1
|
Ficca VCA, Santoro C, Placidi E, Arciprete F, Serov A, Atanassov P, Mecheri B. Exchange Current Density as an Effective Descriptor of Poisoning of Active Sites in Platinum Group Metal-free Electrocatalysts for Oxygen Reduction Reaction. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Valerio C. A. Ficca
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133Rome, Italy
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185Roma, Italy
| | - Carlo Santoro
- Electrocatalysis and Bioelectrocatalysis Laboratory (EBLab), Department of Material Science, University of Milan Bicocca, U5 Via Cozzi 55, 20125Milan, Italy
| | - Ernesto Placidi
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185Roma, Italy
| | - Fabrizio Arciprete
- Department of Physics, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133Rome, Italy
| | - Alexey Serov
- Electrification and Energy Infrastructures Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | - Plamen Atanassov
- Chemical and Biomolecular Engineering, National Fuel Cell Research Center, University of California, Irvine, Irvine, California92697, United States
| | - Barbara Mecheri
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133Rome, Italy
| |
Collapse
|
2
|
Zhang H, Jin X, Lee JM, Wang X. Tailoring of Active Sites from Single to Dual Atom Sites for Highly Efficient Electrocatalysis. ACS NANO 2022; 16:17572-17592. [PMID: 36331385 PMCID: PMC9706812 DOI: 10.1021/acsnano.2c06827] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/01/2022] [Indexed: 05/27/2023]
Abstract
Single atom catalysts (SACs) have been attracting extensive attention in electrocatalysis because of their unusual structure and extreme atom utilization, but the low metal loading and unified single site induced scaling relations may limit their activity and practical application. Tailoring of active sites at the atomic level is a sensible approach to break the existing limits in SACs. In this review, SACs were first discussed regarding carbon or non-carbon supports. Then, five tailoring strategies were elaborated toward improving the electrocatalytic activity of SACs, namely strain engineering, spin-state tuning engineering, axial functionalization engineering, ligand engineering, and porosity engineering, so as to optimize the electronic state of active sites, tune d orbitals of transition metals, adjust adsorption strength of intermediates, enhance electron transfer, and elevate mass transport efficiency. Afterward, from the angle of inducing electron redistribution and optimizing the adsorption nature of active centers, the synergistic effect from adjacent atoms and recent advances in tailoring strategies on active sites with binuclear configuration which include simple, homonuclear, and heteronuclear dual atom catalysts (DACs) were summarized. Finally, a summary and some perspectives for achieving efficient and sustainable electrocatalysis were presented based on tailoring strategies, design of active sites, and in situ characterization.
Collapse
Affiliation(s)
- Hongwei Zhang
- School
of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
- Cambridge
Centre for Advanced Research and Education in Singapore Ltd (Cambridge
CARES), CREATE Tower, Singapore 138602, Singapore
| | - Xindie Jin
- School
of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Jong-Min Lee
- School
of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Xin Wang
- School
of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
- Cambridge
Centre for Advanced Research and Education in Singapore Ltd (Cambridge
CARES), CREATE Tower, Singapore 138602, Singapore
| |
Collapse
|
3
|
Jiao P, Ye D, Zhu C, Wu S, Qin C, An C, Hu N, Deng Q. Non-precious transition metal single-atom catalysts for the oxygen reduction reaction: progress and prospects. NANOSCALE 2022; 14:14322-14340. [PMID: 36106572 DOI: 10.1039/d2nr03687h] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The massive exploitation and use of fossil resources have created many negative issues, such as energy shortage and environmental pollution. It prompts us to turn our attention to the development of new energy technologies. This review summarizes the recent research progress of non-precious transition metal single-atom catalysts (NPT-SACs) for the oxygen reduction reaction (ORR) in Zn-air batteries and fuel cells. Some commonly used preparation methods and their advantages/disadvantages have been summarized. The factors affecting the ORR performances of NPT-SACs have been focused upon, such as the substrate type, coordination environment and nanocluster effects. The loading mass of a metal atom has a direct effect on the ORR performances. Some general strategies for stabilizing metal atoms are included. This review points out some existing challenges of NPT-SACs, and also provides ideas for designing and synthesizing NPT-SACs with excellent ORR performances. The large-scale preparation and commercialization of NPT-SACs with excellent ORR properties are prospected.
Collapse
Affiliation(s)
- Penggang Jiao
- Key Laboratory of Hebei Province on Scale-span Intelligent Equipment Technology, and School of Mechanical Engineering, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Donghao Ye
- Wuhan Marine Electric Propulsion Research Institute, Wuhan 430064, China
| | - Chunyou Zhu
- Hunan Aerospace Kaitian Water Services Co., Ltd., Changsha 410100, China
| | - Shuai Wu
- Key Laboratory of Hebei Province on Scale-span Intelligent Equipment Technology, and School of Mechanical Engineering, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Chunling Qin
- Key Laboratory of Hebei Province on Scale-span Intelligent Equipment Technology, and School of Mechanical Engineering, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Cuihua An
- Key Laboratory of Hebei Province on Scale-span Intelligent Equipment Technology, and School of Mechanical Engineering, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Ning Hu
- State Key Laboratory of Reliability and Intelligence Electrical Equipment, Hebei University of Technology, Tianjin, 300130, China
| | - Qibo Deng
- Key Laboratory of Hebei Province on Scale-span Intelligent Equipment Technology, and School of Mechanical Engineering, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China.
| |
Collapse
|
4
|
Wang C, An C, Qin C, Gomaa H, Deng Q, Wu S, Hu N. Noble Metal-Based Catalysts with Core-Shell Structure for Oxygen Reduction Reaction: Progress and Prospective. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2480. [PMID: 35889703 PMCID: PMC9316484 DOI: 10.3390/nano12142480] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 01/27/2023]
Abstract
With the deterioration of the ecological environment and the depletion of fossil energy, fuel cells, representing a new generation of clean energy, have received widespread attention. This review summarized recent progress in noble metal-based core-shell catalysts for oxygen reduction reactions (ORRs) in proton exchange membrane fuel cells (PEMFCs). The novel testing methods, performance evaluation parameters and research methods of ORR were briefly introduced. The effects of the preparation method, temperature, kinds of doping elements and the number of shell layers on the ORR performances of noble metal-based core-shell catalysts were highlighted. The difficulties of mass production and the high cost of noble metal-based core-shell nanostructured ORR catalysts were also summarized. Thus, in order to promote the commercialization of noble metal-based core-shell catalysts, research directions and prospects on the further development of high performance ORR catalysts with simple synthesis and low cost are presented.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory of Hebei Province on Scale-Span Intelligent Equipment Technology, School of Mechanical Engineering, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China; (C.W.); (C.A.); (C.Q.)
| | - Cuihua An
- Key Laboratory of Hebei Province on Scale-Span Intelligent Equipment Technology, School of Mechanical Engineering, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China; (C.W.); (C.A.); (C.Q.)
| | - Chunling Qin
- Key Laboratory of Hebei Province on Scale-Span Intelligent Equipment Technology, School of Mechanical Engineering, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China; (C.W.); (C.A.); (C.Q.)
| | - Hassanien Gomaa
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt;
| | - Qibo Deng
- Key Laboratory of Hebei Province on Scale-Span Intelligent Equipment Technology, School of Mechanical Engineering, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China; (C.W.); (C.A.); (C.Q.)
| | - Shuai Wu
- Key Laboratory of Hebei Province on Scale-Span Intelligent Equipment Technology, School of Mechanical Engineering, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China; (C.W.); (C.A.); (C.Q.)
| | - Ning Hu
- State Key Laboratory of Reliability and Intelligence Electrical Equipment, Hebei University of Technology, Tianjin 300130, China;
- National Engineering Research Center for Technological Innovation Method and Tool, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
5
|
Safdar Hossain SK, Saleem J, Mudassir Ahmad Alwi M, Al-Odail FA, Mozahar Hossain M. Recent Advances in Anode Electrocatalysts for Direct Formic Acid Fuel Cells - Part I - Fundamentals and Pd Based Catalysts. CHEM REC 2022; 22:e202200045. [PMID: 35733082 DOI: 10.1002/tcr.202200045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/25/2022] [Indexed: 11/11/2022]
Abstract
Direct formic acid fuel cells (DFAFCs) have gained immense importance as a source of clean energy for portable electronic devices. It outperforms other fuel cells in several key operational and safety parameters. However, slow kinetics of the formic acid oxidation at the anode remains the main obstacle in achieving a high power output in DFAFCs. Noble metal-based electrocatalysts are effective, but are expensive and prone to CO poisoning. Recently, a substantial volume of research work have been dedicated to develop inexpensive, high activity and long lasting electrocatalysts. Herein, recent advances in the development of anode electrocatalysts for DFAFCs are presented focusing on understanding the relationship between activity and structure. This review covers the literature related to the electrocatalysts based on noble metals, non-noble metals, metal-oxides, synthesis route, support material, and fuel cell performance. The future prospects and bottlenecks in the field are also discussed at the end.
Collapse
Affiliation(s)
- S K Safdar Hossain
- Department of Chemical Engineering, College of Engineering, King Faisal University, Al-Ahsa, 31982, Kingdom of Saudi Arabia
| | - Junaid Saleem
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - M Mudassir Ahmad Alwi
- Department of Materials Engineering, College of Engineering, King Faisal University, Al-Ahsa, 31982, Kingdom of Saudi Arabia
| | - Faisal A Al-Odail
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, 31982, Kingdom of Saudi Arabia
| | - Mohammad Mozahar Hossain
- Department of Chemical Engineering, College of Engineering, King Fahd University of Petroleum & Minerals, Dhahran, 31612, Kingdom of Saudi Arabia
| |
Collapse
|
6
|
Abstract
Strain can be a useful handle to alter the catalytic properties of strain-sensitive metals (orange).
Collapse
Affiliation(s)
- Yucheng He
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, People's Republic of China
| | - Pengqi Hai
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, People's Republic of China
| | - Chao Wu
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, People's Republic of China
| |
Collapse
|
7
|
Boukhvalov D, Cheng J, D’Olimpio G, Bocquet F, Kuo CN, Sarkar AB, Ghosh B, Vobornik I, Fujii J, Hsu K, Wang LM, Azulay O, Daptary GN, Naveh D, Lue CS, Vorokhta M, Agarwal A, Zhang L, Politano A. Unveiling the Mechanisms Ruling the Efficient Hydrogen Evolution Reaction with Mitrofanovite Pt 3Te 4. J Phys Chem Lett 2021; 12:8627-8636. [PMID: 34472339 PMCID: PMC8436201 DOI: 10.1021/acs.jpclett.1c01261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
By means of electrocatalytic tests, surface-science techniques and density functional theory, we unveil the physicochemical mechanisms ruling the electrocatalytic activity of recently discovered mitrofanovite (Pt3Te4) mineral. Mitrofanovite represents a very promising electrocatalyst candidate for energy-related applications, with a reduction of costs by 47% compared to pure Pt and superior robustness to CO poisoning. We show that Pt3Te4 is a weak topological metal with the Z2 invariant, exhibiting electrical conductivity (∼4 × 106 S/m) comparable with pure Pt. In hydrogen evolution reaction (HER), the electrode based on bulk Pt3Te4 shows a very small overpotential of 46 mV at 10 mA cm-2 and a Tafel slope of 36-49 mV dec-1 associated with the Volmer-Heyrovsky mechanism. The outstanding ambient stability of Pt3Te4 also provides durability of the electrode and long-term stability of its efficient catalytic performances.
Collapse
Affiliation(s)
- Danil
W. Boukhvalov
- College
of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing 210037, P. R. China
- Theoretical
Physics and Applied Mathematics Department, Ural Federal University, Mira Street 19, 620002 Ekaterinburg, Russia
| | - Jia Cheng
- College
of Chemistry and Chemical Engineering, Qingdao
University, Qingdao 266071, Shandong, P. R. China
| | - Gianluca D’Olimpio
- INSTM
and Department of Physical and Chemical Sciences, University of L’Aquila, via Vetoio, 67100 L’Aquila (AQ), Italy
| | - François
C. Bocquet
- Peter
Grünberg Institut (PGI-3), Forschungszentrum
Jülich, 52425 Jülich, Germany
- Jülich
Aachen Research Alliance (JARA), Fundamentals
of Future Information Technology, 52425 Jülich, Germany
| | - Chia-Nung Kuo
- Department
of Physics, National Cheng Kung University, 1 Ta-Hsueh Road, 70101 Tainan, Taiwan
| | - Anan Bari Sarkar
- Department
of Physics, Indian Institute of Technology
Kanpur, Kanpur, 208016, India
| | - Barun Ghosh
- Department
of Physics, Indian Institute of Technology
Kanpur, Kanpur, 208016, India
| | - Ivana Vobornik
- CNR-IOM,
TASC Laboratory, Area Science Park-Basovizza, 34139 Trieste, Italy
| | - Jun Fujii
- CNR-IOM,
TASC Laboratory, Area Science Park-Basovizza, 34139 Trieste, Italy
| | - Kuan Hsu
- Department
of Physics/Graduate Institute of Applied Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Li-Min Wang
- Department
of Physics/Graduate Institute of Applied Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Ori Azulay
- Faculty
of Engineering and Institute of Nanotechnology, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Gopi Nath Daptary
- Department
of Physics and Institure of Nanotechnology, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Doron Naveh
- Faculty
of Engineering and Institute of Nanotechnology, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Chin Shan Lue
- Department
of Physics, National Cheng Kung University, 1 Ta-Hsueh Road, 70101 Tainan, Taiwan
| | - Mykhailo Vorokhta
- Charles
University, V Holesovickǎch
2, Prague 8, 18000 Prague, Czechia
| | - Amit Agarwal
- Department
of Physics, Indian Institute of Technology
Kanpur, Kanpur, 208016, India
| | - Lixue Zhang
- College
of Chemistry and Chemical Engineering, Qingdao
University, Qingdao 266071, Shandong, P. R. China
| | - Antonio Politano
- INSTM
and Department of Physical and Chemical Sciences, University of L’Aquila, via Vetoio, 67100 L’Aquila (AQ), Italy
- CNR-IMM Istituto per la
Microelettronica e Microsistemi, VIII strada 5, I-95121 Catania, Italy
| |
Collapse
|
8
|
Theoretical Insight on Highly Efficient Electrocatalytic CO2 Reduction Reaction of Monoatom Dispersion Catalyst (Metal-Nitrogen-Carbon). Electrocatalysis (N Y) 2021. [DOI: 10.1007/s12678-021-00662-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Li K, Xu J, Chen C, Xie Z, Liu D, Qu D, Tang H, Wei Q, Deng Q, Li J, Hu N. Activating the hydrogen evolution activity of Pt electrode via synergistic interaction with NiS 2. J Colloid Interface Sci 2021; 582:591-597. [PMID: 32911407 DOI: 10.1016/j.jcis.2020.08.071] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/16/2020] [Accepted: 08/19/2020] [Indexed: 01/04/2023]
Abstract
Electrocatalytic hydrogen evolution reaction (HER) is a green approach to produce high-quality hydrogen fuel. Developing efficient electrocatalyst is the key to realize cost-effective HER. Pt is the state-of-the-art HER catalyst so far. However, the use of Pt for HER is limited by its high cost. Thus, it is essential to lower down the usage of Pt in the electrocatalyst by improving the intrinsic activity of Pt. In this work, we propose to achieve this goal by introducing synergistic interaction between Pt and substrate material (NiS2). The favorable synergy interaction can modify the d band structure of Pt (111) facet and modulate the hydrogen adsorption on Pt (111), which enhances the intrinsic electrocatalytic activity of Pt. The effectiveness of this strategy is demonstrated with both experimental and theoretical investigations.
Collapse
Affiliation(s)
- Ke Li
- Intelligent Transport Systems Research Center, Wuhan University of Technology, Wuhan 430063, China; Reliability Engineering Institute, National Engineering Research Center for Water Transport Safety, MOST, Wuhan 430063, China
| | - Jun Xu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Chan Chen
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Zhizhog Xie
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Dan Liu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Deyu Qu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Haolin Tang
- Hubei provincial key laboratory of fuel cell, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Qiang Wei
- State Key Laboratory of Reliability and Intelligence Electrical Equipment; School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Qibo Deng
- State Key Laboratory of Reliability and Intelligence Electrical Equipment; School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300401, China.
| | - Junsheng Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China; Hubei provincial key laboratory of fuel cell, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| | - Ning Hu
- State Key Laboratory of Reliability and Intelligence Electrical Equipment; School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
10
|
Niu Z, Wan Y, Li X, Zhang M, Liu B, Chen Z, Lu G, Yan K. In-situ regulation of formic acid oxidation via elastic strains. J Catal 2020. [DOI: 10.1016/j.jcat.2020.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
OHKUBO K, TAKAHASHI H, WATTERS EPJ, TAGUCHI M. In-situ Analysis of CO<sub>2</sub> Electroreduction on Pt and Pt Oxide Cathodes. ELECTROCHEMISTRY 2020. [DOI: 10.5796/electrochemistry.19-00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Keisuke OHKUBO
- Department of Materials Science, Graduate School of Engineering Science, Akita University
| | - Hiroki TAKAHASHI
- Department of Materials Science, Graduate School of Engineering Science, Akita University
| | - E. P. J. WATTERS
- Department of Materials Science, Graduate School of Engineering Science, Akita University
| | - Masami TAGUCHI
- Department of Materials Science, Graduate School of Engineering Science, Akita University
| |
Collapse
|
12
|
Yang S, Li S, Zhang GX, Filimonov SN, Butch CJ, Ren JC, Liu W. Surface Strain-Induced Collective Switching of Ensembles of Molecules on Metal Surfaces. J Phys Chem Lett 2020; 11:2277-2283. [PMID: 32125156 DOI: 10.1021/acs.jpclett.0c00162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A central difficulty in the design of molecular electronics is poor control of the contact state between the molecule and metal electrode, which may induce instability and noise in logic and memory devices and even destroy the intrinsic functionality of the device. Here, we theoretically propose a simple and effective strategy for realizing full control of the contact state of organic molecules coated on the metal surface by applying homogeneous surface strain. As exemplified by pyrazine molecules on Cu(111), application of compressive (tensile) strain causes the molecules to uniformly adopt the physisorbed (chemisorbed) state. Within the framework of non-equilibrium Green's function calculations, we show that the two distinct contact states yield simultaneous rectification and switching behaviors. Because the contact states of all surface-bound molecules are transformed uniformly via surface strain perturbations, fully controlled collective switching and rectification effects can be simultaneously achieved in this contact system.
Collapse
Affiliation(s)
- Sha Yang
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Shuang Li
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Guo-Xu Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, West Dazhi 92, Harbin 150001, China
| | | | - Christopher J Butch
- Department of Biomedical Engineering, Nanjing University, Nanjing 210093, China
- Blue Marble Space Institute of Science, Seattle, Washington 98154, United States
| | - Ji-Chang Ren
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Wei Liu
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| |
Collapse
|
13
|
|
14
|
Zheng X, Li L, Li J, Wei Z. Intrinsic effects of strain on low-index surfaces of platinum: roles of the five 5d orbitals. Phys Chem Chem Phys 2019; 21:3242-3249. [DOI: 10.1039/c8cp07556e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The inconsistent change in five 5d orbitals on strained Pt low-index induces abnormal species adsorption behaviours.
Collapse
Affiliation(s)
- Xingqun Zheng
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology
- Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization
- School of Chemistry and Chemical Engineering, Chongqing University
- Chongqing 400044
- P. R. China
| | - Li Li
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology
- Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization
- School of Chemistry and Chemical Engineering, Chongqing University
- Chongqing 400044
- P. R. China
| | - Jing Li
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology
- Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization
- School of Chemistry and Chemical Engineering, Chongqing University
- Chongqing 400044
- P. R. China
| | - Zidong Wei
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology
- Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization
- School of Chemistry and Chemical Engineering, Chongqing University
- Chongqing 400044
- P. R. China
| |
Collapse
|
15
|
Zhang E, Ma F, Liu J, Sun J, Chen W, Rong H, Zhu X, Liu J, Xu M, Zhuang Z, Chen S, Wen Z, Zhang J. Porous platinum-silver bimetallic alloys: surface composition and strain tunability toward enhanced electrocatalysis. NANOSCALE 2018; 10:21703-21711. [PMID: 30431037 DOI: 10.1039/c8nr06192k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Promoting surface strains in heterogeneous catalysts and heteroatomic interactions in alloying offer an effective strategy for the development of electrocatalysts with greatly enhanced activity. In this work, we design platinum-silver nanotubes (PtAg NTs) with tunable surface compositions by a controlled galvanic replacement reaction of well-defined Ag nanowires (NWs). The optimized and porous PtAg NTs (PtAg-4 NTs), with the Pt5Ag3 surface composition and (111) facet-dominant surface features, exhibit an extraordinary oxygen reduction reaction (ORR) activity that reaches a specific activity of 1.13 mA cm-2 and a mass activity of 0.688 A mg-1Pt at 0.9 V versus a reversible hydrogen electrode (RHE), which are 4.5 times and 4.3 times those of commercial Pt/C catalysts (0.25 mA cm-2 and 0.16 A mg-1Pt). Moreover, PtAg-4 NTs/C can endure under the ORR conditions over the course of 10 000 cycles with negligible activity decay. Remarkably, density functional theory simulations reveal that the porous PtAg-4 NTs exhibit enhanced adsorption interaction with adsorbates, attributed to the catalytically active sites on high-density (111) facets and modulation of the surface strain, further boosting the ORR activity and durability.
Collapse
Affiliation(s)
- Erhuan Zhang
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Khorshidi A, Violet J, Hashemi J, Peterson AA. How strain can break the scaling relations of catalysis. Nat Catal 2018. [DOI: 10.1038/s41929-018-0054-0] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Zhang H, An C, Yuan A, Deng Q, Ning J. A non-conventional way to modulate the capacitive process on carbon cloth by mechanical stretching. Electrochem commun 2018. [DOI: 10.1016/j.elecom.2018.02.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
18
|
Zhang X, Yang Z, Wu R. A Au monolayer on WC(0001) with unexpected high activity towards CO oxidation. NANOSCALE 2018; 10:4753-4760. [PMID: 29465726 DOI: 10.1039/c7nr09498a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Catalysts with weak adsorption yet high reactivity towards CO are urgently required to solve the serious problem of CO poisoning that occurs in many important reactions, e.g., in fuel cells. Using the combination of density functional calculations and ab initio molecular dynamic simulations, we found a promising electrocatalyst for this purpose: a Au monolayer on WC(0001) (AuML/WC), which has both high oxygen reduction activity and high tolerance to CO poisoning. The advantages of using AuML/WC as an electrocatalyst in fuel cells are demonstrated through analyses of energetics of different reaction steps as well as interaction properties of reactants and products. We anticipate that the present results are useful to advance the development of efficient catalysts with high tolerance to CO poisoning.
Collapse
Affiliation(s)
- Xilin Zhang
- College of Physics and Materials Science, Henan Normal University, Xinxiang 453007, China.
| | | | | |
Collapse
|
19
|
Feng Q, Zhao S, He D, Tian S, Gu L, Wen X, Chen C, Peng Q, Wang D, Li Y. Strain Engineering to Enhance the Electrooxidation Performance of Atomic-Layer Pt on Intermetallic Pt3Ga. J Am Chem Soc 2018; 140:2773-2776. [DOI: 10.1021/jacs.7b13612] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Quanchen Feng
- Department
of Chemistry, Tsinghua University, Beijing 100084, China
| | - Shu Zhao
- Beijing
Guyue New Materials Research Institute, Beijing University of Technology, Beijing 100124, China
| | - Dongsheng He
- Materials
Characterization and Preparation Center, South University of Science and Technology of China, Shenzhen 518055, China
| | - Shubo Tian
- Department
of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lin Gu
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaodong Wen
- State
Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Chen Chen
- Department
of Chemistry, Tsinghua University, Beijing 100084, China
| | - Qing Peng
- Department
of Chemistry, Tsinghua University, Beijing 100084, China
| | - Dingsheng Wang
- Department
of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yadong Li
- Department
of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
20
|
Photocatalytic CO oxidation with water over Pt/TiO2 catalysts. REACTION KINETICS MECHANISMS AND CATALYSIS 2017. [DOI: 10.1007/s11144-017-1334-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Yang M, Zhang H, Deng Q. Understanding the copper underpotential deposition process at strained gold surface. Electrochem commun 2017. [DOI: 10.1016/j.elecom.2017.07.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
22
|
Zhang H, Wang Z, Yang M, Deng Q. The effect of an external magnetic field on the dealloying process of the Ni-Al alloy in alkaline solution. Phys Chem Chem Phys 2017; 19:18167-18171. [PMID: 28692090 DOI: 10.1039/c7cp03363j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Our work investigates the effect of an external magnetic field on different dealloying stages of the formation of a nanoporous magnetic material. The magnetic field first prolongs the Ni rearrangement process at a low magnetic flux density, whereas the trend is reversed and the Ni rearrangement process is shortened at a higher magnetic flux density. The much finer morphology of nanoporous Ni can be prepared by adjusting the external magnetic flux density.
Collapse
Affiliation(s)
- Haixia Zhang
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | | | | | | |
Collapse
|