1
|
Zhang X, Yang B. First-principles-based microkinetic modeling of methanol steam reforming over Cu(111) and Cu(211): structure sensitive activity and selectivity. Dalton Trans 2024; 53:17190-17199. [PMID: 39373753 DOI: 10.1039/d4dt01808g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The development of hydrogen energy is widely recognized as a key approach to addressing the energy and carbon emission challenges. Methanol steam reforming is a promising hydrogen production scheme that can provide high-purity hydrogen. In this work, we studied the primary reaction mechanisms of methanol steam reforming over the Cu(111) and Cu(211) surfaces using density functional theory (DFT) calculations and microkinetic simulations. A detailed kinetic perspective on the reaction mechanism, which is often overlooked in previous research that relies solely on DFT calculations, is provided in the current work. Our findings reveal that under typical experimental conditions, the dominant mechanism on the Cu(111) surface is the methyl formate mechanism, while the H2COO dehydrogenation mechanism is dominant on Cu(211). The activity over the Cu(111) surface was slightly higher than that over Cu(211). Based on the degree of rate control analysis results, a reaction rate equation was derived to quantitatively explain the trend of activity under different operating conditions. It was also found that CO2 selectivity was significantly higher over Cu(211) than over the Cu(111) surface. Furthermore, based on the Wulff construction scheme, copper nanoparticle models with different sizes were constructed, and a detailed structure sensitivity study was executed. This comprehensive investigation sheds light on the mechanisms of methanol steam reforming reactions over the Cu(111) and Cu(211) surfaces, providing essential insights for the design of high-performance catalysts for hydrogen production.
Collapse
Affiliation(s)
- Xinyi Zhang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China.
| | - Bo Yang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China.
| |
Collapse
|
2
|
van Bree RAB, Gerrits N, Kroes GJ. Dissociative chemisorption of O 2 on Al(111): dynamics on a potential energy surface computed with a non-self-consistent screened hybrid density functional approach. Faraday Discuss 2024; 251:361-381. [PMID: 38787655 DOI: 10.1039/d3fd00165b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Density functional theory (DFT) at the generalized gradient approximation (GGA) level is often considered the best compromise between feasibility and accuracy for reactions of molecules on metal surfaces. Recent work, however, strongly suggests that density functionals (DFs) based on GGA exchange are not able to describe molecule-metal surface reactions for which the work function of the metal surface minus the electron affinity of the molecule is less than 7 eV. Systems for which this is true exhibit an increased charge transfer from the metal to the molecule at the transition state, increasing the delocalisation of the electron density. This enlarged delocalisation can cause GGA-DFT to underestimate energy values relative to the gas-phase and thus underestimate the barrier height, similar to what has been observed for several gas-phase reactions. An example of such a molecule-metal surface system is O2 + Al(111). Following a similar strategy as for gas-phase reactions, previous work showed results of increased accuracy when using a screened hybrid DF for O2 + Al(111). However, even screened hybrid DFs are computationally expensive to use for metal surfaces. To resolve this, we test a non-self-consistent field (NSCF) screened hybrid DF approach. This approach computes screened hybrid DFT energies based on self-consistent-field (SCF) GGA electronic densities. Here, we explore the accuracy of the NSCF screened hybrid DF approach by implementing the NSCF HSE03-1/3x@RPBE DF for O2 + Al(111). We compute and analyse molecular beam sticking probabilities as well as a set of sticking probabilities for rotationally aligned O2. Our results show that the NSCF approach results in reaction probability curves that reproduce SCF results with near-chemical accuracy, suggesting that the NSCF approach can be used advantageously for exploratory purposes. An analysis of the potential energy surface and the barriers gives insight into the cause of the disagreement between the SCF and NSCF reaction probabilities and into the changes needed in theoretical modelling to further improve the description of the O2 + Al(111) system. Finally, the hole model yields fair agreement with dynamics results for the reaction probability curve, but results in an increased slope of the reaction probability curve compared to the molecular dynamics, with a shift to lower or higher energies depending on whether the vibrational energy of the molecule is included in the initial energy of the molecule or not.
Collapse
Affiliation(s)
- Robert A B van Bree
- Leiden Institute of Chemisty, Leiden University, Gorlaeus Labaratories, P.O. Box 9502 2300 RA, Leiden, The Netherlands.
| | - Nick Gerrits
- Leiden Institute of Chemisty, Leiden University, Gorlaeus Labaratories, P.O. Box 9502 2300 RA, Leiden, The Netherlands.
| | - Geert-Jan Kroes
- Leiden Institute of Chemisty, Leiden University, Gorlaeus Labaratories, P.O. Box 9502 2300 RA, Leiden, The Netherlands.
| |
Collapse
|
3
|
Gerrits N, Jackson B, Bogaerts A. Accurate Reaction Probabilities for Translational Energies on Both Sides of the Barrier of Dissociative Chemisorption on Metal Surfaces. J Phys Chem Lett 2024; 15:2566-2572. [PMID: 38416779 PMCID: PMC10926167 DOI: 10.1021/acs.jpclett.3c03408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 03/01/2024]
Abstract
Molecular dynamics simulations are essential for a better understanding of dissociative chemisorption on metal surfaces, which is often the rate-controlling step in heterogeneous and plasma catalysis. The workhorse quasi-classical trajectory approach ubiquitous in molecular dynamics is able to accurately predict reactivity only for high translational and low vibrational energies. In contrast, catalytically relevant conditions generally involve low translational and elevated vibrational energies. Existing quantum dynamics approaches are intractable or approximate as a result of the large number of degrees of freedom present in molecule-metal surface reactions. Here, we extend a ring polymer molecular dynamics approach to fully include, for the first time, the degrees of freedom of a moving metal surface. With this approach, experimental sticking probabilities for the dissociative chemisorption of methane on Pt(111) are reproduced for a large range of translational and vibrational energies by including nuclear quantum effects and employing full-dimensional simulations.
Collapse
Affiliation(s)
- Nick Gerrits
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Post Office
Box 9502, 2300 RA Leiden, Netherlands
- Research
Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, BE-2610, Wilrijk, Antwerp, Belgium
| | - Bret Jackson
- Department
of Chemistry, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Annemie Bogaerts
- Research
Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, BE-2610, Wilrijk, Antwerp, Belgium
| |
Collapse
|
4
|
Tchakoua T, Jansen T, van Nies Y, van den Elshout RFA, van Boxmeer BAB, Poort SP, Ackermans MG, Beltrão GS, Hildebrand SA, Beekman SEJ, van der Drift T, Kaart S, Šantić A, Spuijbroek EE, Gerrits N, Somers MF, Kroes GJ. Constructing Mixed Density Functionals for Describing Dissociative Chemisorption on Metal Surfaces: Basic Principles. J Phys Chem A 2023; 127:10481-10498. [PMID: 38051300 PMCID: PMC10726370 DOI: 10.1021/acs.jpca.3c01932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The production of a majority of chemicals involves heterogeneous catalysis at some stage, and the rates of many heterogeneously catalyzed processes are governed by transition states for dissociative chemisorption on metals. Accurate values of barrier heights for dissociative chemisorption on metals are therefore important to benchmarking electronic structure theory in general and density functionals in particular. Such accurate barriers can be obtained using the semiempirical specific reaction parameter (SRP) approach to density functional theory. However, this approach has thus far been rather ad hoc in its choice of the generic expression of the SRP functional to be used, and there is a need for better heuristic approaches to determining the mixing parameters contained in such expressions. Here we address these two issues. We investigate the ability of several mixed, parametrized density functional expressions combining exchange at the generalized gradient approximation (GGA) level with either GGA or nonlocal correlation to reproduce barrier heights for dissociative chemisorption on metal surfaces. For this, seven expressions of such mixed density functionals are tested on a database consisting of results for 16 systems taken from a recently published slightly larger database called SBH17. Three expressions are derived that exhibit high tunability and use correlation functionals that are either of the PBE GGA form or of one of two limiting nonlocal forms also describing the attractive van der Waals interaction in an approximate way. We also find that, for mixed density functionals incorporating GGA correlation, the optimum fraction of repulsive RPBE GGA exchange obtained with a specific GGA density functional is correlated with the charge-transfer parameter, which is equal to the difference in the work function of the metal surface and the electron affinity of the molecule. However, the correlation is generally not large and not large enough to obtain accurate guesses of the mixing parameter for the systems considered, suggesting that it does not give rise to a very effective search strategy.
Collapse
Affiliation(s)
- Théophile Tchakoua
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Tim Jansen
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Youri van Nies
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | | | - Bart A B van Boxmeer
- Faculty of Applied Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Saskia P Poort
- Department of Chemical Engineering, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Michelle G Ackermans
- Department of Chemical Engineering, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Gabriel Spiller Beltrão
- Department of Chemical Engineering, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Stefan A Hildebrand
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Steijn E J Beekman
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Thijs van der Drift
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Sam Kaart
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Anthonie Šantić
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Esmee E Spuijbroek
- Department of Chemical Engineering, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Nick Gerrits
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Mark F Somers
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Geert-Jan Kroes
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
5
|
Sabadell-Rendón A, Kaźmierczak K, Morandi S, Euzenat F, Curulla-Ferré D, López N. Automated MUltiscale simulation environment. DIGITAL DISCOVERY 2023; 2:1721-1732. [PMID: 38054103 PMCID: PMC10694852 DOI: 10.1039/d3dd00163f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/05/2023] [Indexed: 12/07/2023]
Abstract
Multiscale techniques integrating detailed atomistic information on materials and reactions to predict the performance of heterogeneous catalytic full-scale reactors have been suggested but lack seamless implementation. The largest challenges in the multiscale modeling of reactors can be grouped into two main categories: catalytic complexity and the difference between time and length scales of chemical and transport phenomena. Here we introduce the Automated MUltiscale Simulation Environment AMUSE, a workflow that starts from Density Functional Theory (DFT) data, automates the analysis of the reaction networks through graph theory, prepares it for microkinetic modeling, and subsequently integrates the results into a standard open-source Computational Fluid Dynamics (CFD) code. We demonstrate the capabilities of AMUSE by applying it to the unimolecular iso-propanol dehydrogenation reaction and then, increasing the complexity, to the pre-commercial Pd/In2O3 catalyst employed for the CO2 hydrogenation to methanol. The results show that AMUSE allows the computational investigation of heterogeneous catalytic reactions in a comprehensive way, providing essential information for catalyst design from the atomistic to the reactor scale level.
Collapse
Affiliation(s)
- Albert Sabadell-Rendón
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, (BIST) Av. Paisos Catalans 16 Tarragona 43007 Spain
| | - Kamila Kaźmierczak
- TotalEnergies, TotalEnergies One Tech Belgium Zone industrielle C, 7181 Feluy Belgium
| | - Santiago Morandi
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, (BIST) Av. Paisos Catalans 16 Tarragona 43007 Spain
- Department of Physical and Inorganic Chemistry, Universitat Rovira i Virgili Campus Sescelades, N4 Block, C. Marcel·lí Domingo 1 Tarragona 43007 Spain
| | - Florian Euzenat
- TotalEnergies Research and Technology Gonfreville, Route Industrielle, Carrefour 4, Port 4864 76700 Rogerville France
| | - Daniel Curulla-Ferré
- TotalEnergies, TotalEnergies One Tech Belgium Zone industrielle C, 7181 Feluy Belgium
| | - Núria López
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, (BIST) Av. Paisos Catalans 16 Tarragona 43007 Spain
| |
Collapse
|
6
|
Tchakoua T, Powell AD, Gerrits N, Somers MF, Doblhoff-Dier K, Busnengo HF, Kroes GJ. Simulating Highly Activated Sticking of H 2 on Al(110): Quantum versus Quasi-Classical Dynamics. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:5395-5407. [PMID: 36998253 PMCID: PMC10041643 DOI: 10.1021/acs.jpcc.3c00426] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/28/2023] [Indexed: 06/19/2023]
Abstract
We evaluate the importance of quantum effects on the sticking of H2 on Al(110) for conditions that are close to those of molecular beam experiments that have been done on this system. Calculations with the quasi-classical trajectory (QCT) method and with quantum dynamics (QD) are performed using a model in which only motion in the six molecular degrees of freedom is allowed. The potential energy surface used has a minimum barrier height close to the value recently obtained with the quantum Monte Carlo method. Monte Carlo averaging over the initial rovibrational states allowed the QD calculations to be done with an order of magnitude smaller computational expense. The sticking probability curve computed with QD is shifted to lower energies relative to the QCT curve by 0.21 to 0.05 kcal/mol, with the highest shift obtained for the lowest incidence energy. Quantum effects are therefore expected to play a small role in calculations that would evaluate the accuracy of electronic structure methods for determining the minimum barrier height to dissociative chemisorption for H2 + Al(110) on the basis of the standard procedure for comparing results of theory with molecular beam experiments.
Collapse
Affiliation(s)
- Theophile Tchakoua
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Andrew D. Powell
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Nick Gerrits
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Mark F. Somers
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Katharina Doblhoff-Dier
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Heriberto F. Busnengo
- Instituto
de Física Rosario (IFIR), CONICET-UNR, Bv. 27 de Febrero 210 bis, 2000 Rosario, Argentina
- Facultad
de Ciencias Exactas, Ingeniería y
Agrimensura, UNR, Av.
Pellegrini 250, 2000 Rosario, Argentina
| | - Geert-Jan Kroes
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
7
|
Guo Z, Chen S, Yang B. Promoted coke resistance of Ni by surface carbon for the dry reforming of methane. iScience 2023; 26:106237. [PMID: 36936792 PMCID: PMC10018553 DOI: 10.1016/j.isci.2023.106237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/31/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Dry reforming of methane (DRM) is an efficient process to transform methane and carbon dioxide to syngas. Nickel could show good catalytic activity for DRM, whereas the deactivation of nickel surfaces by the formation of inert carbon structures is inevitable. In this study, we carry out a detailed investigation of the evolution and catalytic performance of the carbon-covered surface structure on Ni(100) with a combined density functional theory and microkinetic modeling approach. The results suggest that the pristine Ni(100) surface is prone to carbon deposition and accumulation under reaction conditions. Further studies show that over this carbon-covered reconstructed Ni(100) surface, a carbon-based Mars-van-Krevelen mechanism would be favored, and the activity and coke resistance is promoted. This surface state and reaction mechanism were rarely reported before and would provide more insights into the DRM process under real reaction conditions and would help design more stable Ni catalysts.
Collapse
Affiliation(s)
- Zhichao Guo
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Shuyue Chen
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Bo Yang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
- Corresponding author
| |
Collapse
|
8
|
Yang D, Lu H, Zeng G, Chen ZX. A new adsorption energy-barrier relation and its application to CO 2 hydrogenation to methanol over In 2O 3-supported metal catalysts. Chem Commun (Camb) 2023; 59:940-943. [PMID: 36597871 DOI: 10.1039/d2cc05571f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Herein, we report a new adsorption energy-barrier relation, the adsorbate-dependent barrier scaling (ADBS) relation, with which the catalytic activity of In2O3-supported metal catalysts for CO2 hydrogenation to methanol is predicted. It is shown that Cu, Ga, NiPt and NiPd alloys exhibit high catalytic activity for CO2 hydrogenation to methanol.
Collapse
Affiliation(s)
- Deshuai Yang
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China. .,Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, Nanjing 210023, People's Republic of China.
| | - Huili Lu
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China.
| | - Guixiang Zeng
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, Nanjing 210023, People's Republic of China.
| | - Zhao-Xu Chen
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China.
| |
Collapse
|
9
|
Tchakoua T, Gerrits N, Smeets EWF, Kroes GJ. SBH17: Benchmark Database of Barrier Heights for Dissociative Chemisorption on Transition Metal Surfaces. J Chem Theory Comput 2022; 19:245-270. [PMID: 36529979 PMCID: PMC9835835 DOI: 10.1021/acs.jctc.2c00824] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Accurate barriers for rate controlling elementary reactions on metal surfaces are key to understanding, controlling, and predicting the rate of heterogeneously catalyzed processes. While barrier heights for gas phase reactions have been extensively benchmarked, dissociative chemisorption barriers for the reactions of molecules on metal surfaces have received much less attention. The first database called SBH10 and containing 10 entries was recently constructed based on the specific reaction parameter approach to density functional theory (SRP-DFT) and experimental results. We have now constructed a new and improved database (SBH17) containing 17 entries based on SRP-DFT and experiments. For this new SBH17 benchmark study, we have tested three algorithms (high, medium, and light) for calculating barrier heights for dissociative chemisorption on metals, which we have named for the amount of computational effort involved in their use. We test the performance of 14 density functionals at the GGA, GGA+vdW-DF, and meta-GGA rungs. Our results show that, in contrast with the previous SBH10 study where the BEEF-vdW-DF2 functional seemed to be most accurate, the workhorse functional PBE and the MS2 density functional are the most accurate of the GGA and meta-GGA functionals tested. Of the GGA+vdW functionals tested, the SRP32-vdW-DF1 functional is the most accurate. Additionally, we found that the medium algorithm is accurate enough for assessing the performance of the density functionals tested, while it avoids geometry optimizations of minimum barrier geometries for each density functional tested. The medium algorithm does require metal lattice constants and interlayer distances that are optimized separately for each functional. While these are avoided in the light algorithm, this algorithm is found not to give a reliable description of functional performance. The combination of relative ease of use and demonstrated reliability of the medium algorithm will likely pave the way for incorporation of the SBH17 database in larger databases used for testing new density functionals and electronic structure methods.
Collapse
Affiliation(s)
- T. Tchakoua
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RALeiden, The Netherlands
| | - N. Gerrits
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RALeiden, The Netherlands,PLASMANT,
Department of Chemistry, University of Antwerp, BE-2610Antwerp, Belgium
| | - E. W. F. Smeets
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RALeiden, The Netherlands,ALTEN
Nederland, Technology, Fascinatio Boulevard 582, 2909 VACapelle a/d IJssel, The Netherlands
| | - G.-J. Kroes
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RALeiden, The Netherlands,E-mail: . Phone: +31 71 527 4396
| |
Collapse
|
10
|
General Rules of Active Zone on the Three-Dimensional Volcano Surface Enables Rapid Location of Efficient Catalyst. J Catal 2022. [DOI: 10.1016/j.jcat.2022.12.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Theoretical insight into the strong size-dependence of dry reforming of methane over Ru/CeO2. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Chen S, Yang B. Activity and stability of alloyed NiCo catalyst for the dry reforming of methane: A combined DFT and microkinetic modeling study. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.11.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Lu Y, Wang B, Chen S, Yang B. Quantifying the error propagation in microkinetic modeling of catalytic reactions with model-predicted binding energies. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
14
|
Dutta SK, Ghosh S, Metiu H, Agarwal V. Nascent Decomposition Pathways of CH 4 Pyrolysis in Gas-Phase Metal Halides. J Phys Chem A 2022; 126:5900-5910. [PMID: 36018620 DOI: 10.1021/acs.jpca.2c04283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have performed a combined quantum mechanical and microkinetic modeling study to understand the nascent decomposition pathways of methane pyrolysis, catalyzed by gas-phase ZnCl2, in a constant pressure batch reactor at 1273 K. We find that ZnCl2 catalyzes methane pyrolysis with an apparent activation energy of 227 kJ/mol. We have also performed sensitivity analysis on a reaction network comprising initiation, termination, and primary propagation reactions. The results suggest that the whole reaction network can be simplified to four reactions, which contributes to the initial rate of methane decomposition. Based on these insights, we have also explored the catalyzing effects of gas-phase AlCl3, CoCl2, CuCl2, FeCl2, and NiCl2 for methane decomposition. Our calculations suggest that gas-phase CuCl2 and NiCl2 are the most active catalysts among the metal halides studied in this work.
Collapse
Affiliation(s)
- Sajal Kanti Dutta
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Smita Ghosh
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Horia Metiu
- Department of Chemistry and Biochemistry, University of California-Santa Barbara, Santa Barbara, California 93106-9510, United States
| | - Vishal Agarwal
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India.,Department of Sustainable Energy Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
15
|
Wang H, Nie X, Liu Y, Janik MJ, Han X, Deng Y, Hu W, Song C, Guo X. Mechanistic Insight into Hydrocarbon Synthesis via CO 2 Hydrogenation on χ-Fe 5C 2 Catalysts. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37637-37651. [PMID: 35969512 DOI: 10.1021/acsami.2c07029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Converting CO2 into value-added chemicals and fuels is one of the promising approaches to alleviate CO2 emissions, reduce the dependence on nonrenewable energy resources, and minimize the negative environmental effect of fossil fuels. This work used density functional theory (DFT) calculations combined with microkinetic modeling to provide fundamental insight into the mechanisms of CO2 hydrogenation to hydrocarbons over the iron carbide catalyst, with a focus on understanding the energetically favorable pathways and kinetic controlling factors for selective hydrocarbon production. The crystal orbital Hamiltonian population analysis demonstrated that the transition states associated with O-H bond formation steps within the path are less stable than those of C-H bond formation, accounting for the observed higher barriers in O-H bond formation from DFT. Energetically favorable pathways for CO2 hydrogenation to CH4 and C2H4 products were identified which go through an HCOO intermediate, while the CH* species was found to be the key C1 intermediate over χ-Fe5C2(510). The microkinetic modeling results showed that the relative selectivity to CH4 is higher than C2H4 in CO2 hydrogenation, but the trend is opposite under CO hydrogenation conditions. The major impact on C2 hydrocarbon production is attributed to the high surface coverage of O* from CO2 conversion, which occupies crucial active sites and impedes C-C couplings to C2 species over χ-Fe5C2(510). The coexistence of iron oxide and carbide phases was proposed and the interfacial sites created between the two phases impact CO2 surface chemistry. Adding potassium into the Fe5C2 catalyst accelerates O* removal from the carbide surface, enhances the stability of the iron carbide catalyst, thus, promotes C-C couplings to hydrocarbons.
Collapse
Affiliation(s)
- Haozhi Wang
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Xiaowa Nie
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yuan Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Michael J Janik
- EMS Energy Institute, PSU-DUT Joint Center for Energy Research, and Department of Energy & Mineral Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Xiaopeng Han
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Yida Deng
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Wenbin Hu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Chunshan Song
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Department of Chemistry, Faculty of Science, The Chinese University of Hong Kong, Shatin, NT 999077, Hong Kong, China
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
16
|
Xu H, Xu H, Cheng D. Resolving the Reaction Mechanism for Oxidative Hydration of Ethylene toward Ethylene Glycol by Titanosilicate Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hui Xu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haoxiang Xu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, China
| | - Daojian Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
17
|
Yang Y, Achar SK, Kitchin JR. Evaluation of the Degree of Rate Control via Automatic Differentiation. AIChE J 2022. [DOI: 10.1002/aic.17653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yilin Yang
- Chemical Engineering Carnegie Mellon University Pittsburgh Pennsylvania USA
| | - Siddarth K. Achar
- Chemical Engineering Carnegie Mellon University Pittsburgh Pennsylvania USA
| | - John R. Kitchin
- Chemical Engineering Carnegie Mellon University Pittsburgh Pennsylvania USA
| |
Collapse
|
18
|
Streibel V, Aljama HA, Yang AC, Choksi TS, Sánchez-Carrera RS, Schäfer A, Li Y, Cargnello M, Abild-Pedersen F. Microkinetic Modeling of Propene Combustion on a Stepped, Metallic Palladium Surface and the Importance of Oxygen Coverage. ACS Catal 2022. [DOI: 10.1021/acscatal.1c03699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Verena Streibel
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, SUNCAT Center for Interface Science and Catalysis, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Hassan A. Aljama
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, SUNCAT Center for Interface Science and Catalysis, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - An-Chih Yang
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States
| | - Tej S. Choksi
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, SUNCAT Center for Interface Science and Catalysis, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | | | - Ansgar Schäfer
- BASF SE, Quantum Chemistry, Carl-Bosch-Straße 38, 67056 Ludwigshafen, Germany
| | - Yuejin Li
- BASF Corporation, Environmental Catalysis R&D and Application, 25 Middlesex-Essex Turnpike, Iselin, New Jersey 08830, United States
| | - Matteo Cargnello
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States
| | - Frank Abild-Pedersen
- SLAC National Accelerator Laboratory, SUNCAT Center for Interface Science and Catalysis, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| |
Collapse
|
19
|
Pablo-García S, Sabadell-Rendón A, Saadun AJ, Morandi S, Pérez-Ramírez J, López N. Generalizing Performance Equations in Heterogeneous Catalysis from Hybrid Data and Statistical Learning. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sergio Pablo-García
- Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology ICIQ, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Albert Sabadell-Rendón
- Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology ICIQ, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Ali J. Saadun
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
| | - Santiago Morandi
- Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology ICIQ, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Javier Pérez-Ramírez
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland
| | - Núria López
- Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology ICIQ, Av. Països Catalans 16, 43007, Tarragona, Spain
| |
Collapse
|
20
|
Qu PF, Wang G. DFT-Based Microkinetic Model Analysis of Dry Reforming of Methane over Ru7/CeO2(111) and Ru7/CeO2(110): Key Role of Surface Lattice Oxygen Vacancy. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01934a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CeO2 supported metal cluster catalysts play the vital roles on dry reforming (DRM) reaction which convert greenhouse gases (CH4 and CO2) to syngas, but the mechanism of surface lattice oxygen...
Collapse
|
21
|
Liao W, Liu P. Enhanced descriptor identification and mechanism understanding for catalytic activity using a data-driven framework: revealing the importance of interactions between elementary steps. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00284a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A data-driven framework was developed which used ML surrogate model to extract activity controlling descriptors from kinetics dataset. It enhanced mechanic understanding and predicted catalytic activities more accurately than derivate-based method.
Collapse
Affiliation(s)
- Wenjie Liao
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York, 11794, USA
| | - Ping Liu
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York, 11794, USA
- Chemistry Division, Brookhaven National Laboratory, Upton, New York, 11973, USA
| |
Collapse
|
22
|
Gerrits N. Accurate Simulations of the Reaction of H 2 on a Curved Pt Crystal through Machine Learning. J Phys Chem Lett 2021; 12:12157-12164. [PMID: 34918518 PMCID: PMC8724818 DOI: 10.1021/acs.jpclett.1c03395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Theoretical studies on molecule-metal surface reactions have so far been limited to small surface unit cells due to computational costs. Here, for the first time molecular dynamics simulations on very large surface unit cells at the level of density functional theory are performed, allowing a direct comparison to experiments performed on a curved crystal. Specifically, the reaction of D2 on a curved Pt crystal is investigated with a neural network potential (NNP). The developed NNP is also accurate for surface unit cells considerably larger than those that have been included in the training data, allowing dynamical simulations on very large surface unit cells that otherwise would have been intractable. Important and complex aspects of the reaction mechanism are discovered such as diffusion and a shadow effect of the step. Furthermore, conclusions from simulations on smaller surface unit cells cannot always be transfered to larger surface unit cells, limiting the applicability of theoretical studies of smaller surface unit cells to heterogeneous catalysts with small defect densities.
Collapse
Affiliation(s)
- Nick Gerrits
- Leiden
Institute of Chemistry, Leiden University, Gorlaeus Laboratories, P.O. Box 9502, 2300 RA Leiden, The Netherlands
- Research
Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, BE-2610 Wilrijk, Antwerp, Belgium
| |
Collapse
|
23
|
Hess F. Is There a Stable Deacon Catalyst? Computational Screening Approach for the Stability of Oxide Catalysts under Harsh Conditions. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Franziska Hess
- Institute of Chemistry, Technical University Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| |
Collapse
|
24
|
Lai Z, Chen J, Jia M, Hu P, Wang H. Universal Skeleton Feature of the Three-Dimensional Volcano Surface and the Thermodynamic Rule in Locating the Catalyst in Heterogeneous Catalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhuangzhuang Lai
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jianfu Chen
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Menglei Jia
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Peijun Hu
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- School of Chemistry and Chemical Engineering, The Queen’s University of Belfast, Belfast BT9 5AG, U.K
| | - Haifeng Wang
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
25
|
Campbell CT, Mao Z. Analysis and prediction of reaction kinetics using the degree of rate control. J Catal 2021. [DOI: 10.1016/j.jcat.2021.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
26
|
Kreitz B, Sargsyan K, Blöndal K, Mazeau EJ, West RH, Wehinger GD, Turek T, Goldsmith CF. Quantifying the Impact of Parametric Uncertainty on Automatic Mechanism Generation for CO 2 Hydrogenation on Ni(111). JACS AU 2021; 1:1656-1673. [PMID: 34723269 PMCID: PMC8549061 DOI: 10.1021/jacsau.1c00276] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Indexed: 05/30/2023]
Abstract
Automatic mechanism generation is used to determine mechanisms for the CO2 hydrogenation on Ni(111) in a two-stage process while considering the correlated uncertainty in DFT-based energetic parameters systematically. In a coarse stage, all the possible chemistry is explored with gas-phase products down to the ppb level, while a refined stage discovers the core methanation submechanism. Five thousand unique mechanisms were generated, which contain minor perturbations in all parameters. Global uncertainty assessment, global sensitivity analysis, and degree of rate control analysis are performed to study the effect of this parametric uncertainty on the microkinetic model predictions. Comparison of the model predictions with experimental data on a Ni/SiO2 catalyst find a feasible set of microkinetic mechanisms within the correlated uncertainty space that are in quantitative agreement with the measured data, without relying on explicit parameter optimization. Global uncertainty and sensitivity analyses provide tools to determine the pathways and key factors that control the methanation activity within the parameter space. Together, these methods reveal that the degree of rate control approach can be misleading if parametric uncertainty is not considered. The procedure of considering uncertainties in the automated mechanism generation is not unique to CO2 methanation and can be easily extended to other challenging heterogeneously catalyzed reactions.
Collapse
Affiliation(s)
- Bjarne Kreitz
- Institute
of Chemical and Electrochemical Process Engineering, Clausthal University of Technology, Clausthal-Zellerfeld 38678, Germany
- School
of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Khachik Sargsyan
- Sandia
National Laboratories, Livermore, California 94550, United States
| | - Katrín Blöndal
- School
of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Emily J. Mazeau
- Department
of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Richard H. West
- Department
of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Gregor D. Wehinger
- Institute
of Chemical and Electrochemical Process Engineering, Clausthal University of Technology, Clausthal-Zellerfeld 38678, Germany
| | - Thomas Turek
- Institute
of Chemical and Electrochemical Process Engineering, Clausthal University of Technology, Clausthal-Zellerfeld 38678, Germany
| | - C. Franklin Goldsmith
- School
of Engineering, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
27
|
Gerrits N, Geweke J, Auerbach DJ, Beck RD, Kroes GJ. Highly Efficient Activation of HCl Dissociation on Au(111) via Rotational Preexcitation. J Phys Chem Lett 2021; 12:7252-7260. [PMID: 34313445 PMCID: PMC8350909 DOI: 10.1021/acs.jpclett.1c02093] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
The probability for dissociation of molecules on metal surfaces, which often controls the rate of industrially important catalytic processes, can depend strongly on how energy is partitioned in the incident molecule. There are many example systems where the addition of vibrational energy promotes reaction more effectively than the addition of translational energy, but for rotational pre-excitation similar examples have not yet been discovered. Here, we make an experimentally testable theoretical prediction that adding energy to the rotation of HCl can promote its dissociation on Au(111) 20 times more effectively than increasing its translational energy. In the underlying mechanism, the molecule's initial rotational motion allows it to pass through a critical region of the reaction path, where this path shows a strong and nonmonotonic dependence on the molecular orientation.
Collapse
Affiliation(s)
- Nick Gerrits
- Gorlaeus
Laboratories, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Jan Geweke
- Department
of Dynamics at Surfaces, Max Planck Institute
for Biophysical Chemistry, Göttingen, Am Fassberg 11, 37077 Göttingen, Germany
- Institute
for Physical Chemistry, University of Göttingen, Tammannstr. 6, 37077 Göttingen, Germany
| | - Daniel J. Auerbach
- Department
of Dynamics at Surfaces, Max Planck Institute
for Biophysical Chemistry, Göttingen, Am Fassberg 11, 37077 Göttingen, Germany
| | - Rainer D. Beck
- Laboratoire
de Chimie Physique Moléculaire, École
Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Geert-Jan Kroes
- Gorlaeus
Laboratories, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
28
|
Smeets EF, Kroes GJ. Performance of Made Simple Meta-GGA Functionals with rVV10 Nonlocal Correlation for H 2 + Cu(111), D 2 + Ag(111), H 2 + Au(111), and D 2 + Pt(111). THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:8993-9010. [PMID: 34084265 PMCID: PMC8162760 DOI: 10.1021/acs.jpcc.0c11034] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Accurately modeling heterogeneous catalysis requires accurate descriptions of rate-controlling elementary reactions of molecules on metal surfaces, but standard density functionals (DFs) are not accurate enough for this. The problem can be solved with the specific reaction parameter approach to density functional theory (SRP-DFT), but the transferability of SRP DFs among chemically related systems is limited. We combine the MS-PBEl, MS-B86bl, and MS-RPBEl semilocal made simple (MS) meta-generalized gradient approximation (GGA) (mGGA) DFs with rVV10 nonlocal correlation, and we evaluate their performance for the hydrogen (H2) + Cu(111), deuterium (D2) + Ag(111), H2 + Au(111), and D2 + Pt(111) gas-surface systems. The three MS mGGA DFs that have been combined with rVV10 nonlocal correlation were not fitted to reproduce particular experiments, nor has the b parameter present in rVV10 been reoptimized. Of the three DFs obtained the MS-PBEl-rVV10 DF yields an excellent description of van der Waals well geometries. The three original MS mGGA DFs gave a highly accurate description of the metals, which was comparable in quality to that obtained with the PBEsol DF. Here, we find that combining the three original MS mGGA DFs with rVV10 nonlocal correlation comes at the cost of a slightly less accurate description of the metal. However, the description of the metal obtained in this way is still better than the descriptions obtained with SRP DFs specifically optimized for individual systems. Using the Born-Oppenheimer static surface (BOSS) model, simulations of molecular beam dissociative chemisorption experiments yield chemical accuracy for the D2 + Ag(111) and D2 + Pt(111) systems. A comparison between calculated and measured E 1/2(ν, J) parameters describing associative desorption suggests chemical accuracy for the associative desorption of H2 from Au(111) as well. Our results suggest that ascending Jacob's ladder to the mGGA rung yields increasingly more accurate results for gas-surface reactions of H2 (D2) interacting with late transition metals.
Collapse
Affiliation(s)
- Egidius
W. F. Smeets
- Gorlaeus Laboratories, Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Geert-Jan Kroes
- Gorlaeus Laboratories, Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
29
|
Kroes GJ. Computational approaches to dissociative chemisorption on metals: towards chemical accuracy. Phys Chem Chem Phys 2021; 23:8962-9048. [PMID: 33885053 DOI: 10.1039/d1cp00044f] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We review the state-of-the-art in the theory of dissociative chemisorption (DC) of small gas phase molecules on metal surfaces, which is important to modeling heterogeneous catalysis for practical reasons, and for achieving an understanding of the wealth of experimental information that exists for this topic, for fundamental reasons. We first give a quick overview of the experimental state of the field. Turning to the theory, we address the challenge that barrier heights (Eb, which are not observables) for DC on metals cannot yet be calculated with chemical accuracy, although embedded correlated wave function theory and diffusion Monte-Carlo are moving in this direction. For benchmarking, at present chemically accurate Eb can only be derived from dynamics calculations based on a semi-empirically derived density functional (DF), by computing a sticking curve and demonstrating that it is shifted from the curve measured in a supersonic beam experiment by no more than 1 kcal mol-1. The approach capable of delivering this accuracy is called the specific reaction parameter (SRP) approach to density functional theory (DFT). SRP-DFT relies on DFT and on dynamics calculations, which are most efficiently performed if a potential energy surface (PES) is available. We therefore present a brief review of the DFs that now exist, also considering their performance on databases for Eb for gas phase reactions and DC on metals, and for adsorption to metals. We also consider expressions for SRP-DFs and briefly discuss other electronic structure methods that have addressed the interaction of molecules with metal surfaces. An overview is presented of dynamical models, which make a distinction as to whether or not, and which dissipative channels are modeled, the dissipative channels being surface phonons and electronically non-adiabatic channels such as electron-hole pair excitation. We also discuss the dynamical methods that have been used, such as the quasi-classical trajectory method and quantum dynamical methods like the time-dependent wave packet method and the reaction path Hamiltonian method. Limits on the accuracy of these methods are discussed for DC of diatomic and polyatomic molecules on metal surfaces, paying particular attention to reduced dimensionality approximations that still have to be invoked in wave packet calculations on polyatomic molecules like CH4. We also address the accuracy of fitting methods, such as recent machine learning methods (like neural network methods) and the corrugation reducing procedure. In discussing the calculation of observables we emphasize the importance of modeling the properties of the supersonic beams in simulating the sticking probability curves measured in the associated experiments. We show that chemically accurate barrier heights have now been extracted for DC in 11 molecule-metal surface systems, some of which form the most accurate core of the only existing database of Eb for DC reactions on metal surfaces (SBH10). The SRP-DFs (or candidate SRP-DFs) that have been derived show transferability in many cases, i.e., they have been shown also to yield chemically accurate Eb for chemically related systems. This can in principle be exploited in simulating rates of catalyzed reactions on nano-particles containing facets and edges, as SRP-DFs may be transferable among systems in which a molecule dissociates on low index and stepped surfaces of the same metal. In many instances SRP-DFs have allowed important conclusions regarding the mechanisms underlying observed experimental trends. An important recent observation is that SRP-DFT based on semi-local exchange DFs has so far only been successful for systems for which the difference of the metal work function and the molecule's electron affinity exceeds 7 eV. A main challenge to SRP-DFT is to extend its applicability to the other systems, which involve a range of important DC reactions of e.g. O2, H2O, NH3, CO2, and CH3OH. Recent calculations employing a PES based on a screened hybrid exchange functional suggest that the road to success may be based on using exchange functionals of this category.
Collapse
Affiliation(s)
- Geert-Jan Kroes
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| |
Collapse
|
30
|
Tian S, Peng C, Dong J, Xu Q, Chen Z, Zhai D, Wang Y, Gu L, Hu P, Duan H, Wang D, Li Y. High-Loading Single-Atomic-Site Silver Catalysts with an Ag1–C2N1 Structure Showing Superior Performance for Epoxidation of Styrene. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00455] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Shubo Tian
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Chao Peng
- Multiscale Crystal Materials Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- School of Chemistry and Chemical Engineering, The Queen’s University of Belfast, Belfast BT9 5AG, U.K
| | - Juncai Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Xu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zheng Chen
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Dong Zhai
- Institute of Molecular Sciences and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Yu Wang
- Shanghai Synchrontron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Science Shanghai, Shanghai 201800, China
| | - Lin Gu
- Institute of Physics, Chinese Academy of Science, Beijing 100190, China
| | - P. Hu
- School of Chemistry and Chemical Engineering, The Queen’s University of Belfast, Belfast BT9 5AG, U.K
| | - Haohong Duan
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
31
|
Abstract
The design of heterogeneous catalysts relies on understanding the fundamental surface kinetics that controls catalyst performance, and microkinetic modeling is a tool that can help the researcher in streamlining the process of catalyst design. Microkinetic modeling is used to identify critical reaction intermediates and rate-determining elementary reactions, thereby providing vital information for designing an improved catalyst. In this review, we summarize general procedures for developing microkinetic models using reaction kinetics parameters obtained from experimental data, theoretical correlations, and quantum chemical calculations. We examine the methods required to ensure the thermodynamic consistency of the microkinetic model. We describe procedures required for parameter adjustments to account for the heterogeneity of the catalyst and the inherent errors in parameter estimation. We discuss the analysis of microkinetic models to determine the rate-determining reactions using the degree of rate control and reversibility of each elementary reaction. We introduce incorporation of Brønsted-Evans-Polanyi relations and scaling relations in microkinetic models and the effects of these relations on catalytic performance and formation of volcano curves are discussed. We review the analysis of reaction schemes in terms of the maximum rate of elementary reactions, and we outline a procedure to identify kinetically significant transition states and adsorbed intermediates. We explore the application of generalized rate expressions for the prediction of optimal binding energies of important surface intermediates and to estimate the extent of potential rate improvement. We also explore the application of microkinetic modeling in homogeneous catalysis, electro-catalysis, and transient reaction kinetics. We conclude by highlighting the challenges and opportunities in the application of microkinetic modeling for catalyst design.
Collapse
Affiliation(s)
- Ali Hussain Motagamwala
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - James A Dumesic
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| |
Collapse
|
32
|
Optical bioelectronic nose of outstanding sensitivity and selectivity toward volatile organic compounds implemented with genetically engineered bacteriophage: Integrated study of multi-scale computational prediction and experimental validation. Biosens Bioelectron 2021; 177:112979. [PMID: 33477031 DOI: 10.1016/j.bios.2021.112979] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/24/2020] [Accepted: 01/03/2021] [Indexed: 12/27/2022]
Abstract
Genetic engineering of a bacteriophage is a promising way to develop a highly functional biosensor. Almost countless configurational degree of freedom in the manipulation, considerable uncertainty and cost involved with the approach, however, have been huddles for the objective. In this paper, we demonstrate rapidly responding optical biosensor with high selectivity toward gaseous explosives with genetically engineered phages. The sensors are equipped with peptide sequences in phages optimally interacting with the volatile organic compounds (VOCs) in visible light regime. To overcome the conventional issues, we use extensive utilization of empirical calculations to construct a large database of 8000 tripeptides and screen the best for electronic nose sensing performance toward nine VOCs belonging to three chemical classes. First-principles density functional theory (DFT) calculations unveil underlying correlations between the chemical affinity and optical property change on an electronic band structure level. The computational outcomes are validated by in vitro experimental design and testing of multiarray sensors using genetically modified phage implemented with five selected tripeptide sequences and wild-type phages. The classification success rates estimated from hierarchical cluster analysis are shown to be very consistent with the calculations. Our optical biosensor demonstrates a 1 ppb level of sensing resolution for explosive VOCs, which is a substantial improvement over conventional biosensor. The systematic interplay of big data-based computational prediction and in situ experimental validation can provide smart design principles for unconventionally outstanding biosensors.
Collapse
|
33
|
Gerrits N, Smeets EWF, Vuckovic S, Powell AD, Doblhoff-Dier K, Kroes GJ. Density Functional Theory for Molecule-Metal Surface Reactions: When Does the Generalized Gradient Approximation Get It Right, and What to Do If It Does Not. J Phys Chem Lett 2020; 11:10552-10560. [PMID: 33295770 PMCID: PMC7751010 DOI: 10.1021/acs.jpclett.0c02452] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
While density functional theory (DFT) is perhaps the most used electronic structure theory in chemistry, many of its practical aspects remain poorly understood. For instance, DFT at the generalized gradient approximation (GGA) tends to fail miserably at describing gas-phase reaction barriers, while it performs surprisingly well for many molecule-metal surface reactions. GGA-DFT also fails for many systems in the latter category, and up to now it has not been clear when one may expect it to work. We show that GGA-DFT tends to work if the difference between the work function of the metal and the molecule's electron affinity is greater than ∼7 eV and to fail if this difference is smaller, with sticking of O2 on Al(111) being a spectacular example. Using dynamics calculations we show that, for this system, the DFT problem may be solved as done for gas-phase reactions, i.e., by resorting to hybrid functionals, but using screening at long-range to obtain a correct description of the metal. Our results suggest the GGA error in the O2 + Al(111) barrier height to be functional driven. Our results also suggest the possibility to compute potential energy surfaces for the difficult-to-treat systems with computationally cheap nonself-consistent calculations in which a hybrid functional is applied to a GGA density.
Collapse
Affiliation(s)
- Nick Gerrits
- Leiden
Institute of Chemistry, Leiden University, Gorlaeus Laboratories, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Egidius W. F. Smeets
- Leiden
Institute of Chemistry, Leiden University, Gorlaeus Laboratories, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Stefan Vuckovic
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | - Andrew D. Powell
- Leiden
Institute of Chemistry, Leiden University, Gorlaeus Laboratories, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Katharina Doblhoff-Dier
- Leiden
Institute of Chemistry, Leiden University, Gorlaeus Laboratories, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Geert-Jan Kroes
- Leiden
Institute of Chemistry, Leiden University, Gorlaeus Laboratories, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
34
|
Powell AD, Kroes GJ, Doblhoff-Dier K. Quantum Monte Carlo calculations on dissociative chemisorption of H2 + Al(110): Minimum barrier heights and their comparison to DFT values. J Chem Phys 2020; 153:224701. [DOI: 10.1063/5.0022919] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Andrew D. Powell
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, Netherlands
| | - Geert-Jan Kroes
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, Netherlands
| | - Katharina Doblhoff-Dier
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, Netherlands
| |
Collapse
|
35
|
Smeets EWF, Kroes GJ. Designing new SRP density functionals including non-local vdW-DF2 correlation for H 2 + Cu(111) and their transferability to H 2 + Ag(111), Au(111) and Pt(111). Phys Chem Chem Phys 2020; 23:7875-7901. [PMID: 33291129 DOI: 10.1039/d0cp05173j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Specific reaction parameter density functionals (SRP-DFs) that can describe dissociative chemisorption molecular beam experiments of hydrogen (H2) on cold transition metal surfaces with chemical accuracy have so far been shown to be only transferable among different facets of the same metal, but not among different metals. We design new SRP-DFs that include non-local vdW-DF2 correlation for the H2 + Cu(111) system, and evaluate their transferability to the highly activated H2 + Ag(111) and H2 + Au(111) systems and the non-activated H2 + Pt(111) system. We design our functionals for the H2 + Cu(111) system since it is the best studied system both theoretically and experimentally. Here we demonstrate that a SRP-DF fitted to reproduce molecular beam sticking experiments for H2 + Cu(111) with chemical accuracy can also describe such experiments for H2 + Pt(111) with chemical accuracy, and vice versa. Chemically accurate functionals have been obtained that perform very well with respect to reported van der Waals well geometries, and which improve the description of the metal over current generalized gradient approximation (GGA) based SRP-DFs. From a systematic comparison of our new SRP-DFs that include non-local correlation to previously developed SRP-DFs, for both activated and non-activated systems, we identify non-local correlation as a key ingredient in the construction of transferable SRP-DFs for H2 interacting with transition metals. Our results are in excellent agreement with experiment when accurately measured observables are available. It is however clear from our analysis that, except for the H2 + Cu(111) system, there is a need for more, more varied, and more accurately described experiments in order to further improve the design of SRP-DFs. Additionally, we confirm that, when including non-local correlation, the sticking of H2 on Cu(111) is still well described quasi-classically.
Collapse
Affiliation(s)
- Egidius W F Smeets
- Univeristeit Leiden, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| | | |
Collapse
|
36
|
Affiliation(s)
- Huijie Tian
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Srinivas Rangarajan
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
37
|
Abstract
The concept of the rate determining step, i.e., the step having the strongest influence on the reaction rate or even being the only one present in the rate equation, is often used in heterogeneous catalytic reactions. The utilization of this concept mainly stems from a need to reduce complexity in deriving explicit rate equations or searching for a better catalyst based on the theoretical insight. When the aim is to derive a rate equation with eventual kinetic modelling for single-route mechanisms with linear sequences, the analytical rate expressions can be obtained based on the theory of complex reactions. For such mechanisms, a single rate limiting step might not be present at all and the common practice of introducing such steps is due mainly to the convenience of using simpler expressions. For mechanisms with a combination of linear and nonlinear steps or those just comprising non-linear steps, the reaction rates are influenced by several steps depending on reaction conditions, thus a reduction in complexity to a single rate limiting step can lead to misinterpretations. More widespread utilization of a microkinetic approach when the reaction rate constants can be computed with reasonable accuracy based on the theoretical insight, and availability of software for kinetic modelling, when a system of differential equations for reactants and products will be solved together with differential equations for catalytic species and the algebraic conservation equation for the latter, will eventually make the concept of the rate limiting step obsolete.
Collapse
|
38
|
Wang Y, Wang H, Dam AH, Xiao L, Qi Y, Niu J, Yang J, Zhu YA, Holmen A, Chen D. Understanding effects of Ni particle size on steam methane reforming activity by combined experimental and theoretical analysis. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.04.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Multi sites vs single site for catalytic combustion of methane over Co3O4(110): A first-principles kinetic Monte Carlo study. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(20)63563-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Liu ZH, Shi TT, Chen ZX. Machine learning prediction of monatomic adsorption energies with non-first-principles calculated quantities. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
An Q, Mcdonald M, Fortunelli A, Goddard WA. Si-Doped Fe Catalyst for Ammonia Synthesis at Dramatically Decreased Pressures and Temperatures. J Am Chem Soc 2020; 142:8223-8232. [PMID: 32271551 DOI: 10.1021/jacs.9b13996] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The Haber-Bosch (HB) process combining nitrogen (N2) and hydrogen (H2) into ammonia (NH3) gas plays an essential role in the synthesis of fertilizers for food production and many other commodities. However, HB requires enormous energy resources (2% of world energy production), and the high pressures and temperatures make NH3 production facilities very expensive. Recent advances in improving HB catalysts have been incremental and slow. To accelerate the development of improved HB catalysts, we developed a hierarchical high-throughput catalyst screening (HHTCS) approach based on the recently developed complete reaction mechanism to identify non-transition-metal (NTM) elements from a total set of 18 candidates that can significantly improve the efficiency of the most active Fe surface, Fe-bcc(111), through surface and subsurface doping. Surprisingly, we found a very promising subsurface dopant, Si, that had not been identified or suggested previously, showing the importance of the subsurface Fe atoms in N2 reduction reactions. Then we derived the full reaction path of the HB process for the Si doped Fe-bcc(111) from QM simulations, which we combined with kinetic Monte Carlo (kMC) simulations to predict a ∼13-fold increase in turnover frequency (TOF) under typical extreme HB conditions (200 atm reactant pressure and 500 °C) and a ∼43-fold increase in TOF under ideal HB conditions (20 atm reactant pressure and 400 °C) for the Si-doped Fe catalyst, in comparison to pure Fe catalyst. Importantly, the Si-doped Fe catalyst can achieve the same TOF of pure Fe at 200 atm/500 °C under much milder conditions, e.g. at a much decreased reactant pressure of 20 atm at 500 °C, or alternatively at temperature and reactant pressure decreased to 400 °C and 60 atm, respectively. Production plants using the new catalysts that operate under such milder conditions could be much less expensive, allowing production at local sites needing fertilizer.
Collapse
Affiliation(s)
- Qi An
- Department of Chemical and Materials Engineering, University of Nevada-Reno, Reno, Nevada 89577, United States
| | - Molly Mcdonald
- Department of Chemical and Materials Engineering, University of Nevada-Reno, Reno, Nevada 89577, United States
| | - Alessandro Fortunelli
- Materials and Process Simulation Center (MSC), California Institute of Technology, Pasadena, California 91125, United States.,CNR-ICCOM, Consiglio Nazionale delle Ricerche, ThC2-Lab, Pisa 56124, Italy
| | - William A Goddard
- Materials and Process Simulation Center (MSC), California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
42
|
Degree of rate control and De Donder relations – An interpretation based on transition state theory. J Catal 2020. [DOI: 10.1016/j.jcat.2020.02.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Choksi TS, Streibel V, Abild-Pedersen F. Predicting metal-metal interactions. II. Accelerating generalized schemes through physical insights. J Chem Phys 2020; 152:094702. [PMID: 33480718 DOI: 10.1063/1.5141378] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Operando-computational frameworks that integrate descriptors for catalyst stability within catalyst screening paradigms enable predictions of rates and selectivity on chemically faithful representations of nanoparticles under reaction conditions. These catalyst stability descriptors can be efficiently predicted by density functional theory (DFT)-based models. The alloy stability model, for example, predicts the stability of metal atoms in nanoparticles with site-by-site resolution. Herein, we use physical insights to present accelerated approaches of parameterizing this recently introduced alloy-stability model. These accelerated approaches meld quadratic functions for the energy of metal atoms in terms of the coordination number with linear correlations between model parameters and the cohesive energies of bulk metals. By interpolating across both the coordination number and chemical space, these accelerated approaches shrink the training set size for 12 fcc p- and d-block metals from 204 to as few as 24 DFT calculated total energies without sacrificing the accuracy of our model. We validate the accelerated approaches by predicting adsorption energies of metal atoms on extended surfaces and 147 atom cuboctahedral nanoparticles with mean absolute errors of 0.10 eV and 0.24 eV, respectively. This efficiency boost will enable a rapid and exhaustive exploration of the vast material space of transition metal alloys for catalytic applications.
Collapse
Affiliation(s)
- Tej S Choksi
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, USA
| | - Verena Streibel
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, USA
| | - Frank Abild-Pedersen
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| |
Collapse
|
44
|
Streibel V, Choksi TS, Abild-Pedersen F. Predicting metal-metal interactions. I. The influence of strain on nanoparticle and metal adlayer stabilities. J Chem Phys 2020; 152:094701. [PMID: 33480713 DOI: 10.1063/1.5130566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Strain-engineering of bimetallic nanomaterials is an important design strategy for developing new catalysts. Herein, we introduce an approach for including strain effects into a recently introduced, density functional theory (DFT)-based alloy stability model. The model predicts adsorption site stabilities in nanoparticles and connects these site stabilities with catalytic reactivity and selectivity. Strain-based dependencies will increase the model's accuracy for nanoparticles affected by finite-size effects. In addition to the stability of small nanoparticles, strain also influences the heat of adsorption of epitaxially grown metal-on-metal adlayers. In this respect, we successfully benchmark the strain-including alloy stability model with previous experimentally determined trends in the heats of adsorption of Au and Cu adlayers on Pt (111). For these systems, our model predicts stronger bimetallic interactions in the first monolayer than monometallic interactions in the second monolayer. We explicitly quantify the interplay between destabilizing strain effects and the energy gained by forming new metal-metal bonds. While tensile strain in the first Cu monolayer significantly destabilizes the adsorption strength, compressive strain in the first Au monolayer has a minimal impact on the heat of adsorption. Hence, this study introduces and, by comparison with previous experiments, validates an efficient DFT-based approach for strain-engineering the stability, and, in turn, the catalytic performance, of active sites in bimetallic alloys with atomic level resolution.
Collapse
Affiliation(s)
- Verena Streibel
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, USA
| | - Tej S Choksi
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, USA
| | - Frank Abild-Pedersen
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| |
Collapse
|
45
|
Mao Z, Campbell CT. Kinetic Isotope Effects: Interpretation and Prediction Using Degrees of Rate Control. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05637] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhongtian Mao
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Charles T. Campbell
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| |
Collapse
|
46
|
Chen S, Zaffran J, Yang B. Descriptor Design in the Computational Screening of Ni-Based Catalysts with Balanced Activity and Stability for Dry Reforming of Methane Reaction. ACS Catal 2020. [DOI: 10.1021/acscatal.9b04429] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shuyue Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jeremie Zaffran
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Bo Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
47
|
Alexopoulos K, Vlachos DG. Surface chemistry dictates stability and oxidation state of supported single metal catalyst atoms. Chem Sci 2020; 11:1469-1477. [PMID: 34084376 PMCID: PMC8148026 DOI: 10.1039/c9sc05944j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 12/30/2019] [Indexed: 01/07/2023] Open
Abstract
Single atom catalysts receive considerable attention due to reducing noble metal utilization and potentially eliminating certain side reactions. Yet, the rational design of highly reactive and stable single atom catalysts is hampered by the current lack of fundamental insights at the single atom limit. Here, density functional theory calculations are performed for a prototype reaction, namely CO oxidation, over different single metal atoms supported on alumina. The governing reaction mechanisms and scaling relations are identified using microkinetic modeling and principal component analysis, respectively. A large change in the oxophilicity of the supported single metal atom leads to changes in the rate-determining step and the catalyst resting state. Multi-response surfaces are introduced and built cheaply using a descriptor-based, closed form kinetic model to describe simultaneously the activity, stability, and oxidation state of single metal atom catalysts. A double peaked volcano in activity is observed due to competing rate-determining steps and catalytic cycles. Reaction orders of reactants provide excellent kinetic signatures of the catalyst state. Importantly, the surface chemistry determines the stability, oxidation, and resting state of the catalyst.
Collapse
Affiliation(s)
- Konstantinos Alexopoulos
- Department of Chemical and Biomolecular Engineering, Catalysis Center for Energy Innovation, University of Delaware 221 Academy St. Newark DE 19716 USA
| | - Dionisios G Vlachos
- Department of Chemical and Biomolecular Engineering, Catalysis Center for Energy Innovation, University of Delaware 221 Academy St. Newark DE 19716 USA
| |
Collapse
|
48
|
The degree of rate control of catalyst-bound intermediates in catalytic reaction mechanisms: Relationship to site coverage. J Catal 2020. [DOI: 10.1016/j.jcat.2019.09.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
49
|
Shao ZJ, Zhang L, Liu H, Cao XM, Hu P. Enhanced Interfacial H2 Activation for Nitrostyrene Catalytic Hydrogenation over Rutile Titania-Supported Gold by Coadsorption: A First-Principles Microkinetic Simulation Study. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02634] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zheng-Jiang Shao
- Key Laboratory for Advanced Materials, Center for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Lidong Zhang
- Key Laboratory for Advanced Materials, Center for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Huihui Liu
- Key Laboratory for Advanced Materials, Center for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiao-Ming Cao
- Key Laboratory for Advanced Materials, Center for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - P. Hu
- Key Laboratory for Advanced Materials, Center for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai 200237, P. R. China
- School of Chemistry and Chemical Engineering, The Queen’s University of Belfast, Belfast BT9 5AG, Northern Ireland, U.K
| |
Collapse
|
50
|
Smeets EF, Füchsel G, Kroes GJ. Quantum Dynamics of Dissociative Chemisorption of H 2 on the Stepped Cu(211) Surface. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2019; 123:23049-23063. [PMID: 31565113 PMCID: PMC6757508 DOI: 10.1021/acs.jpcc.9b06539] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/22/2019] [Indexed: 06/10/2023]
Abstract
Reactions on stepped surfaces are relevant to heterogeneous catalysis, in which a reaction often takes place at the edges of nanoparticles where the edges resemble steps on single-crystal stepped surfaces. Previous results on H2 + Cu(211) showed that, in this system, steps do not enhance the reactivity and raised the question of whether this effect could be, in any way, related to the neglect of quantum dynamical effects in the theory. To investigate this, we present full quantum dynamical molecular beam simulations of sticking of H2 on Cu(211), in which all important rovibrational states populated in a molecular beam experiment are taken into account. We find that the reaction of H2 with Cu(211) is very well described with quasi-classical dynamics when simulating molecular beam sticking experiments, in which averaging takes place over a large number of rovibrational states and over translational energy distributions. Our results show that the stepped Cu(211) surface is distinct from its component Cu(111) terraces and Cu(100) steps and cannot be described as a combination of its component parts with respect to the reaction dynamics when considering the orientational dependence. Specifically, we present evidence that, at translational energies close to the reaction threshold, vibrationally excited molecules show a negative rotational quadrupole alignment parameter on Cu(211), which is not found on Cu(111) and Cu(100). The effect arises because these molecules react with a site-specific reaction mechanism at the step, that is, inelastic rotational enhancement, which is only effective for molecules with a small absolute value of the magnetic rotation quantum number. From a comparison to recent associative desorption experiments as well as Born-Oppenheimer molecular dynamics calculations, it follows that the effects of surface atom motion and electron-hole pair excitation on the reactivity fall within chemical accuracy, that is, modeling these effect shifts extracted reaction probability curves by less than 1 kcal/mol translational energy. We found no evidence in our fully state-resolved calculations for the "slow" reaction channel that was recently reported for associative desorption of H2 from Cu(111) and Cu(211), but our results for the fast channel are in good agreement with the experiments on H2 + Cu(211).
Collapse
Affiliation(s)
- Egidius
W. F. Smeets
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Gernot Füchsel
- Institut
für Chemie und Biochemie - Physikalische und Theoretische Chemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Geert-Jan Kroes
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|