1
|
Genç AE, Akça A, Karaman C, Camarada MB, Dragoi EN. Ammonia free catalytic reduction of nitric oxide on Ni-embedded graphene nanostructure: A density functional theory investigation. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
2
|
Passivation of Co/Al2O3 Catalyst by Atomic Layer Deposition to Reduce Deactivation in the Fischer–Tropsch Synthesis. Catalysts 2021. [DOI: 10.3390/catal11060732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The present work explores the technical feasibility of passivating a Co/γ-Al2O3 catalyst by atomic layer deposition (ALD) to reduce deactivation rate during Fischer–Tropsch synthesis (FTS). Three samples of the reference catalyst were passivated using different numbers of ALD cycles (3, 6 and 10). Characterization results revealed that a shell of the passivating agent (Al2O3) grew around catalyst particles. This shell did not affect the properties of passivated samples below 10 cycles, in which catalyst reduction was hindered. Catalytic tests at 50% CO conversion evidenced that 3 and 6 ALD cycles increased catalyst stability without significantly affecting the catalytic performance, whereas 10 cycles caused blockage of the active phase that led to a strong decrease of catalytic activity. Catalyst deactivation modelling and tests at 60% CO conversion served to conclude that 3 to 6 ALD cycles reduced Co/γ-Al2O3 deactivation, so that the technical feasibility of this technique was proven in FTS.
Collapse
|
3
|
Zhao M, Zhao Z, Lyu Y, Lu W, Jin M, Liu T, Zhu H, Ding Y. Co–Al Spinel as an Efficient Support for Co-Based Fischer–Tropsch Catalyst: The Effect of Metal–Support Interaction. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Min Zhao
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziang Zhao
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yuan Lyu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wei Lu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ming Jin
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Tao Liu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hejun Zhu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yunjie Ding
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
4
|
Abstract
The ratio between propene and propane (C3 o/p) during Fischer–Tropsch synthesis (FTS) has been analyzed based on both literature reports and experiments for five catalysts. The latter comprise four cobalt catalysts on γ-alumina with variations in pore sizes, and one catalyst on α-alumina. Overall variations include H2/CO feed ratio, residence time, water addition, transients between test conditions, CO conversion, cobalt particle size, promoter (Re), and support material. It was possible to rationalize all data based on secondary hydrogenation of olefins. In fact, it was deduced that olefins are dominating termination products in FTS, estimated to ca. 90% for C3, but that some paraffins most likely are also produced directly. Increased residence time and high H2/CO feed ratio favors olefin hydrogenation, while added water presumably displaces hydrogen on cobalt giving enhanced C3 o/p. High cobalt dispersion favors hydrogenation, as also promoted by Re. Effect of intraparticle diffusion is seen in transient periods; for example, as water is added or depleted. There is frequently positive correlation between C3 o/p and selectivity to longer chains; the latter expressed as C5+ selectivity, as both are sensitive to hydrogen activity. Some modifications, however, are needed due to the accepted volcano plot for C5+ selectivity with cobalt crystallite size. Titania as support shows unexpectedly low C3 o/p; probably due to SMSI (strong-metal-support-interaction).
Collapse
|
5
|
Hernández Mejía C, van der Hoeven JES, de Jongh PE, de Jong KP. Cobalt-Nickel Nanoparticles Supported on Reducible Oxides as Fischer-Tropsch Catalysts. ACS Catal 2020; 10:7343-7354. [PMID: 32655980 PMCID: PMC7340342 DOI: 10.1021/acscatal.0c00777] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/15/2020] [Indexed: 11/29/2022]
Abstract
Efficient and more sustainable production of transportation fuels is key to fulfill the ever-increasing global demand. In order to achieve this, progress in the development of highly active and selective catalysts is fundamental. The combination of bimetallic nanoparticles and reactive support materials offers unique and complex interactions that can be exploited for improved catalyst performance. Here, we report on cobalt-nickel nanoparticles on reducible metal oxides as support material for enhanced performance in the Fischer-Tropsch synthesis. For this, different cobalt to nickel ratios (Ni/(Ni + Co): 0.0, 0.25, 0.50, 0.75, or 1.0 atom/atom) supported on reducible (TiO2 and Nb2O5) or nonreducible (α-Al2O3) oxides were studied. At 1 bar, Co-Ni nanoparticles supported on TiO2 and Nb2O5 showed stable catalytic performance, high activities and remarkably high selectivities for long-chain hydrocarbons (C5+, ∼80 wt %). In contrast, catalysts supported on α-Al2O3 independently of the metal composition showed lower activities, high methane production, and considerable deactivation throughout the experiment. At 20 bar, the combination of cobalt and nickel supported on reducible oxides allowed for 25-50% cobalt substitution by nickel with increased Fischer-Tropsch activity and without sacrificing much C5+ selectivity. STEM-EDX and IR of adsorbed CO pointed to a cobalt enrichment of the nanoparticle's surface and a weaker adsorption of CO in Co-Ni supported on TiO2 and Nb2O5 and not on α-Al2O3, modifying the rate-determining step and the catalytic performance. Overall, we show the strong effect and potential of reducible metal oxides as support materials for bimetallic nanoparticles for enhanced catalytic performance.
Collapse
Affiliation(s)
- Carlos Hernández Mejía
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Jessi E. S. van der Hoeven
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| | - Petra E. de Jongh
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Krijn P. de Jong
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
6
|
Zhu J, Zhang G, Li W, Zhang X, Ding F, Song C, Guo X. Deconvolution of the Particle Size Effect on CO2 Hydrogenation over Iron-Based Catalysts. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01526] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jie Zhu
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Guanghui Zhang
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Wenhui Li
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Xinbao Zhang
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Fanshu Ding
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Chunshan Song
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- EMS Energy Institute, Department of Energy & Mineral Engineering and Chemical Engineering, PSU-DUT Joint Center for Energy Research, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
7
|
Wang H, Wu B, Cai Y, Zhou C, Feng N, Liu G, Chen C, Wan H, Wang L, Guan G. Core–Shell-Structured Co–Z@TiO2 Catalysts Derived from ZIF-67 for Efficient Production of C5+ Hydrocarbons in Fischer–Tropsch Synthesis. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00533] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hu Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 210009, People’s Republic of China
| | - Bingxia Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 210009, People’s Republic of China
| | - Yuan Cai
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 210009, People’s Republic of China
| | - Chengwei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 210009, People’s Republic of China
| | - Nengjie Feng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 210009, People’s Republic of China
| | - Geng Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 210009, People’s Republic of China
| | - Chong Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 210009, People’s Republic of China
| | - Hui Wan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 210009, People’s Republic of China
| | - Lei Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 210009, People’s Republic of China
| | - Guofeng Guan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 210009, People’s Republic of China
| |
Collapse
|
8
|
Tsakoumis NE, Patanou E, Lögdberg S, Johnsen RE, Myrstad R, van Beek W, Rytter E, Blekkan EA. Structure–Performance Relationships on Co-Based Fischer–Tropsch Synthesis Catalysts: The More Defect-Free, the Better. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03549] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nikolaos E. Tsakoumis
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Eleni Patanou
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Sara Lögdberg
- Chemical Technology, KTH (Royal Institute of Technology), Teknikringen 42, SE-100 44 Stockholm, Sweden
| | - Rune E. Johnsen
- Department of Energy Conversion and Storage, Technical University of Denmark, DK-4000 Roskilde, Denmark
| | - Rune Myrstad
- SINTEF Materials and Chemistry, NO-7465 Trondheim, Norway
| | - Wouter van Beek
- The Swiss−Norwegian Beamlines (SNBL) at ESRF, Grenoble F38043, France
| | - Erling Rytter
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
- SINTEF Materials and Chemistry, NO-7465 Trondheim, Norway
| | - Edd A. Blekkan
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| |
Collapse
|
9
|
Use of Plasma-Synthesized Nano-Catalysts for CO Hydrogenation in Low-Temperature Fischer⁻Tropsch Synthesis: Effect of Catalyst Pre-Treatment. NANOMATERIALS 2018; 8:nano8100822. [PMID: 30322025 PMCID: PMC6215254 DOI: 10.3390/nano8100822] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 09/20/2018] [Accepted: 10/04/2018] [Indexed: 12/12/2022]
Abstract
A study was done on the effect of temperature and catalyst pre-treatment on CO hydrogenation over plasma-synthesized catalysts during the Fischer–Tropsch synthesis (FTS). Nanometric Co/C, Fe/C, and 50%Co-50%Fe/C catalysts with BET specific surface area of ~80 m2 g–1 were tested at a 2 MPa pressure and a gas hourly space velocity (GHSV) of 2000 cm3 h−1 g−1 of a catalyst (at STP) in hydrogen-rich FTS feed gas (H2:CO = 2.2). After pre-treatment in both H2 and CO, transmission electron microscopy (TEM) showed that the used catalysts shifted from a mono-modal particle-size distribution (mean ~11 nm) to a multi-modal distribution with a substantial increase in the smaller nanoparticles (~5 nm), which was statistically significant. Further characterization was conducted by scanning electron microscopy (SEM with EDX elemental mapping), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The average CO conversion at 500 K was 18% (Co/C), 17% (Fe/C), and 16% (Co-Fe/C); 46%, 37%, and 57% at 520 K; and 85%, 86% and 71% at 540 K respectively. The selectivity of Co/C for C5+ was ~98% with 8% gasoline, 61%, diesel and 28% wax (fractions) at 500 K; 22% gasoline, 50% diesel, and 19% wax at 520 K; and 24% gasoline, 34% diesel, and 11% wax at 540 K, besides CO2 and CH4 as by-products. Fe-containing catalysts manifested similar trends, with a poor conformity to the Anderson–Schulz–Flory (ASF) product distribution.
Collapse
|
10
|
Rytter E, Borg Ø, Tsakoumis NE, Holmen A. Water as key to activity and selectivity in Co Fischer-Tropsch synthesis: γ-alumina based structure-performance relationships. J Catal 2018. [DOI: 10.1016/j.jcat.2018.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Shahul Hamid MY, Triwahyono S, Jalil AA, Che Jusoh NW, Izan SM, Tuan Abdullah TA. Tailoring the Properties of Metal Oxide Loaded/KCC-1 toward a Different Mechanism of CO2 Methanation by in Situ IR and ESR. Inorg Chem 2018; 57:5859-5869. [DOI: 10.1021/acs.inorgchem.8b00241] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Muhamed Yusuf Shahul Hamid
- Department of Chemical Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Sugeng Triwahyono
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Aishah Abdul Jalil
- Department of Chemical Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
- Center of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Nurfatehah Wahyuny Che Jusoh
- Department of Chemical Process Engineering, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia Kuala Lumpur, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia
| | - Siti Maryam Izan
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Tuan Amran Tuan Abdullah
- Department of Chemical Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
- Center of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| |
Collapse
|
12
|
Consorted Vinylene Mechanism for Cobalt Fischer–Tropsch Synthesis Encompassing Water or Hydroxyl Assisted CO-Activation. Top Catal 2018. [DOI: 10.1007/s11244-018-0932-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|