1
|
Filez M, Walke P, Le-The H, Toyouchi S, Peeters W, Tomkins P, Eijkel JCT, De Feyter S, Detavernier C, De Vos DE, Uji-I H, Roeffaers MBJ. Nanoscale Chemical Diversity of Coke Deposits on Nanoprinted Metal Catalysts Visualized by Tip-Enhanced Raman Spectroscopy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305984. [PMID: 37938141 DOI: 10.1002/adma.202305984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/31/2023] [Indexed: 11/09/2023]
Abstract
Coke formation is the prime cause of catalyst deactivation, where undesired carbon wastes block the catalyst surface and hinder further reaction in a broad gamut of industrial chemical processes. Yet, the origins of coke formation and their distribution across the catalyst remain elusive, obstructing the design of coke-resistant catalysts. Here, the first-time application of tip-enhanced Raman spectroscopy (TERS) is demonstrated as a nanoscale chemical probe to localize and identify coke deposits on a post-mortem metal nanocatalyst. Monitoring coke at the nanoscale circumvents bulk averaging and reveals the local nature of coke with unmatched detail. The nature of coke is chemically diverse and ranges from nanocrystalline graphite to disordered and polymeric coke, even on a single nanoscale location of a top-down nanoprinted SiO2 -supported Pt catalyst. Surprisingly, not all Pt is an equal producer of coke, where clear isolated coke "hotspots" are present non-homogeneously on Pt which generate large amounts of disordered coke. After their formation, coke shifts to the support and undergoes long-range transport on the surrounding SiO2 surface, where it becomes more graphitic. The presented results provide novel guidelines to selectively free-up the coked metal surface at more mild rejuvenation conditions, thus securing the long-term catalyst stability.
Collapse
Affiliation(s)
- Matthias Filez
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
- Conformal Coating of Nanomaterials (CoCooN), Department of Solid State Sciences, Ghent University, Krijgslaan 281/S1, Ghent, 9000, Belgium
| | - Peter Walke
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Hai Le-The
- BIOS Lab-on-a-Chip Group, MESA+ Institute, University of Twente, Enschede, NB, 7522, The Netherlands
| | - Shuichi Toyouchi
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Wannes Peeters
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Patrick Tomkins
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Jan C T Eijkel
- BIOS Lab-on-a-Chip Group, MESA+ Institute, University of Twente, Enschede, NB, 7522, The Netherlands
| | - Steven De Feyter
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Christophe Detavernier
- Conformal Coating of Nanomaterials (CoCooN), Department of Solid State Sciences, Ghent University, Krijgslaan 281/S1, Ghent, 9000, Belgium
| | - Dirk E De Vos
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Hiroshi Uji-I
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
- Research Institute for Electronic Science (RIES), Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan
- Division of Information Science and Technology, Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Hokkaido, 060-0814, Japan
| | - Maarten B J Roeffaers
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| |
Collapse
|
2
|
Choi H, Choi Y, Min J, Ko K, Kim Y, Chougule SS, Khikmatulla D, Jung N. Origin and Formation Mechanism of Carbon Shell-Encapsulated Metal Nanoparticles for Powerful Fuel Cell Durability. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2862. [PMID: 37947707 PMCID: PMC10648549 DOI: 10.3390/nano13212862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/12/2023]
Abstract
Proton exchange membrane fuel cells (PEMFCs) face technical issues of performance degradation due to catalyst dissolution and agglomeration in real-world operations. To address these challenges, intensive research has been recently conducted to introduce additional structural units on the catalyst surface. Among various concepts for surface modification, carbon shell encapsulation is known to be a promising strategy since the carbon shell can act as a protective layer for metal nanoparticles. As an interesting approach to form carbon shells on catalyst surfaces, the precursor ligand-induced formation is preferred due to its facile synthesis and tunable control over the carbon shell porosity. However, the origin of the carbon source and the carbon shell formation mechanism have not been studied in depth yet. Herein, this study aims to investigate carbon sources through the use of different precursors and the introduction of new methodologies related to the ligand exchange phenomenon. Subsequently, we provide new insights into the carbon shell formation mechanism using X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Finally, the thermal stability and electrochemical durability of carbon shells are thoroughly investigated through in situ transmission electron microscopy (in situ TEM) and accelerated durability tests.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Namgee Jung
- Graduate School of Energy Science and Technology (GEST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (H.C.); (Y.C.); (J.M.); (K.K.); (Y.K.); (S.S.C.); (D.K.)
| |
Collapse
|
3
|
Ma R, Qiu L, Zhang L, Tang DM, Wang Y, Zhang B, Ding F, Liu C, Cheng HM. Nucleation of Single-Wall Carbon Nanotubes from Faceted Pt Catalyst Particles Revealed by in Situ Transmission Electron Microscopy. ACS NANO 2022; 16:16574-16583. [PMID: 36228117 DOI: 10.1021/acsnano.2c06012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Revealing the nucleation and growth mechanism of single-wall carbon nanotubes (SWCNTs) from faceted solid catalysts is crucial to the control of their structure and properties. However, due to the small size and complex growth environment, the early stages and dynamic process of SWCNT nucleation have rarely been directly revealed, especially under atmospheric conditions. Here, we report the atomic-resolved nucleation of SWCNTs from the faces of truncated octahedral Pt catalysts under atmospheric pressure using a transmission electron microscope equipped with a gas-cell. It was found that the graphene layers were initially formed preferentially on (111) surfaces, which then joined together to form an annular belt and a hemispherical cap, followed by the elongation of the SWCNT. Based on the observations, an annular belt assembly nucleation model and a possible chirality control mechanism are proposed for SWCNTs grown from well-faceted Pt catalysts, which provides useful guidance for the controlled synthesis of SWCNTs by catalyst design.
Collapse
Affiliation(s)
- Ruixue Ma
- Shenyang National Laboratory for Materials Science, Institute of Metal Research (IMR), Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China (USTC), 72 Wenhua Road, Shenyang 110016, China
| | - Lu Qiu
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Lili Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research (IMR), Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
| | - Dai-Ming Tang
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Yang Wang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research (IMR), Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China (USTC), 72 Wenhua Road, Shenyang 110016, China
| | - Bingsen Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research (IMR), Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
| | - Feng Ding
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Chang Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research (IMR), Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
| | - Hui-Ming Cheng
- Shenyang National Laboratory for Materials Science, Institute of Metal Research (IMR), Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
- Faculty of Materials Science and Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
4
|
Cao P, Zhao H, Adegbite S, Lester E, Wu T. Vacuum-freeze drying assisted for the fabrication of a Nickel-Aluminium catalyst and its effects on the structure-reactivity in the catalytic dry reforming of methane. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20210442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Pengfei Cao
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- New Materials Institute, The University of Nottingham Ningbo China, Ningbo 315100, China
| | - Haitao Zhao
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
- New Materials Institute, The University of Nottingham Ningbo China, Ningbo 315100, China
| | - Stephen Adegbite
- Key Laboratory of Carbonaceous Waste Processing and Process Intensification of Zhejiang Province, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Edward Lester
- Department of Chemical and Environmental Engineering, The University of Nottingham, Nottingham NG7 2RD, UK
| | - Tao Wu
- New Materials Institute, The University of Nottingham Ningbo China, Ningbo 315100, China
- Key Laboratory of Carbonaceous Waste Processing and Process Intensification of Zhejiang Province, University of Nottingham Ningbo China, Ningbo 315100, China
| |
Collapse
|
5
|
Zheng Y, Cheng L, Su J, Chen C, Zhu X, Li H. Electron beam-induced athermal nanowelding of crossing SiOx amorphous nanowires. RSC Adv 2022; 12:6018-6024. [PMID: 35424549 PMCID: PMC8981572 DOI: 10.1039/d1ra08176d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/05/2022] [Indexed: 11/21/2022] Open
Abstract
Athermal welding of crossing SiOx nanowires under e-beam irradiation is in situ observed by TEM. A relevant simulation considering nanocurvature effect and athermal activation effect gives the corresponding 3D structural evolution and the velocity field of atom migration.
Collapse
Affiliation(s)
- Yuchen Zheng
- Department of Physics, Xiamen University, Xiamen 361005, People's Republic of China
- China–Australia Joint Laboratory for Functional Nanomaterials, Xiamen University, Xiamen 361005, People's Republic of China
| | - Liang Cheng
- Department of Physics, Xiamen University, Xiamen 361005, People's Republic of China
- China–Australia Joint Laboratory for Functional Nanomaterials, Xiamen University, Xiamen 361005, People's Republic of China
| | - Jiangbin Su
- Department of Physics, Xiamen University, Xiamen 361005, People's Republic of China
- China–Australia Joint Laboratory for Functional Nanomaterials, Xiamen University, Xiamen 361005, People's Republic of China
- Experiment Center of Electronic Science and Technology, School of Microelectronics Science and Control Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| | - Chuncai Chen
- Department of Physics, Xiamen University, Xiamen 361005, People's Republic of China
- China–Australia Joint Laboratory for Functional Nanomaterials, Xiamen University, Xiamen 361005, People's Republic of China
- Department of Physics, College of Civil Engineering, MinNan University of Science and Technology, Shishi 362700, People's Republic of China
| | - Xianfang Zhu
- Department of Physics, Xiamen University, Xiamen 361005, People's Republic of China
- China–Australia Joint Laboratory for Functional Nanomaterials, Xiamen University, Xiamen 361005, People's Republic of China
| | - Hang Li
- State Key Lab of Physical Chemistry of Solid Surfaces, Collaborative Innovation Centre of Chemistry for Energy Materials, State-Province Joint Engineering Laboratory of Power Source Technology for New Energy Vehicle, Engineering Research Center of Electrochemical Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| |
Collapse
|
6
|
Yang X, Zhao X, Liu T, Yang F. Precise Synthesis of Carbon Nanotubes and
One‐Dimensional
Hybrids from Templates
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xusheng Yang
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Xin Zhao
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Tianhui Liu
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Feng Yang
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 China
| |
Collapse
|
7
|
Abdollahiyan P, Oroojalian F, Hejazi M, de la Guardia M, Mokhtarzadeh A. Nanotechnology, and scaffold implantation for the effective repair of injured organs: An overview on hard tissue engineering. J Control Release 2021; 333:391-417. [DOI: 10.1016/j.jconrel.2021.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/17/2022]
|
8
|
Huo J, Tessonnier JP, Shanks BH. Improving Hydrothermal Stability of Supported Metal Catalysts for Biomass Conversions: A Review. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00197] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jiajie Huo
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
- Center for Biorenewable Chemicals, Iowa State University, Ames, Iowa 50011, United States
| | - Jean-Philippe Tessonnier
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
- Center for Biorenewable Chemicals, Iowa State University, Ames, Iowa 50011, United States
| | - Brent H. Shanks
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
- Center for Biorenewable Chemicals, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
9
|
Rocha KDO, Macedo WC, Marques CM, Bueno JM. Pt/Al2O3La2O3 catalysts stable at high temperature in air, prepared using a “one-pot” sol–gel process: Synthesis, characterization, and catalytic activity in the partial oxidation of CH4. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.115966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Liu Y, Xu L, Zhang L, Dong Z, Wang S, Luo L. Direct Visualization of Atomic-Scale Graphene Growth on Cu through Environmental Transmission Electron Microscopy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52201-52207. [PMID: 33147010 DOI: 10.1021/acsami.0c15990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The functionalities of two-dimensional (2D) materials are solely determined by their perfect single-layer lattice or precisely stacking of multiple lattice planes, which is predominately determined during their growth process. Although the growth of graphene has been successfully achieved on different substrates with a large area up to millimeters, direct visualization of atomic-scale graphene growth in real time still lacks, which is vital to decipher atomistic mechanisms of graphene growth. Here, we employ aberration-corrected environmental transmission electron microscopy (AC-ETEM) to visualize the nucleation and growth of graphene at the atomic scale in real time. We find a unique lateral epitaxial growth process of graphene on Cu edges under the CO2 atmosphere with a ledge-flow process. The nucleation of graphene nuclei from amorphous carbon atoms also has been found to proceed with a gradual ordering of in-plane carbon atoms. The coalescence of smaller graphene nanoislands to form large ones is thermodynamically favored, and the evolution of atomic structures at grain boundaries is also revealed in great details. These atomic insights obtained from real-time observations can provide direct evidence for the growth mechanisms of graphene, which can be extended to other 2D materials.
Collapse
Affiliation(s)
- Yatian Liu
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin 300072, P. R. China
| | - Lei Xu
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin 300072, P. R. China
| | - Lifeng Zhang
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin 300072, P. R. China
| | - Zejian Dong
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin 300072, P. R. China
| | - Shuangbao Wang
- School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Langli Luo
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin 300072, P. R. China
| |
Collapse
|
11
|
|
12
|
Revealing the Effect of Nickel Particle Size on Carbon Formation Type in the Methane Decomposition Reaction. Catalysts 2020. [DOI: 10.3390/catal10080890] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Carbon species deposition is recognized as the primary cause of catalyst deactivation for hydrocarbon cracking and reforming reactions. Exploring the formation mechanism and influencing factors for carbon deposits is crucial for the design of rational catalysts. In this work, a series of NixMgyAl-800 catalysts with nickel particles of varying mean sizes between 13.2 and 25.4 nm were obtained by co-precipitation method. These catalysts showed different deactivation behaviors in the catalytic decomposition of methane (CDM) reaction and the deactivation rate of catalysts increased with the decrease in nickel particle size. Employing TG-MS and TEM characterizations, we found that carbon nanotubes which could keep catalyst activity were more prone to form on large nickel particles, while encapsulated carbon species that led to deactivation were inclined to deposit on small particles. Supported by DFT calculations, we proposed the insufficient supply of carbon atoms and rapid nucleation of carbon precursors caused by the lesser terrace/step ratio on smaller nickel particles, compared with large particles, inhibit the formation of carbon nanotube, leading to the formation of encapsulated carbon species. The findings in this work may provide guidance for the rational design of nickel-based catalysts for CDM and other methane conversion reactions.
Collapse
|
13
|
Yang F, Wang M, Zhang D, Yang J, Zheng M, Li Y. Chirality Pure Carbon Nanotubes: Growth, Sorting, and Characterization. Chem Rev 2020; 120:2693-2758. [PMID: 32039585 DOI: 10.1021/acs.chemrev.9b00835] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) have been attracting tremendous attention owing to their structure (chirality) dependent outstanding properties, which endow them with great potential in a wide range of applications. The preparation of chirality-pure SWCNTs is not only a great scientific challenge but also a crucial requirement for many high-end applications. As such, research activities in this area over the last two decades have been very extensive. In this review, we summarize recent achievements and accumulated knowledge thus far and discuss future developments and remaining challenges from three aspects: controlled growth, postsynthesis sorting, and characterization techniques. In the growth part, we focus on the mechanism of chirality-controlled growth and catalyst design. In the sorting part, we organize and analyze existing literature based on sorting targets rather than methods. Since chirality assignment and quantification is essential in the study of selective preparation, we also include in the last part a comprehensive description and discussion of characterization techniques for SWCNTs. It is our view that even though progress made in this area is impressive, more efforts are still needed to develop both methodologies for preparing ultrapure (e.g., >99.99%) SWCNTs in large quantity and nondestructive fast characterization techniques with high spatial resolution for various nanotube samples.
Collapse
Affiliation(s)
- Feng Yang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Meng Wang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Daqi Zhang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Juan Yang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ming Zheng
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Yan Li
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
14
|
Fang Z, Wang LC, Wang Y, Sikorski E, Tan S, Li-Oakey KD, Li L, Yablonsky G, Dixon DA, Fushimi R. Pt-Assisted Carbon Remediation of Mo 2C Materials for CO Disproportionation. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Zongtang Fang
- Biological and Chemical Science and Technology, Idaho National Laboratory, Idaho Falls, Idaho 83401, United States
| | - Lu-Cun Wang
- Biological and Chemical Science and Technology, Idaho National Laboratory, Idaho Falls, Idaho 83401, United States
| | - Yixiao Wang
- Biological and Chemical Science and Technology, Idaho National Laboratory, Idaho Falls, Idaho 83401, United States
| | - Ember Sikorski
- Micron School of Materials Science and Engineering, Boise State University, Boise, Idaho 83725, United States
- Center for Advanced Energy Studies, Idaho Falls, Idaho 83401, United States
| | - Shuai Tan
- Center for Advanced Energy Studies, Idaho Falls, Idaho 83401, United States
- Department of Chemical Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Katie Dongmei Li-Oakey
- Center for Advanced Energy Studies, Idaho Falls, Idaho 83401, United States
- Department of Chemical Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Lan Li
- Micron School of Materials Science and Engineering, Boise State University, Boise, Idaho 83725, United States
- Center for Advanced Energy Studies, Idaho Falls, Idaho 83401, United States
| | - Gregory Yablonsky
- Department of Energy, Environment and Chemical Engineering, Washington University in Saint Louis, Saint Louis, Missouri 63103, United States
| | - David A. Dixon
- Department of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| | - Rebecca Fushimi
- Biological and Chemical Science and Technology, Idaho National Laboratory, Idaho Falls, Idaho 83401, United States
| |
Collapse
|
15
|
Sun C, Su R, Chen J, Lu L, Guan P. Carbon Formation Mechanism of C 2H 2 in Ni-Based Catalysts Revealed by in Situ Electron Microscopy and Molecular Dynamics Simulations. ACS OMEGA 2019; 4:8413-8420. [PMID: 31459930 PMCID: PMC6647981 DOI: 10.1021/acsomega.9b00958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/03/2019] [Indexed: 06/10/2023]
Abstract
Understanding the carbon formation mechanism is critical for designing catalysts in various applications. Here, we report the observation of the carbon formation mechanism on Ni-based catalysts by environmental transmission electron microscopy (ETEM) over a wide temperature range in combination with molecular dynamics simulations and density functional theory calculations. In situ TEM observation performed in a C2H2/H2 atmosphere provides real-time evidence that Ni3C is an intermediate phase that decomposes to graphitic carbon and metallic Ni, leading to carbon formation. Mechanisms of acetylene decomposition and evolution of carbon atom configuration are revealed by molecular dynamics simulations, which corroborate the experimental results. The modification of MgO on NiO can effectively decrease the formation of graphitic layers and thus enhance the catalytic performance of NiO. This finding may provide an insight into the origin of the carbon deposition and aid in developing effective approaches to mitigate it.
Collapse
Affiliation(s)
- Chunwen Sun
- CAS
Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy
and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
- Center
on
Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, P. R.
China
| | - Rui Su
- Beijing
Computational Science Research Center, Beijing 100193, P. R. China
- Innovative
Center for Advanced Materials, Hangzhou
Dianzi University, Hangzhou 310018, P. R. China
| | - Jian Chen
- Nanotechnology
Research Centre, National Research Council
Canada (NRC), Edmonton, Alberta T6G 2M9, Canada
| | - Liang Lu
- CAS
Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy
and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
| | - Pengfei Guan
- Beijing
Computational Science Research Center, Beijing 100193, P. R. China
| |
Collapse
|
16
|
Voronin VV, Ledovskaya MS, Bogachenkov AS, Rodygin KS, Ananikov VP. Acetylene in Organic Synthesis: Recent Progress and New Uses. Molecules 2018; 23:E2442. [PMID: 30250005 PMCID: PMC6222752 DOI: 10.3390/molecules23102442] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 11/16/2022] Open
Abstract
Recent progress in the leading synthetic applications of acetylene is discussed from the prospect of rapid development and novel opportunities. A diversity of reactions involving the acetylene molecule to carry out vinylation processes, cross-coupling reactions, synthesis of substituted alkynes, preparation of heterocycles and the construction of a number of functionalized molecules with different levels of molecular complexity were recently studied. Of particular importance is the utilization of acetylene in the synthesis of pharmaceutical substances and drugs. The increasing interest in acetylene and its involvement in organic transformations highlights a fascinating renaissance of this simplest alkyne molecule.
Collapse
Affiliation(s)
- Vladimir V Voronin
- Institute of Chemistry, Saint Petersburg State University, Universitetsky prospect 26, Peterhof 198504, Russia.
| | - Maria S Ledovskaya
- Institute of Chemistry, Saint Petersburg State University, Universitetsky prospect 26, Peterhof 198504, Russia.
| | - Alexander S Bogachenkov
- Institute of Chemistry, Saint Petersburg State University, Universitetsky prospect 26, Peterhof 198504, Russia.
| | - Konstantin S Rodygin
- Institute of Chemistry, Saint Petersburg State University, Universitetsky prospect 26, Peterhof 198504, Russia.
| | - Valentine P Ananikov
- Institute of Chemistry, Saint Petersburg State University, Universitetsky prospect 26, Peterhof 198504, Russia.
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia.
| |
Collapse
|
17
|
Bao Z, Yu F. Catalytic Conversion of Biogas to Syngas via Dry Reforming Process. ADVANCES IN BIOENERGY 2018. [DOI: 10.1016/bs.aibe.2018.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
18
|
Luo L, Engelhard MH, Shao Y, Wang C. Revealing the Dynamics of Platinum Nanoparticle Catalysts on Carbon in Oxygen and Water Using Environmental TEM. ACS Catal 2017. [DOI: 10.1021/acscatal.7b02861] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Langli Luo
- Environmental
Molecular Sciences Laboratory and ‡Energy and Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States
| | - Mark H. Engelhard
- Environmental
Molecular Sciences Laboratory and ‡Energy and Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States
| | - Yuyan Shao
- Environmental
Molecular Sciences Laboratory and ‡Energy and Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States
| | - Chongmin Wang
- Environmental
Molecular Sciences Laboratory and ‡Energy and Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States
| |
Collapse
|
19
|
Saerens S, Sabbe MK, Galvita VV, Redekop EA, Reyniers MF, Marin GB. The Positive Role of Hydrogen on the Dehydrogenation of Propane on Pt(111). ACS Catal 2017. [DOI: 10.1021/acscatal.7b01584] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Stephanie Saerens
- Laboratory
for Chemical Technology, Ghent University, Technologiepark 914, B-9052 Ghent, Belgium
| | - Maarten K. Sabbe
- Laboratory
for Chemical Technology, Ghent University, Technologiepark 914, B-9052 Ghent, Belgium
| | - Vladimir V. Galvita
- Laboratory
for Chemical Technology, Ghent University, Technologiepark 914, B-9052 Ghent, Belgium
| | - Evgeniy A. Redekop
- Laboratory
for Chemical Technology, Ghent University, Technologiepark 914, B-9052 Ghent, Belgium
- Centre
for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway
| | - Marie-Françoise Reyniers
- Laboratory
for Chemical Technology, Ghent University, Technologiepark 914, B-9052 Ghent, Belgium
| | - Guy B. Marin
- Laboratory
for Chemical Technology, Ghent University, Technologiepark 914, B-9052 Ghent, Belgium
| |
Collapse
|
20
|
Niu Y, Zhang B, Luo J, Zhang L, Chen CM, Su DS. Correlation between Microstructure Evolution of a Well-Defined Cubic Palladium Catalyst and Selectivity during Acetylene Hydrogenation. ChemCatChem 2017. [DOI: 10.1002/cctc.201700020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yiming Niu
- Shenyang National Laboratory for Materials Science; Institute of Metal Research; Chinese Academy of Sciences; 72 Wenhua Road Shenyang 110016 China
- Department of Materials Science and Engineering; University of Science and Technology of China; 96 Jinzhai Road Hefei 230026 China
| | - Bingsen Zhang
- Shenyang National Laboratory for Materials Science; Institute of Metal Research; Chinese Academy of Sciences; 72 Wenhua Road Shenyang 110016 China
| | - Jingjie Luo
- Shenyang National Laboratory for Materials Science; Institute of Metal Research; Chinese Academy of Sciences; 72 Wenhua Road Shenyang 110016 China
| | - Liyun Zhang
- Shenyang National Laboratory for Materials Science; Institute of Metal Research; Chinese Academy of Sciences; 72 Wenhua Road Shenyang 110016 China
| | - Cheng-Meng Chen
- Key Laboratory of Carbon Materials; Institute of Coal Chemistry; Chinese Academy of Sciences; 27 Taoyuan South Road Taiyuan 030001 China
| | - Dang Sheng Su
- Shenyang National Laboratory for Materials Science; Institute of Metal Research; Chinese Academy of Sciences; 72 Wenhua Road Shenyang 110016 China
| |
Collapse
|
21
|
Dou J, Sun Z, Opalade AA, Wang N, Fu W, Tao F(F. Operando chemistry of catalyst surfaces during catalysis. Chem Soc Rev 2017; 46:2001-2027. [DOI: 10.1039/c6cs00931j] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The chemistry of a catalyst surface during catalysis is crucial for a fundamental understanding of the mechanisms of a catalytic reaction performed on the catalyst in the gas or liquid phase.
Collapse
Affiliation(s)
- Jian Dou
- Department of Chemical and Petroleum Engineering and Department of Chemistry
- University of Kansas
- Lawrence
- USA
| | - Zaicheng Sun
- Department of Chemistry and Chemical Engineering
- Beijing University of Technology
- Beijing
- China
| | - Adedamola A. Opalade
- Department of Chemical and Petroleum Engineering and Department of Chemistry
- University of Kansas
- Lawrence
- USA
| | - Nan Wang
- Department of Chemical and Petroleum Engineering and Department of Chemistry
- University of Kansas
- Lawrence
- USA
| | - Wensheng Fu
- Chongqing Key Laboratory of Green Synthesis and Applications and College of Chemistry
- Chongqing Normal University
- Chongqing
- China
| | - Franklin (Feng) Tao
- Department of Chemical and Petroleum Engineering and Department of Chemistry
- University of Kansas
- Lawrence
- USA
| |
Collapse
|
22
|
Spectroscopic Methods in Catalysis and Their Application in Well-Defined Nanocatalysts. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/b978-0-12-805090-3.00007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
23
|
Redekop EA, Saerens S, Galvita VV, González IP, Sabbe M, Bliznuk V, Reyniers MF, Marin GB. Early stages in the formation and burning of graphene on a Pt/Mg(Al)O dehydrogenation catalyst: A temperature- and time-resolved study. J Catal 2016. [DOI: 10.1016/j.jcat.2016.10.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|