, including aliphatic hydrocarbons, phenolic and non-phenolic aromatic compounds, sulfides, and nitroso-compounds, has been deeply investigated. Such a broad substrate specificity has suggested their use also in the bleaching of textile plant wastewaters. In fact, industrial dyes belong to very different chemical classes, being their effective and inexpensive oxidation an important challenge from both economic and environmental perspective. Accordingly, we review here the most widespread synthetic metalloporphyrins, and the most promising formulations for large-scale applications. In particular, we focus on the most convenient approaches for immobilization to conceive economical affordable processes. Then, the molecular routes of catalysis and the reported substrate specificity on the treatment of the most diffused textile dyes are encompassed, including the use of redox mediators and the comparison with the most common biological and enzymatic alternative, in order to depict an updated picture of a very promising field for large-scale applications.
Collapse
Affiliation(s)
- Paolo Zucca
- Dipartimento di Scienze Biomediche, Università di Cagliari, Complesso Universitario, SP1 Km 0.700, Monserrato (CA) 09042, Italy.
- Consorzio UNO Oristano, via Carmine snc, Oristano 09170, Italy.
| | - Cláudia M B Neves
- Department of Chemistry and QOPNA, University of Aveiro, Aveiro 3810-193, Portugal.
| | - Mário M Q Simões
- Department of Chemistry and QOPNA, University of Aveiro, Aveiro 3810-193, Portugal.
| | | | - Gianmarco Cocco
- Dipartimento di Scienze Biomediche, Università di Cagliari, Complesso Universitario, SP1 Km 0.700, Monserrato (CA) 09042, Italy.
| | - Enrico Sanjust
- Dipartimento di Scienze Biomediche, Università di Cagliari, Complesso Universitario, SP1 Km 0.700, Monserrato (CA) 09042, Italy.
| |
Collapse
|
23
|
Rebelo SLH, Silva AMN, Medforth CJ, Freire C. Iron(III) Fluorinated Porphyrins: Greener Chemistry from Synthesis to Oxidative Catalysis Reactions. Molecules 2016; 21:481. [PMID: 27077840 PMCID: PMC6274165 DOI: 10.3390/molecules21040481] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/31/2016] [Accepted: 04/05/2016] [Indexed: 12/28/2022] Open
Abstract
Iron(III) fluorinated porphyrins play a central role in the biomimetics of heme enzymes and enable cleaner routes to the oxidation of organic compounds. The present work reports significant improvements in the eco-compatibility of the synthesis of 5,10,15,20-tetrakis-pentafluorophenylporphyrin (H2TPFPP) and the corresponding iron complex [Fe(TPFPP)Cl], and the use of [Fe(TPFPP)Cl] as an oxidation catalyst in green conditions. The preparations of H2TPFPP and [Fe(TPFPP)Cl] typically use toxic solvents and can be made significantly greener and simpler using microwave heating and optimization of the reaction conditions. In the optimized procedure it was possible to eliminate nitrobenzene from the porphyrin synthesis and replace DMF by acetonitrile in the metalation reaction, concomitant with a significant reduction of reaction time and simplification of the purification procedure. The Fe(III)porphyrin is then tested as catalyst in the selective oxidation of aromatics at room temperature using a green oxidant (hydrogen peroxide) and green solvent (ethanol). Efficient epoxidation of indene and selective oxidation of 3,5-dimethylphenol and naphthalene to the corresponding quinones is observed.
Collapse
Affiliation(s)
- Susana L H Rebelo
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| | - André M N Silva
- REQUIMTE/UCIBIO, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| | - Craig J Medforth
- REQUIMTE/UCIBIO, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| | - Cristina Freire
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| |
Collapse
|
24
|
Guchhait SK, Chaudhary V, Rana VA, Priyadarshani G, Kandekar S, Kashyap M. Oxidative Dearomatization of Indoles via Pd-Catalyzed C–H Oxygenation: An Entry to C2-Quaternary Indolin-3-ones. Org Lett 2016; 18:1534-7. [DOI: 10.1021/acs.orglett.6b00244] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sankar K. Guchhait
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector
67, SAS Nagar (Mohali), Punjab 160062, India
| | - Vikas Chaudhary
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector
67, SAS Nagar (Mohali), Punjab 160062, India
| | - Vijay A. Rana
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector
67, SAS Nagar (Mohali), Punjab 160062, India
| | - Garima Priyadarshani
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector
67, SAS Nagar (Mohali), Punjab 160062, India
| | - Somnath Kandekar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector
67, SAS Nagar (Mohali), Punjab 160062, India
| | - Maneesh Kashyap
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector
67, SAS Nagar (Mohali), Punjab 160062, India
| |
Collapse
|
25
|
Gürses A, Açıkyıldız M, Güneş K, Gürses MS. Classification of Dye and Pigments. SPRINGERBRIEFS IN MOLECULAR SCIENCE 2016. [DOI: 10.1007/978-3-319-33892-7_3] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
26
|
Shu J, Qiu Z, Zhuang J, Xu M, Tang D. In Situ Generation of Electron Donor to Assist Signal Amplification on Porphyrin-Sensitized Titanium Dioxide Nanostructures for Ultrasensitive Photoelectrochemical Immunoassay. ACS APPLIED MATERIALS & INTERFACES 2015; 7:23812-23818. [PMID: 26451956 DOI: 10.1021/acsami.5b08742] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
An ultrasensitive photoelectrochemical (PEC) immunoassay protocol for quantitative detection of low-abundant proteins at a low potential was designed by utilizing porphyrin-sensitized titanium dioxide (TiO2) nanostructures. Experimental results demonstrated that the water-soluble 5,10,15,20-tetra(4-sulfophenyl)-21H,23H-porphyrin (TSPP) could be bound onto titanium dioxide via the sulfonic group. TSPP-sensitized TiO2 nanostructures exhibited better photoelectrochemical responses and stability in comparison with TiO2 nanoparticles alone under continuous illumination. Using carcinoembryonic antigen (CEA) as a model analyte, a typical PEC immunosensor by using TSPP-TiO2 as the affinity support of anti-CEA capture antibody (Ab1) to facilitate the improvement of photocurrent response was developed. Bioconjugates of secondary antibody and glucose oxidase with gold nanoparticles (Ab2/GOx-AuNPs) was introduced by an antigen-antibody immunoreaction. AuNP acted as a powerful scaffold to bind with bioactive molecules, while GOx catalyzed glucose to in situ generate hydrogen peroxide (H2O2). The generated H2O2 as a sacrificial electron donor could be oxidized by the photogenerated holes to assist the signal amplification at a low potential under light excitation, thus eliminating interference from other species coexisting in the samples. Under optimal conditions, the PEC immunosensor showed a good linear relationship ranging from 0.02 to 40 ng mL(-1) with a low detection limit of 6 pg mL(-1) CEA. The precision, reproducibility, and specificity were acceptable. In addition, the method accuracy was also evaluated for quantitatively monitoring human serum samples, giving results matching with the referenced CEA ELISA kit.
Collapse
Affiliation(s)
- Jian Shu
- Key Laboratory of Analysis and Detection for Food Safety (MOE & Fujian Province), Institute of Nanomedicine and Nanobiosensing, Department of Chemistry, Fuzhou University , Fuzhou 350108, People's Republic of China
| | - Zhenli Qiu
- Key Laboratory of Analysis and Detection for Food Safety (MOE & Fujian Province), Institute of Nanomedicine and Nanobiosensing, Department of Chemistry, Fuzhou University , Fuzhou 350108, People's Republic of China
| | - Junyang Zhuang
- Key Laboratory of Analysis and Detection for Food Safety (MOE & Fujian Province), Institute of Nanomedicine and Nanobiosensing, Department of Chemistry, Fuzhou University , Fuzhou 350108, People's Republic of China
| | - Mingdi Xu
- Key Laboratory of Analysis and Detection for Food Safety (MOE & Fujian Province), Institute of Nanomedicine and Nanobiosensing, Department of Chemistry, Fuzhou University , Fuzhou 350108, People's Republic of China
| | - Dianping Tang
- Key Laboratory of Analysis and Detection for Food Safety (MOE & Fujian Province), Institute of Nanomedicine and Nanobiosensing, Department of Chemistry, Fuzhou University , Fuzhou 350108, People's Republic of China
| |
Collapse
|
27
|
|
28
|
Linhares M, Rebelo SLH, Biernacki K, Magalhães AL, Freire C. Biomimetic One-Pot Route to Acridine Epoxides. J Org Chem 2014; 80:281-9. [DOI: 10.1021/jo5023525] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Margarida Linhares
- REQUIMTE, Departamento de
Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Susana L. H. Rebelo
- REQUIMTE, Departamento de
Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Krzysztof Biernacki
- REQUIMTE, Departamento de
Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Alexandre L. Magalhães
- REQUIMTE, Departamento de
Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Cristina Freire
- REQUIMTE, Departamento de
Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| |
Collapse
|
29
|
Lipińska ME, Novais JP, Rebelo SL, Bachiller-Baeza B, Rodríguez-Ramos I, Guerrero-Ruiz A, Freire C. Microwave-assisted silylation of graphite oxide and iron(III) porphyrin intercalation. Polyhedron 2014. [DOI: 10.1016/j.poly.2014.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|