• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4624651)   Today's Articles (1621)   Subscriber (49413)
For: Kunkes EL, Studt F, Abild-Pedersen F, Schlögl R, Behrens M. Hydrogenation of CO2 to methanol and CO on Cu/ZnO/Al2O3: Is there a common intermediate or not? J Catal 2015. [DOI: 10.1016/j.jcat.2014.12.016] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Number Cited by Other Article(s)
1
He Z, Zhang H. Converting CO2 Into Natural Gas Within the Autoclave: A Kinetic Study on Hydrogenation of Carbonates in Aqueous Solution. CHEMSUSCHEM 2024:e202400478. [PMID: 38923202 DOI: 10.1002/cssc.202400478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/18/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
2
Beck A, Newton MA, van de Water LGA, van Bokhoven JA. The Enigma of Methanol Synthesis by Cu/ZnO/Al2O3-Based Catalysts. Chem Rev 2024;124:4543-4678. [PMID: 38564235 DOI: 10.1021/acs.chemrev.3c00148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
3
Sun S, Higham MD, Zhang X, Catlow CRA. Multiscale Investigation of the Mechanism and Selectivity of CO2 Hydrogenation over Rh(111). ACS Catal 2024;14:5503-5519. [PMID: 38660604 PMCID: PMC11036393 DOI: 10.1021/acscatal.3c05939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/26/2024]
4
Dhakshinamoorthy A, Navalón S, Primo A, García H. Selective Gas-Phase Hydrogenation of CO2 to Methanol Catalysed by Metal-Organic Frameworks. Angew Chem Int Ed Engl 2024;63:e202311241. [PMID: 37815860 DOI: 10.1002/anie.202311241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/19/2023] [Accepted: 10/10/2023] [Indexed: 10/11/2023]
5
Zhou H, Docherty SR, Phongprueksathat N, Chen Z, Bukhtiyarov AV, Prosvirin IP, Safonova OV, Urakawa A, Copéret C, Müller CR, Fedorov A. Combining Atomic Layer Deposition with Surface Organometallic Chemistry to Enhance Atomic-Scale Interactions and Improve the Activity and Selectivity of Cu-Zn/SiO2 Catalysts for the Hydrogenation of CO2 to Methanol. JACS AU 2023;3:2536-2549. [PMID: 37772188 PMCID: PMC10523371 DOI: 10.1021/jacsau.3c00319] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 09/30/2023]
6
Phongprueksathat N, Ting KW, Mine S, Jing Y, Toyoshima R, Kondoh H, Shimizu KI, Toyao T, Urakawa A. Bifunctionality of Re Supported on TiO2 in Driving Methanol Formation in Low-Temperature CO2 Hydrogenation. ACS Catal 2023;13:10734-10750. [PMID: 37614518 PMCID: PMC10442859 DOI: 10.1021/acscatal.3c01599] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/14/2023] [Indexed: 08/25/2023]
7
Song F, Cheng W, Yu Y, Cao Y, Xu Q. Copper-doped ZnO-ZrO2 solid solution catalysts for promoting methanol synthesis from CO2 hydrogenation. ROYAL SOCIETY OPEN SCIENCE 2023;10:221213. [PMID: 37325598 PMCID: PMC10265016 DOI: 10.1098/rsos.221213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/21/2023] [Indexed: 06/17/2023]
8
Highly Efficient Au/ZnO−ZrO2 Catalysts for CO Oxidation at Low Temperature. Catalysts 2023. [DOI: 10.3390/catal13030590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]  Open
9
Kubas D, Semmel M, Salem O, Krossing I. Is Direct DME Synthesis Superior to Methanol Production in Carbon Dioxide Valorization? From Thermodynamic Predictions to Experimental Confirmation. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
10
Chen BW. Equilibrium and kinetic isotope effects in heterogeneous catalysis: A density functional theory perspective. CATAL COMMUN 2023. [DOI: 10.1016/j.catcom.2023.106654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]  Open
11
Lu X, Song C, Qi X, Li D, Lin L. Confinement Effects in Well-Defined Metal-Organic Frameworks (MOFs) for Selective CO2 Hydrogenation: A Review. Int J Mol Sci 2023;24:ijms24044228. [PMID: 36835639 PMCID: PMC9959283 DOI: 10.3390/ijms24044228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/15/2023] [Accepted: 01/20/2023] [Indexed: 02/23/2023]  Open
12
Experimental and theoretical study unveiling the role of solvents on CO activation and hydrogenation to methanol in three-phase reactor system. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
13
Müller A, Comas-Vives A, Copéret C. Ga and Zn increase the oxygen affinity of Cu-based catalysts for the CO x hydrogenation according to ab initio atomistic thermodynamics. Chem Sci 2022;13:13442-13458. [PMID: 36507169 PMCID: PMC9685501 DOI: 10.1039/d2sc03107h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/18/2022] [Indexed: 11/10/2022]  Open
14
Salomone F, Bonura G, Frusteri F, Castellino M, Fontana M, Chiodoni AM, Russo N, Pirone R, Bensaid S. Physico-Chemical Modifications Affecting the Activity and Stability of Cu-Based Hybrid Catalysts during the Direct Hydrogenation of Carbon Dioxide into Dimethyl-Ether. MATERIALS (BASEL, SWITZERLAND) 2022;15:7774. [PMID: 36363366 PMCID: PMC9657723 DOI: 10.3390/ma15217774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
15
Yuan Y, Qi L, Guo T, Hu X, He Y, Guo Q. A review on the development of catalysts and technologies of CO2 hydrogenation to produce methanol. CHEM ENG COMMUN 2022. [DOI: 10.1080/00986445.2022.2135505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
16
Villagra-Soza F, Godoy S, Karelovic A, Jiménez R. Scrutinizing the mechanism of CO2 hydrogenation over Ni, CO and bimetallic NiCo surfaces: Isotopic measurements, operando-FTIR experiments and kinetics modelling. J Catal 2022. [DOI: 10.1016/j.jcat.2022.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
17
Wei K, Guan H, Luo Q, He J, Sun S. Recent advances in CO2 capture and reduction. NANOSCALE 2022;14:11869-11891. [PMID: 35943283 DOI: 10.1039/d2nr02894h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
18
A Review on Deactivation and Regeneration of Catalysts for Dimethyl Ether Synthesis. ENERGIES 2022. [DOI: 10.3390/en15155420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
19
Biswal T, Shadangi KP, Sarangi PK, Srivastava RK. Conversion of carbon dioxide to methanol: A comprehensive review. CHEMOSPHERE 2022;298:134299. [PMID: 35304218 DOI: 10.1016/j.chemosphere.2022.134299] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/28/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
20
Zhang Z, Zheng Y, Qian L, Luo D, Dou H, Wen G, Yu A, Chen Z. Emerging Trends in Sustainable CO2 -Management Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022;34:e2201547. [PMID: 35307897 DOI: 10.1002/adma.202201547] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/07/2022] [Indexed: 06/14/2023]
21
Pahija E, Panaritis C, Gusarov S, Shadbahr J, Bensebaa F, Patience G, Boffito DC. Experimental and Computational Synergistic Design of Cu and Fe Catalysts for the Reverse Water–Gas Shift: A Review. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
22
New black indium oxide—tandem photothermal CO2-H2 methanol selective catalyst. Nat Commun 2022;13:1512. [PMID: 35314721 PMCID: PMC8938479 DOI: 10.1038/s41467-022-29222-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 02/28/2022] [Indexed: 12/14/2022]  Open
23
Ortner N, Lund H, Armbruster U, Wohlrab S, Kondratenko EV. Factors affecting primary and secondary pathways in CO2 hydrogenation to methanol over CuZnIn/MZrOx (La, Ti or Y). Catal Today 2022. [DOI: 10.1016/j.cattod.2021.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
24
The role of CO2 over different binary catalysts in methanol synthesis. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
25
Schlögl R. Chemische Batterien mit CO 2. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202007397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
26
Schlögl R. Chemical Batteries with CO2. Angew Chem Int Ed Engl 2022;61:e202007397. [PMID: 32816338 PMCID: PMC9299727 DOI: 10.1002/anie.202007397] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/18/2020] [Indexed: 01/04/2023]
27
Gómez D, Candia C, Jiménez R, Karelovic A. Isotopic transient kinetic analysis of CO2 hydrogenation to methanol on Cu/SiO2 promoted by Ga and Zn. J Catal 2022. [DOI: 10.1016/j.jcat.2021.12.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
28
Effect of surface basicity over the supported Cu-ZnO catalysts on hydrogenation of CO2 to methanol. J Catal 2022. [DOI: 10.1016/j.jcat.2022.01.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
29
Li HX, Yang LQQ, Chi ZY, Zhang YL, Li XG, He YL, Reina TR, Xiao WD. CO2 Hydrogenation to Methanol Over Cu/ZnO/Al2O3 Catalyst: Kinetic Modeling Based on Either Single- or Dual-Active Site Mechanism. Catal Letters 2022. [DOI: 10.1007/s10562-021-03913-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
30
Mondal U, Yadav GD. Direct synthesis of dimethyl ether from CO2 hydrogenation over a highly active, selective and stable catalyst containing Cu–ZnO–Al2O3/Al–Zr(1 : 1)-SBA-15. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00025c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
31
Vu TTN, Desgagnés A, Fongarland P, Vanoye L, Bornette F, Iliuta MC. Synergetic effect of metal–support for enhanced performance of the Cu–ZnO–ZrO2/UGSO catalyst for CO2 hydrogenation to methanol. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01317g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
32
Schwiderowski P, Stürmer S, Muhler M. Probing the methanol-assisted autocatalytic formation of methanol over Cu/ZnO/Al2O3 by high-pressure methanol and methyl formate pulses. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00185c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
33
Gao X, Yu XY, Chang CR. Perceptions on the Treatment of Apparent Isotope Effects during the Analyses of Reaction Rate and Mechanism. Phys Chem Chem Phys 2022;24:15182-15194. [DOI: 10.1039/d2cp00825d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
34
Kinetically Relevant Variation Triggered by Hydrogen Pressure: A Mechanistic Case Study of CO2 Hydrogenation to Methanol over Cu/ZnO. J Catal 2022. [DOI: 10.1016/j.jcat.2021.12.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
35
Fehr SM, Nguyen K, Krossing I. Realistic Operando‐ DRIFTS Studies on Cu/ZnO Catalysts for CO 2 Hydrogenation to Methanol – Direct Observation of Mono‐ionized Defect Sites and Implications for Reaction Intermediates. ChemCatChem 2021. [DOI: 10.1002/cctc.202101500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
36
Campbell CT, Mao Z. Analysis and prediction of reaction kinetics using the degree of rate control. J Catal 2021. [DOI: 10.1016/j.jcat.2021.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
37
Hao L, Xia Q, Zhang Q, Masa J, Sun Z. Improving the performance of metal-organic frameworks for thermo-catalytic CO2 conversion: Strategies and perspectives. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(21)63841-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
38
Fehr SM, Nguyen K, Njel C, Krossing I. Enhancement of Methanol Synthesis by Oxidative Fluorination of Cu/ZnO Catalysts─Insights from Surface Analyses. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
39
Zhang Z, Cao H, Xiong Z, Bolarin JA, Zhang W, Chen P. Can nitrogen-based complex hydrides be a hydrogen isotope separation material? Chem Commun (Camb) 2021;57:10063-10066. [PMID: 34514477 DOI: 10.1039/d1cc03825g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
40
CuO-In2O3 Catalysts Supported on Halloysite Nanotubes for CO2 Hydrogenation to Dimethyl Ether. Catalysts 2021. [DOI: 10.3390/catal11101151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]  Open
41
Li S, Guo Q, Li J, Hu Y, Lin J. Highly Efficient CO 2 Hydrogenation to Methanol over the Mesostructured Cu/AlZnO Catalyst. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
42
Guo H, Ding S, Zhang H, Wang C, Peng F, Yao S, Xiong L, Chen X. Promotion effect of iron addition on the structure and CO2 hydrogenation performance of Attapulgite/Ce0.75Zr0.25O2 nanocomposite supported Cu-ZnO based catalyst. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
43
Kyrimis S, Potter ME, Raja R, Armstrong LM. Understanding catalytic CO2 and CO conversion into methanol using computational fluid dynamics. Faraday Discuss 2021;230:100-123. [PMID: 33870380 DOI: 10.1039/d0fd00136h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
44
Recent Advances in Carbon Dioxide Conversion: A Circular Bioeconomy Perspective. SUSTAINABILITY 2021. [DOI: 10.3390/su13126962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
45
Qi T, Li W, Li H, Ji K, Chen S, Zhang Y. Yttria-doped Cu/ZnO catalyst with excellent performance for CO2 hydrogenation to methanol. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
46
L’hospital V, Angelo L, Zimmermann Y, Parkhomenko K, Roger AC. Influence of the Zn/Zr ratio in the support of a copper-based catalyst for the synthesis of methanol from CO2. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.05.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
47
Frei MS, Veenstra FLP, Capeder D, Stewart JA, Curulla-Ferré D, Martín AJ, Mondelli C, Pérez-Ramírez J. Microfabrication Enables Quantification of Interfacial Activity in Thermal Catalysis. SMALL METHODS 2021;5:e2001231. [PMID: 34928099 DOI: 10.1002/smtd.202001231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/21/2021] [Indexed: 06/14/2023]
48
Noh G, Lam E, Bregante DT, Meyet J, Šot P, Flaherty DW, Copéret C. Lewis Acid Strength of Interfacial Metal Sites Drives CH 3 OH Selectivity and Formation Rates on Cu‐Based CO 2 Hydrogenation Catalysts. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
49
Noh G, Lam E, Bregante DT, Meyet J, Šot P, Flaherty DW, Copéret C. Lewis Acid Strength of Interfacial Metal Sites Drives CH3 OH Selectivity and Formation Rates on Cu-Based CO2 Hydrogenation Catalysts. Angew Chem Int Ed Engl 2021;60:9650-9659. [PMID: 33559910 DOI: 10.1002/anie.202100672] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/05/2021] [Indexed: 01/03/2023]
50
Han Z, Tang C, Sha F, Tang S, Wang J, Li C. CO2 hydrogenation to methanol on ZnO-ZrO2 solid solution catalysts with ordered mesoporous structure. J Catal 2021. [DOI: 10.1016/j.jcat.2021.02.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
PrevPage 1 of 3 123Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA