1
|
Ge X, Jing Y, Fei N, Yan K, Liang Y, Cao Y, Zhang J, Qian G, Li L, Jiang H, Zhou X, Yuan W, Duan X. Embedding Single Pd Atoms on NiGa Intermetallic Surfaces for Efficient and Selective Alkyne Hydrogenation. Angew Chem Int Ed Engl 2024; 63:e202410979. [PMID: 38967363 DOI: 10.1002/anie.202410979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/06/2024]
Abstract
Catalytic removal of alkynes is essential in industry for producing polymer-grade alkenes from steam cracking processes. Non-noble Ni-based catalysts hold promise as effective alternatives to industrial Pd-based catalysts but suffer from low activity. Here we report embedding of single-atom Pd onto the NiGa intermetallic surface with replacing Ga atoms via a well-defined synthesis strategy to design Pd1-NiGa catalyst for alkyne semi-hydrogenation. The fabricated Pd1Ni2Ga1 ensemble sites deliver remarkably higher specific mass activity under superb alkene selectivity of >96 % than the state-of-the-art catalysts under industry-relevant conditions. Integrated experimental and computational studies reveal that the single-atom Pd synergizes with the neighbouring Ni sites to facilitate the σ-adsorption of alkyne and dissociation of hydrogen while suppress the alkene adsorption. Such synergistic effects confer the single-atom Pd on the NiGa intermetallic with a Midas touch for alkyne semi-hydrogenation, providing an effective strategy for stimulating low active Ni-based catalysts for other selective hydrogenations in industry.
Collapse
Affiliation(s)
- Xiaohu Ge
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yundao Jing
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Nina Fei
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Kelin Yan
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yijing Liang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yueqiang Cao
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jing Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Gang Qian
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lina Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Hao Jiang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierar-chical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xinggui Zhou
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Weikang Yuan
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xuezhi Duan
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
2
|
Zhou S, Zeng A, Lu C, Wang M, Zhou C, Li Q, Dong L, Wang A, Tan L. Bi-modified Cu-Based Catalysts for Acetylene Hydrogenation: Leveraging Dispersion and Hydrogen Spillover. Inorg Chem 2024; 63:11802-11811. [PMID: 38861686 DOI: 10.1021/acs.inorgchem.4c01492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Removing trace acetylene from the ethylene stream through selective hydrogenation is a crucial process in the production of polymer-grade ethylene. However, achieving high selectivity while maintaining high activity remains a significant challenge, especially for nonprecious metal catalysts. Herein, the trade-off between activity and selectivity is solved by synergizing enhanced dispersion and hydrogen spillover. Specifically, a bubbling method is proposed for preparing SiO2-supported copper and/or bismuth carbonate with high dispersion, which is then employed to synthesize highly dispersed Bi-modified CuxC-Cu catalyst. The catalyst displays outstanding catalytic performance for acetylene selective hydrogenation, achieving acetylene conversion of 100% and ethylene selectivity of 91.1% at 100 °C. The high activity originates from the enhanced dispersion, and the exceptional selectivity is due to the enhanced spillover capacity of active hydrogen from CuxC to Cu, which is promoted by the Bi addition. The results offer an avenue to design efficient catalysts for selective hydrogenation from nonprecious metals.
Collapse
Affiliation(s)
- Shihong Zhou
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Aonan Zeng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Chenyang Lu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Mengxin Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Cailong Zhou
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Qun Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Lichun Dong
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Anjie Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Luxi Tan
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| |
Collapse
|
3
|
Ma J, Xing F, Shimizu KI, Furukawa S. Active site tuning based on pseudo-binary alloys for low-temperature acetylene semihydrogenation. Chem Sci 2024; 15:4086-4094. [PMID: 38487246 PMCID: PMC10935689 DOI: 10.1039/d3sc03704e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/25/2024] [Indexed: 03/17/2024] Open
Abstract
The development of an efficient catalytic system for low-temperature acetylene semihydrogenation using nonnoble metals is important for the cost-effective production of polymer-grade pure ethylene. However, it remains challenging owing to the intrinsic low activity. Herein, we report a flexibly tunable catalyst design concept based on a pseudo-binary alloy, which enabled a remarkable enhancement in the catalytic activity, selectivity, and durability of a Ni-based material. A series of (Ni1-xCux)3Ga/TiO2 catalysts exhibiting L12-type pseudo-binary alloy structures with various Cu contents (x = 0.2, 0.25, 0.33, 0.5, 0.6, and 0.75) were prepared for active site tuning. The optimal catalyst, (Ni0.8Cu0.2)3Ga/TiO2, exhibited outstandingly high catalytic activity among reported 3d transition metal-based systems and excellent ethylene selectivity (96%) and long-term stability (100 h) with near full conversion even at 150 °C. A mechanistic study revealed that Ni2Cu hollow sites on the (111) surface weakened the strong adsorption of acetylene and vinyl adsorbate, which significantly accelerated the hydrogenation process and inhibited undesired ethane formation.
Collapse
Affiliation(s)
- Jiamin Ma
- Institute for Catalysis, Hokkaido University Sapporo 001-0021 Japan
| | - Feilong Xing
- Institute for Catalysis, Hokkaido University Sapporo 001-0021 Japan
| | - Ken-Ichi Shimizu
- Institute for Catalysis, Hokkaido University Sapporo 001-0021 Japan
| | - Shinya Furukawa
- Institute for Catalysis, Hokkaido University Sapporo 001-0021 Japan
| |
Collapse
|
4
|
Su J, Ji Y, Geng S, Li L, Liu D, Yu H, Song B, Li Y, Pao CW, Hu Z, Huang X, Lu J, Shao Q. Core-Shell Design of Metastable Phase Catalyst Enables Highly-Performance Selective Hydrogenation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308839. [PMID: 37906727 DOI: 10.1002/adma.202308839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/20/2023] [Indexed: 11/02/2023]
Abstract
Highly selective semihydrogenation of alkynes to alkenes is a highly important reaction for catalytic industry. Developing non-noble metal based catalysts with platinum group metal-like activity and selectivity is extremely crucial yet challenging. Metastable phase catalysts provide a potential candidate to realize high activity, yet the control of selectivity remains an open question. Here, this work first reports a metastable phase core-shell: face-centered cubic (fcc) phase Ag (10 at%) core-metastable hexagonal closest packed (hcp) phase Ni (90 at%) shell catalyst, which represents high conversion rate, high selectivity, and remarkable universality for the semihydrogenation of phenylacetylene and its derivatives. More impressively, a turnover frequency (TOF) value of 8241.8 h-1 is achieved, much higher than those of stable phase catalysts and reported platinum group metal based catalysts. Mechanistic investigation reveals that the surface of hcp Ni becomes more oxidized due to electron transfer from hcp Ni shell to fcc Ag core, which decreases the adsorption capacity of styrene on the metastable phase Ni surface, thus preventing full hydrogenation. This work has gained crucial research significance for the design of high performance metastable phase catalysts.
Collapse
Affiliation(s)
- Jiaqi Su
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, China
| | - Yujin Ji
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Jiangsu, 215123, China
| | - Shize Geng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, China
| | - Lamei Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, China
| | - Da Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, China
| | - Hao Yu
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Jiangsu, 215123, China
| | - Beibei Song
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, China
| | - Youyong Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Jiangsu, 215123, China
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Nothnitzer Strasse 40, 01187, Dresden, Germany
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, China
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, China
| |
Collapse
|
5
|
Xu J, Huang W, Li R, Li L, Ma J, Qi J, Ma H, Ruan M, Lu L. Potassium regulating electronic state of zirconia supported palladium catalyst and hydrogen spillover for improved acetylene hydrogenation. J Colloid Interface Sci 2024; 655:584-593. [PMID: 37956546 DOI: 10.1016/j.jcis.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/19/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
High-selectivity acetylene hydrogenation to produce ethylene is an important issue of removing acetylene impurity in ethylene for industrial polyethylene production. Developing high-efficiency catalyst with excellent ethylene selectivity and catalytic durability is desirable but still challenging. In this work, potassium doped palladium catalysts supported on zirconia with different K contents (Pd/ZrO2-xK) have been developed to catalyze acetylene hydrogenation, the Pd/ZrO2-16K exhibits impressive catalytic performance with acetylene conversion of 100 %, ethylene selectivity of 81 % and high catalytic durability. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), in situ synchrotron radiation photoionization mass spectrometry (SR-PIMS) and density functional theory (DFT) calculations reveal that K doping effectively weakens the adsorption of ethylene by regulating the electronic state of catalyst to improve ethylene selectivity and substantially lowers the barriers of hydrogen activation and transfer reactions to favor hydrogen spillover, thus conferring a remarkably improved durability on the Pd/ZrO2-16K catalysts.
Collapse
Affiliation(s)
- Junjie Xu
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation, Mineral Processing Research Institute, Hubei Polytechnic University, Huangshi 435003, China
| | - Weixiong Huang
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Ruiling Li
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Li Li
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Jinjin Ma
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Jiaou Qi
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Haiyan Ma
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Min Ruan
- Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation, Mineral Processing Research Institute, Hubei Polytechnic University, Huangshi 435003, China.
| | - Lilin Lu
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| |
Collapse
|
6
|
Li J, Suo W, Huang Y, Chen M, Ma H, Liu C, Zhang H, Liang K, Dong Z. Mesoporous α-Al 2O 3-supported PdCu bimetallic nanoparticle catalyst for the selective semi-hydrogenation of alkynes. J Colloid Interface Sci 2023; 652:1053-1062. [PMID: 37639927 DOI: 10.1016/j.jcis.2023.08.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023]
Abstract
The selective hydrogenation of alkynes to alkenes is widely applied in the chemical industry; nevertheless, achieving highly selective hydrogenation with high catalytic activity is considerably challenging. Herein, ultrafine PdCu bimetallic nanoparticles encapsulated by high-surface-area mesoporous α-Al2O3 were prepared by high-temperature calcination-reduction using a porous organic framework (POF) as the template. As-obtained PdCu@α-Al2O3 exhibited a high selectivity of 95% for the semi-hydrogenation of phenylacetylene as a probe reaction under mild reaction conditions. The separation of continuous Pd atoms and modification of the Pd electronic state by Cu atoms suppressed β-hydride formation and alkene adsorption, contributing to high selectivity for the catalytic hydrogenation of alkynes. The catalytic activity was maintained after 7 cycles due to the strong interaction between the PdCu bimetallic nanoparticles and α-Al2O3 as well as the encapsulation effect of mesoporous α-Al2O3. Thus, the current work provides a facile strategy for fabricating high-surface-area mesoporous α-Al2O3-supported catalysts for industrial catalysis applications.
Collapse
Affiliation(s)
- Jianfeng Li
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Wenli Suo
- Lanzhou Petrochemical Company, PetroChina Company Limited, Lanzhou 730060, PR China
| | - Yuena Huang
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Minglin Chen
- Lanzhou Petrochemical Research Center, Petrochemical Research Institute, PetroChina Company Limited, Lanzhou 730060, PR China
| | - Haowen Ma
- Lanzhou Petrochemical Research Center, Petrochemical Research Institute, PetroChina Company Limited, Lanzhou 730060, PR China
| | - Chuang Liu
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Huan Zhang
- Lanzhou Petrochemical Company, PetroChina Company Limited, Lanzhou 730060, PR China
| | - Kun Liang
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China.
| | - Zhengping Dong
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
7
|
Li N, Weng S, McCue AJ, Song Y, He Y, Liu Y, Feng J, Li D. Metal-Organic Framework-Derived Ni-S/C Catalysts for Selective Alkyne Hydrogenation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48135-48146. [PMID: 37792067 DOI: 10.1021/acsami.3c09531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
A carbon matrix-supported Ni catalyst with surface/subsurface S species is prepared using a sacrificial metal-organic framework synthesis strategy. The resulting highly dispersed Ni-S/C catalyst contains surface discontinuous and electron-deficient Niδ+ sites modified by p-block S elements. This catalyst proved to be extremely active and selective for alkyne hydrogenation. Specifically, high intrinsic activity (TOF = 0.0351 s-1) and superior selectivity (>90%) at complete conversion were achieved, whereas an analogous S-free sample prepared by the same synthetic route performed poorly. That is, the incorporation of S in Ni particles and the carbon matrix exerts a remarkable positive effect on catalytic behavior for alkyne hydrogenation, breaking the activity-selectivity trade-off. Through comprehensive experimental studies, enhanced performance of Ni-S/C was ascribed to the presence of discontinuous Ni ensembles, which promote desorption of weakly π-bonded ethylene and an optimized electronic structure modified via obvious p-d orbital hybridization.
Collapse
Affiliation(s)
- Ning Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing 100029, China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou 324000, China
| | - Shaoxia Weng
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing 100029, China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou 324000, China
| | - Alan J McCue
- Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, U.K
| | - Yuanfei Song
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing 100029, China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou 324000, China
| | - Yufei He
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing 100029, China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou 324000, China
| | - Yanan Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing 100029, China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou 324000, China
| | - Junting Feng
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing 100029, China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou 324000, China
| | - Dianqing Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing 100029, China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou 324000, China
| |
Collapse
|
8
|
Wei Y, You K, Xu W, Ou X, Zhao F, Chen Z, Yan D, Zhang X, Luo H. Highly Efficient Reductive Amination of Ethanol to Ethylamines over Non-noble Metallic NiCu/MgAlO Catalyst. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.3c00083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Yanan Wei
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, People’s Republic of China
| | - Kuiyi You
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, People’s Republic of China
- National amd Local United Engineering Research Center for Chemical Process Simulation and Intensification, Xiangtan University, Xiangtan 411105, People’s Republic of China
- Engineering Research Center for Low-Carbon Chemical Processes and Resource Utilizations of Hunan Province, Xiangtan University, Xiangtan 411105, People’s Republic of China
| | - Wenchao Xu
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, People’s Republic of China
| | - Xinping Ou
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Fangfang Zhao
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, People’s Republic of China
- Engineering Research Center for Low-Carbon Chemical Processes and Resource Utilizations of Hunan Province, Xiangtan University, Xiangtan 411105, People’s Republic of China
| | - Zhenpan Chen
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, People’s Republic of China
- Engineering Research Center for Low-Carbon Chemical Processes and Resource Utilizations of Hunan Province, Xiangtan University, Xiangtan 411105, People’s Republic of China
| | - Dejian Yan
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, People’s Republic of China
- Engineering Research Center for Low-Carbon Chemical Processes and Resource Utilizations of Hunan Province, Xiangtan University, Xiangtan 411105, People’s Republic of China
| | - Xiaowen Zhang
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, People’s Republic of China
- Engineering Research Center for Low-Carbon Chemical Processes and Resource Utilizations of Hunan Province, Xiangtan University, Xiangtan 411105, People’s Republic of China
| | - He’an Luo
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, People’s Republic of China
- National amd Local United Engineering Research Center for Chemical Process Simulation and Intensification, Xiangtan University, Xiangtan 411105, People’s Republic of China
- Engineering Research Center for Low-Carbon Chemical Processes and Resource Utilizations of Hunan Province, Xiangtan University, Xiangtan 411105, People’s Republic of China
| |
Collapse
|
9
|
Tang S, Li L, Cao X, Yang Q. Ni -chitosan/carbon nanotube: An efficient biopolymer -inorganic catalyst for selective hydrogenation of acetylene. Heliyon 2023; 9:e13523. [PMID: 36873148 PMCID: PMC9975094 DOI: 10.1016/j.heliyon.2023.e13523] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/24/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
This work developed an efficient Ni catalyst based on chitosan for selective hydrogenation of acetylene. The Ni catalyst was prepared by the reaction of the chitosan/carbon nanotube composite with NiSO4 solution. The synthesized Ni-chitosan/carbon nanotube catalyst was characterized by inductively coupled plasma, FTIR, SEM and XRD. The results of FTIR and XRD demonstrated that Ni2+ successfully coordinated with chitosan. The addition of chitosan greatly improved the catalytic performances of Ni-chitosan/carbon nanotube catalyst. Over the Ni-chitosan/carbon nanotube catalyst, both the acetylene conversion and the selectivity to ethylene all achieved 100% at 160 °C and 190 °C, respectively. The catalytic performances of 6 mg Ni-chitosan/carbon nanotube catalyst were even better than that of 400 mg Ni single atom catalyst in literature. Extending the crosslinking time of chitosan and increasing the amount of the crosslinking agent were beneficial to enhance the catalytic effect of Ni-chitosan/carbon nanotube catalyst.
Collapse
Affiliation(s)
- Siye Tang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Liying Li
- Henan Pingmei Shenma Dongda Chemistry Co., Ltd, Kaifeng 475003, China
| | - Xinxiang Cao
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Qingqing Yang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| |
Collapse
|
10
|
Yuan Z, Kumar A, Zhou D, Feng J, Liu B, Sun X. Highly efficient semi-hydrogenation of acetylene over Ni supported mesoporous MgAl2O4 spinel derived from aluminate-intercalated layered double hydroxide. J Catal 2022. [DOI: 10.1016/j.jcat.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Ge X, Dou M, Cao Y, Liu X, Yuwen Q, Zhang J, Qian G, Gong X, Zhou X, Chen L, Yuan W, Duan X. Mechanism driven design of trimer Ni 1Sb 2 site delivering superior hydrogenation selectivity to ethylene. Nat Commun 2022; 13:5534. [PMID: 36131070 PMCID: PMC9492709 DOI: 10.1038/s41467-022-33250-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 09/08/2022] [Indexed: 11/15/2022] Open
Abstract
Mechanism driven catalyst design with atomically uniform ensemble sites is an important yet challenging issue in heterogeneous catalysis associated with breaking the activity-selectivity trade-off. Herein, a trimer Ni1Sb2 site in NiSb intermetallic featuring superior selectivity is elaborated for acetylene semi-hydrogenation via a theoretical guidance with a precise synthesis strategy. The trimer Ni1Sb2 site in NiSb intermetallic is predicted to endow acetylene reactant with an adequately but not excessively strong σ-adsorption mode while ethylene product with a weak π-adsorption one, where such compromise delivers higher ethylene formation rate. An in-situ trapping of molten Sb by Ni strategy is developed to realize the construction of Ni1Sb2 site in the intermetallic P63/mmc NiSb catalysts. Such catalyst exhibits ethylene selectivity up to 93.2% at 100% of acetylene conversion, significantly prevailing over the referred Ni catalyst. These insights shed new lights on rational catalyst design by taming active sites to energetically match targeted reaction pathway. Designing atomically uniform ensemble sites for matching targeted reaction pathway is important yet challenging in heterogeneous catalysis. Here, the authors fabricate a trimer Ni1Sb2 site featuring superior selectivity for acetylene semi-hydrogenation via a mechanism-driven design strategy.
Collapse
Affiliation(s)
- Xiaohu Ge
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Mingying Dou
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yueqiang Cao
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Xi Liu
- School of Chemistry and Chemical Engineering, In-situ Center for Physical Sciences, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Qiang Yuwen
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jing Zhang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Gang Qian
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xueqing Gong
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xinggui Zhou
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Liwei Chen
- School of Chemistry and Chemical Engineering, In-situ Center for Physical Sciences, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Weikang Yuan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xuezhi Duan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
12
|
Zhou S, Lu C, Zhou W, Bi Y, Zhou C, Zeng A, Wang A, Tan L, Dong L. An efficient NiCu@C/Al 2O 3 catalyst for selective hydrogenation of acetylene. Chem Commun (Camb) 2022; 58:11398-11401. [PMID: 36128916 DOI: 10.1039/d2cc04384j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of non-noble metal catalysts for selective hydrogenation still remains a challenge. Herein, NiCu@carbon core-shell nanoparticles supported on Al2O3 (NiCu@C/Al2O3) were prepared, which showed enhanced catalytic performance of acetylene-selective hydrogenation in comparison with NiCu/Al2O3 without carbon encapsulation. In detail, NiCu@C/Al2O3 displayed high ethylene selectivity (>86%) even at an acetylene conversion of 100% and excellent stability (>90 h). Thus, NiCu@C/Al2O3 exhibited great potential as an alternative to Pd-based catalysts for acetylene-selective hydrogenation.
Collapse
Affiliation(s)
- Shihong Zhou
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, P. R. China.
| | - Chenyang Lu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, P. R. China.
| | - Wenyu Zhou
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, P. R. China.
| | - Yi Bi
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, P. R. China.
| | - Cailong Zhou
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, P. R. China.
| | - Aonan Zeng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Anjie Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Luxi Tan
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, P. R. China.
| | - Lichun Dong
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, P. R. China.
| |
Collapse
|
13
|
Semi-Hydrogenation of Acetylene to Ethylene Catalyzed by Bimetallic CuNi/ZSM-12 Catalysts. Catalysts 2022. [DOI: 10.3390/catal12091072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The purpose of this work is to develop a low-cost and high-performance catalyst for the selective catalytic hydrogenation of acetylene to ethylene. Non-precious metals Cu and Ni were selected as active ingredients for this study. Using ZSM-12 as a carrier, Cu-Ni bimetallic catalysts of CuNix/ZSM-12 (x = 5, 7, 9, 11) with different Ni/Cu ratios were prepared by incipient wetness impregnation method. The total Cu and Ni loading were 2 wt%. Under the optimal reaction conditions, the acetylene conversion was 100%, and the ethylene selectivity was 82.48%. The CuNi7/ZSM-12 prepared in this work exhibits good performance in the semi-hydrogenation of acetylene to ethylene with low cost and has potential for industrial application.
Collapse
|
14
|
Chen W, Bao Z, Zhou Z. Selective hydrogenation of phenylacetylene over non-precious bimetallic Ni–Zn/SiO2 and Ni–Co/SiO2 catalysts prepared by glucose pyrolysis. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02276-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Highly Efficient NiCu/SiO2 Catalyst Induced by Ni(Cu)-Silica Interaction for Aqueous-Phase Furfural Hydrogenation. Catal Letters 2022. [DOI: 10.1007/s10562-022-04097-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
16
|
Ma J, Xing F, Nakaya Y, Shimizu KI, Furukawa S. Nickel-Based High-Entropy Intermetallic as a Highly Active and Selective Catalyst for Acetylene Semihydrogenation. Angew Chem Int Ed Engl 2022; 61:e202200889. [PMID: 35470948 DOI: 10.1002/anie.202200889] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 11/07/2022]
Abstract
Acetylene semihydrogenation is a key technology for producing polymer-grade ethylene from crude ethylene. Ni-based catalysts are promising alternatives to noble-metals for this process. However, achieving high catalytic activity and selectivity remains a big challenge. We report a novel catalyst design based on high-entropy intermetallics (HEI), which provide thermally stable isolated Ni without excess counterpart metals and achieve exceptionally high performance. Intermetallic NiGa was multi-metalized to a (NiFeCu)(GaGe), where the Ni and Ga sites were partially substituted with Fe/Cu and Ge, respectively, without altering the parent CsCl-type structure. The NiFeCuGaGe/SiO2 HEI catalyst completely inhibited ethylene overhydrogenation even at complete acetylene conversion, and exhibited five-times higher activity than other 3d-transition-metal-based catalysts. The DFT study showed that the surface energy decreased by multi-metallization, which drastically weakened ethylene adsorption.
Collapse
Affiliation(s)
- Jiamin Ma
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo, 001-0021, Japan
| | - Feilong Xing
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo, 001-0021, Japan
| | - Yuki Nakaya
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo, 001-0021, Japan
| | - Ken-Ichi Shimizu
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo, 001-0021, Japan
| | - Shinya Furukawa
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo, 001-0021, Japan
- Department of Research Promotion, Japan Science and Technology Agency, Chiyoda, Tokyo 102-0076, Japan
| |
Collapse
|
17
|
Fan B, Huang X, Liu C, Ren X, Zhang J. Highly Efficient Oxygen-Activated Self-Cleaning Membranes Prepared by Grafting a Metal-Organic Framework-Derived Catalyst. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20930-20942. [PMID: 35482824 DOI: 10.1021/acsami.2c01422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this study, an efficient oxygen-activated self-cleaning membrane was successfully prepared by grafting a metal-organic framework-devised catalyst (CuNi-C) onto a membrane surface, resulting in enhanced filtration performance and self-cleaning capability based on oxygen activation under mild conditions. The pore features, surface roughness, and surface hydrophilicity of the prepared membrane were analyzed and used to determine the causes of the enhanced filtration performance; the results showed that an increase in the porosity and surface roughness enhanced the permeate flux, and enhanced adsorption capacity and surface hydrophobicity improved the membrane removal efficiency. The self-cleaning mechanism was elucidated by identifying the reactive oxygen species (ROS) and detecting catalytic element valences. The results revealed that zero-valent Cu embedded into the membrane surface effectively activated natural dissolved oxygen (DO) to generate ROS that degraded organic pollutants. In this study, catalytic oxidation with DO as the oxidant was successively integrated with membrane separation to prevent membrane fouling, providing a novel direction for the development of multifunctional membranes.
Collapse
Affiliation(s)
- Botao Fan
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xue Huang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Chang Liu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xiancheng Ren
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jing Zhang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| |
Collapse
|
18
|
Ma J, Xing F, Nakaya Y, Shimizu K, Furukawa S. Nickel‐Based High‐Entropy Intermetallic as a Highly Active and Selective Catalyst for Acetylene Semihydrogenation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jiamin Ma
- Institute for Catalysis Hokkaido University N-21, W-10 Sapporo 001-0021 Japan
| | - Feilong Xing
- Institute for Catalysis Hokkaido University N-21, W-10 Sapporo 001-0021 Japan
| | - Yuki Nakaya
- Institute for Catalysis Hokkaido University N-21, W-10 Sapporo 001-0021 Japan
| | - Ken‐ichi Shimizu
- Institute for Catalysis Hokkaido University N-21, W-10 Sapporo 001-0021 Japan
| | - Shinya Furukawa
- Institute for Catalysis Hokkaido University N-21, W-10 Sapporo 001-0021 Japan
- Department of Research Promotion Japan Science and Technology Agency Chiyoda Tokyo 102-0076 Japan
| |
Collapse
|
19
|
Liu Q, Yang J, Zhang H, Sun H, Wu S, Ge B, Wang R, Yuan P. Tuning the properties of Ni-based catalyst via La incorporation for efficient hydrogenation of petroleum resin. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.03.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Takayama T, Komatsu T. Mechanochemical Acetylene Hydrogenation on Fragments of Ni-based Alloys Containing Oxophilic Metal Elements. CHEM LETT 2022. [DOI: 10.1246/cl.210600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Tomoaki Takayama
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-E1-10 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Takayuki Komatsu
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-E1-10 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| |
Collapse
|
21
|
Paul R, Shit SC, Singh A, Wong RJ, Dao DQ, Joseph B, Liu W, Bhattacharya S, Mondal J. Organogel-assisted porous organic polymer embedding Cu NPs for selectivity control in the semi hydrogenation of alkynes. NANOSCALE 2022; 14:1505-1519. [PMID: 35029265 DOI: 10.1039/d1nr07255b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Heteroatom-rich porous-organic-polymers (POPs) comprising highly cross-linked robust skeletons with high physical and thermal stability, high surface area, and tunable pore size distribution have garnered significant research interest owing to their versatile functionalities in a wide range of applications. Here, we report a newly developed organogel-assisted porous-organic-polymer (POP) supported Cu catalyst (Cu@TpRb-POP). The organogel was synthesized via a temperature induced gelation strategy, employing Schiff-base coupling between 2,4,6-triformylphloroglucinol aldehyde (Tp) and pararosaniline base (Rb). The gel is subsequently transformed to hierarchical porous organic structures without the use of any additive, thereby offering advantageous features including extremely low density, high surface area, a highly cross-linked framework, and a heteroatom-enriched backbone of the polymer. During the semi-hydrogenation of terminal and internal alkynes, the Cu@TpRb-POP-B catalyst with Cu embedded in the TpRb-POP structure consistently demonstrated improved selectivity towards alkenes compared to Cu@TpRb-POP-A, which contains Cu NPs exposed at the exterior surfaces of the POP support. Additionally, Cu@TpRb-POP-B showed higher stability and reusability than Cu@TpRb-POP-A. The superior performance of the Cu@TpRb-POP-B catalyst is attributed to the steric hindrance effect, which controls the product selectivity, as well as the synergistic interaction between the heteroatom-rich POP framework and the embedded Cu NPs. Both the effects are corroborated by experimental characterization of the catalysts and density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Ratul Paul
- Catalysis & Fine Chemicals Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Subhash Chandra Shit
- Catalysis & Fine Chemicals Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Arunima Singh
- Department of Physics, Indian Institute of Technology Delhi Hauz Khas, New Delhi 110 016, India.
| | - Roong Jien Wong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Avenue, Singapore 637459, Singapore.
| | - Duy Quang Dao
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam
- Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang, 550000, Vietnam
| | - Boby Joseph
- Elettra-Sincrotrone Trieste, S.S. 14, Km 163.5 in Area Science Park, Basovizza 34149, Italy
| | - Wen Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Avenue, Singapore 637459, Singapore.
| | - Saswata Bhattacharya
- Department of Physics, Indian Institute of Technology Delhi Hauz Khas, New Delhi 110 016, India.
| | - John Mondal
- Catalysis & Fine Chemicals Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
22
|
Wang X, Yu Z, Ye L, Zhang M, Xiong J, Zhang R, Li X, Ji N, Lu X. Layered Double Hydroxide‐Derived Bimetallic Ni−Cu Catalysts Prompted the Efficient Conversion of γ‐Valerolactone to 2‐Methyltetrahydrofuran. ChemCatChem 2022. [DOI: 10.1002/cctc.202101441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Xiaotong Wang
- School of Environmental Science and Engineering Tianjin Key Laboratory of Biomass/Wastes Utilization Tianjin University Tianjin 300350 P. R. China
| | - Zhihao Yu
- School of Environmental Science and Engineering Tianjin Key Laboratory of Biomass/Wastes Utilization Tianjin University Tianjin 300350 P. R. China
| | - Lei Ye
- School of Environmental Science and Engineering Tianjin Key Laboratory of Biomass/Wastes Utilization Tianjin University Tianjin 300350 P. R. China
| | - Ming Zhang
- School of Environmental Science and Engineering Tianjin Key Laboratory of Biomass/Wastes Utilization Tianjin University Tianjin 300350 P. R. China
| | - Jian Xiong
- School of Science Tibet University Lhasa Tibet 850000 P. R. China
| | - Rui Zhang
- School of Environmental and Municipal Engineering Tianjin Chengjian University Tianjin 300384 P. R. China
| | - Xiaoyun Li
- School of Agriculture Sun Yat-sen University Guangzhou Guangdong 510275 P. R. China
| | - Na Ji
- School of Environmental Science and Engineering Tianjin Key Laboratory of Biomass/Wastes Utilization Tianjin University Tianjin 300350 P. R. China
| | - Xuebin Lu
- School of Environmental Science and Engineering Tianjin Key Laboratory of Biomass/Wastes Utilization Tianjin University Tianjin 300350 P. R. China
- School of Science Tibet University Lhasa Tibet 850000 P. R. China
| |
Collapse
|
23
|
In-situ facile synthesis novel N-doped thin graphene layer encapsulated Pd@N/C catalyst for semi-hydrogenation of alkynes. J Catal 2022. [DOI: 10.1016/j.jcat.2021.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Bakuru VR, Fazl-Ur-Rahman K, Periyasamy G, Velaga B, Peela NR, DMello ME, Kanakikodi KS, Maradur SP, Maji TK, Kalidindi SB. Unraveling High Alkene Selectivity at Full Conversion in Alkyne Hydrogenation over Ni under Continuous Flow Conditions. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00875k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Selective hydrogenation of alkynes into alkenes in continuous flow conditions over non-precious metal catalysts is an attractive prospect for the chemical industry, especially for the petrochemical and polymer industry. Achieving...
Collapse
|
25
|
Luo J, Jia L, Yan D, Li J. Performance and Improvement of Ni-based Catalysts for Ethane Dehydrogenation. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21100451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Wang C, Jiang C, Bai J, Yang G, Wu R, Zhao Y, Xiao T. Effect of Pore Structures on 1,4-Butynediol Hydrogenation over Mesoporous Ni/Al 2O 3-SiO 2 Catalysts. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Changzhen Wang
- Engineering Research Center of Ministry of Education for Fine Chemicals, Shanxi University, Taiyuan 030006, China
| | - Chengyan Jiang
- Engineering Research Center of Ministry of Education for Fine Chemicals, Shanxi University, Taiyuan 030006, China
| | - Juan Bai
- Engineering Research Center of Ministry of Education for Fine Chemicals, Shanxi University, Taiyuan 030006, China
| | - Gaoju Yang
- Engineering Research Center of Ministry of Education for Fine Chemicals, Shanxi University, Taiyuan 030006, China
| | - Ruifang Wu
- Engineering Research Center of Ministry of Education for Fine Chemicals, Shanxi University, Taiyuan 030006, China
| | - Yongxiang Zhao
- Engineering Research Center of Ministry of Education for Fine Chemicals, Shanxi University, Taiyuan 030006, China
| | - Tiancun Xiao
- KACST-Oxford Centre of Excellence in Petrochemicals, Inorganic Chemistry Laboratory, University of Oxford, Oxford OX1 3QR, U.K
| |
Collapse
|
27
|
Selective tandem hydrogenation and rearrangement of furfural to cyclopentanone over CuNi bimetallic catalyst in water. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(21)63842-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
28
|
Gu J, Jian M, Huang L, Sun Z, Li A, Pan Y, Yang J, Wen W, Zhou W, Lin Y, Wang HJ, Liu X, Wang L, Shi X, Huang X, Cao L, Chen S, Zheng X, Pan H, Zhu J, Wei S, Li WX, Lu J. Synergizing metal-support interactions and spatial confinement boosts dynamics of atomic nickel for hydrogenations. NATURE NANOTECHNOLOGY 2021; 16:1141-1149. [PMID: 34312515 DOI: 10.1038/s41565-021-00951-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 06/29/2021] [Indexed: 05/06/2023]
Abstract
Atomically dispersed metal catalysts maximize atom efficiency and display unique catalytic properties compared with regular metal nanoparticles. However, achieving high reactivity while preserving high stability at appreciable loadings remains challenging. Here we solve the challenge by synergizing metal-support interactions and spatial confinement, which enables the fabrication of highly loaded atomic nickel (3.1 wt%) along with dense atomic copper grippers (8.1 wt%) on a graphitic carbon nitride support. For the semi-hydrogenation of acetylene in excess ethylene, the fabricated catalyst shows extraordinary catalytic performance in terms of activity, selectivity and stability-far superior to supported atomic nickel alone in the absence of a synergizing effect. Comprehensive characterization and theoretical calculations reveal that the active nickel site confined in two stable hydroxylated copper grippers dynamically changes by breaking the interfacial nickel-support bonds on reactant adsorption and making these bonds on product desorption. Such a dynamic effect confers high catalytic performance, providing an avenue to rationally design efficient, stable and highly loaded, yet atomically dispersed, catalysts.
Collapse
Affiliation(s)
- Jian Gu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, China
| | - Minzhen Jian
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, China
| | - Li Huang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
| | - Zhihu Sun
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
| | - Aowen Li
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Pan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
| | - Jiuzhong Yang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
| | - Wu Wen
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
| | - Wu Zhou
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing, China
| | - Yue Lin
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, China
| | - Hui-Juan Wang
- Experimental Center of Engineering and Materials Science, University of Science and Technology of China, Hefei, China
| | - Xinyu Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, China
| | - Leilei Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, China
| | - Xianxian Shi
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, China
| | - Xiaohui Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, China
| | - Lina Cao
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, China
| | - Si Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
| | - Haibin Pan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
| | - Shiqiang Wei
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China.
| | - Wei-Xue Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, China.
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Junling Lu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, China.
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| |
Collapse
|
29
|
Ling JL, Chen K, Wu CD. Interwrapping Distinct Metal-Organic Frameworks in Dual-MOFs for the Creation of Unique Composite Catalysts. RESEARCH 2021; 2021:9835935. [PMID: 34409301 PMCID: PMC8286356 DOI: 10.34133/2021/9835935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/09/2021] [Indexed: 11/06/2022]
Abstract
Incorporating metal nanoparticles (MNPs) inside metal-organic frameworks (MOFs) demonstrates superior catalytic properties in numerous reactions; however, the size and distribution of MNPs could not be well controlled, resulting in low product selectivity in catalysis by undergoing different catalytic reaction pathways. We report herein a facile strategy for integrating lattice-mismatched MOFs together to fabricate homogeneously distributed “dual-MOFs,” which are the ideal precursors for the preparation of MNPs@MOFs with unique catalytic properties. As a proof of concept, we successfully synthesize a dual-MOF HKUST-1/ZIF-8 for in situ creation of redox-active Cu NPs inside hierarchical porous ZIF-8 under controlled pyrolytic conditions. Combining the advantages of size-tunable Cu NPs in the molecular sieving matrix of ZIF-8, Cu@ZIF-8 demonstrates high activity and selectivity for transformation of alkynes into alkenes without overhydrogenation, which surpasses most of the catalysts in the literature. Therefore, this work paves a new pathway for developing highly efficient and selective heterogeneous catalysts to produce highly value-added chemicals.
Collapse
Affiliation(s)
- Jia-Long Ling
- State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Kai Chen
- State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Chuan-De Wu
- State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
30
|
Fu F, Liu Y, Li Y, Fu B, Zheng L, Feng J, Li D. Interfacial Bifunctional Effect Promoted Non-Noble Cu/Fe yMgO x Catalysts for Selective Hydrogenation of Acetylene. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02162] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Fengzhi Fu
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yanan Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yinwen Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, and BIC-ESAT, Peking University, Beijing 100871, China
| | - Baoai Fu
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lirong Zheng
- Beijing Research Institute of Chemical Industry, Sinopec Group, Beijing 100049, China
| | - Junting Feng
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dianqing Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
31
|
Jian M, Liu JX, Li WX. Hydroxyl improving the activity, selectivity and stability of supported Ni single atoms for selective semi-hydrogenation. Chem Sci 2021; 12:10290-10298. [PMID: 34377416 PMCID: PMC8336451 DOI: 10.1039/d1sc03087f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/19/2021] [Indexed: 12/28/2022] Open
Abstract
Atomically dispersed metal catalysts with high atomic utilization and selectivity have been widely studied for acetylene semi-hydrogenation in excess ethylene among others. Further improvements of activity and selectivity, in addition to stability and loading, remain elusive due to competitive adsorption and desorption between reactants and products, hydrogen activation, partial hydrogenation etc. on limited site available. Herein, comprehensive density functional theory calculations have been used to explore the new strategy by introducing an appropriate ligand to stabilize the active single atom, improving the activity and selectivity on oxide supports. We find that the hydroxyl group can stabilize Ni single atoms significantly by forming Ni1(OH)2 complexes on anatase TiO2(101), whose unique electronic and geometric properties enable high performance in acetylene semi-hydrogenation. Specifically, Ni1(OH)2/TiO2(101) shows favorable acetylene adsorption and promotes the heterolytic dissociation of H2 achieving high catalytic activity, and it simultaneously weakens the ethylene bonding to facilitate subsequent desorption showing high ethylene selectivity. Hydroxyl stabilization of single metal atoms on oxide supports and promotion of the catalytic activity are sensitive to transition metal and the oxide supports. Compared to Co, Rh, Ir, Pd, Pt, Cu, Ag and Au, and anatase ZrO2, IrO2 and NbO2 surfaces, the optimum interactions between Ni, O and Ti and resulted high activity, selectivity and stability make Ni1(OH)2/TiO2(101) a promising catalyst in acetylene hydrogenation. Our work provides valuable guidelines for utilization of ligands in the rational design of stable and efficient atomically dispersed catalysts.
Collapse
Affiliation(s)
- Minzhen Jian
- Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China Hefei Anhui 230026 China
| | - Jin-Xun Liu
- Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China Hefei Anhui 230026 China
| | - Wei-Xue Li
- Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China Hefei Anhui 230026 China
- Hefei National Laboratory for Physical Sciences at the Microscale Hefei Anhui 230026 China
| |
Collapse
|
32
|
Wang Y, Liu B, Lan X, Wang T. Subsurface Carbon as a Selectivity Promotor to Enhance Catalytic Performance in Acetylene Semihydrogenation. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02099] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yu Wang
- Beijing Key Lab of Green Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Boyang Liu
- Beijing Key Lab of Green Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaocheng Lan
- Beijing Key Lab of Green Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Tiefeng Wang
- Beijing Key Lab of Green Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
33
|
Room-temperature electrochemical acetylene reduction to ethylene with high conversion and selectivity. Nat Catal 2021. [DOI: 10.1038/s41929-021-00640-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
34
|
Zheng W, Ma L, Wang B, Wang J, Zhang R. C2H2 selective hydrogenation over the CuxMy or PdxNy intermetallic compounds: The influences of partner metal type and ratio on the catalytic performance. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
35
|
Shen C, Ji Y, Wang P, Bai S, Wang M, Li Y, Huang X, Shao Q. Interface Confinement in Metal Nanosheet for High-Efficiency Semi-Hydrogenation of Alkynes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00200] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Chenqi Shen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu 215123, China
| | - Yujin Ji
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Jiangsu 215123, China
| | - Pengtang Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu 215123, China
| | - Shuxing Bai
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China
| | - Man Wang
- Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen 518055, China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Jiangsu 215123, China
| | - Xiaoqing Huang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu 215123, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu 215123, China
| |
Collapse
|
36
|
Sun H, Yang J, Zhang H, Yang Q, Wu S, Wang Y, Zhu H, Yue Y, Wang T, Yuan P. Hierarchical Flower-Like NiCu/SiO 2 Bimetallic Catalysts with Enhanced Catalytic Activity and Stability for Petroleum Resin Hydrogenation. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c06131] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hongming Sun
- National Engineering Research Center of Chemical Fertilizer Catalyst, College of Chemical Engineering, Fuzhou University, Fuzhou 350002, China
| | - Jiangtao Yang
- National Engineering Research Center of Chemical Fertilizer Catalyst, College of Chemical Engineering, Fuzhou University, Fuzhou 350002, China
| | - Hongwei Zhang
- National Engineering Research Center of Chemical Fertilizer Catalyst, College of Chemical Engineering, Fuzhou University, Fuzhou 350002, China
| | - Qin Yang
- National Engineering Research Center of Chemical Fertilizer Catalyst, College of Chemical Engineering, Fuzhou University, Fuzhou 350002, China
| | - Shuzheng Wu
- National Engineering Research Center of Chemical Fertilizer Catalyst, College of Chemical Engineering, Fuzhou University, Fuzhou 350002, China
| | - Yaxi Wang
- National Engineering Research Center of Chemical Fertilizer Catalyst, College of Chemical Engineering, Fuzhou University, Fuzhou 350002, China
| | - Haibo Zhu
- National Engineering Research Center of Chemical Fertilizer Catalyst, College of Chemical Engineering, Fuzhou University, Fuzhou 350002, China
| | - Yuanyuan Yue
- National Engineering Research Center of Chemical Fertilizer Catalyst, College of Chemical Engineering, Fuzhou University, Fuzhou 350002, China
| | - Tinghai Wang
- National Engineering Research Center of Chemical Fertilizer Catalyst, College of Chemical Engineering, Fuzhou University, Fuzhou 350002, China
| | - Pei Yuan
- National Engineering Research Center of Chemical Fertilizer Catalyst, College of Chemical Engineering, Fuzhou University, Fuzhou 350002, China
| |
Collapse
|
37
|
Lu C, Zeng A, Wang Y, Wang A. High‐Performance Catalysts Derived from Cupric Subcarbonate for Selective Hydrogenation of Acetylene in an Ethylene Stream. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202001073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chenyang Lu
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology Dalian 116024 P. R. China
| | - Aonan Zeng
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology Dalian 116024 P. R. China
| | - Yao Wang
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology Dalian 116024 P. R. China
- Liaoning Key Laboratory of Petrochemical Technology and Equipment Dalian University of Technology Dalian 116024 P. R. China
| | - Anjie Wang
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology Dalian 116024 P. R. China
- Liaoning Key Laboratory of Petrochemical Technology and Equipment Dalian University of Technology Dalian 116024 P. R. China
| |
Collapse
|
38
|
Lu C, Zeng A, Wang Y, Wang A. Copper-Based Catalysts for Selective Hydrogenation of Acetylene Derived from Cu(OH) 2. ACS OMEGA 2021; 6:3363-3371. [PMID: 33553954 PMCID: PMC7860242 DOI: 10.1021/acsomega.0c05759] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 12/24/2020] [Indexed: 05/28/2023]
Abstract
Replacing precious metals with cheap metals in catalysts is a topic of interest in both industry and academia but challenging. Here, a selective hydrogenation catalyst was prepared by thermal treatment of Cu(OH)2 nanowires with acetylene-containing gas at 120 °C followed by hydrogen reduction at 150 °C. The characterization by means of transmission electron microscopy observation, X-ray diffraction, and X-ray photoelectron spectroscopy revealed that two crystallites were present in the resultant catalyst. One of the crystal phases was metal Cu, whereas the other crystal phase was ascribed to an interstitial copper carbide (Cu x C) phase. The reduction of freshly prepared copper (II) acetylide (CuC2) at 150 °C also afforded the formation of Cu and Cu x C crystallites, indicating that CuC2 was the precursor or an intermediate in the formation of Cu x C. The prepared catalysts consisting of Cu and Cu x C exhibited a considerably high hydrogenation activity at low temperatures in the selective hydrogenation of acetylene in the ethylene stream. In the presence of a large excess of ethylene, acetylene was completely converted at 110 °C and atmospheric pressure with an ethane selectivity of <15%, and the conversion and selectivity were constant in a 260 h run.
Collapse
Affiliation(s)
- Chenyang Lu
- State
Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Aonan Zeng
- State
Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yao Wang
- State
Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- Liaoning
Key Laboratory of Petrochemical Technology and Equipment, Dalian University of Technology, Dalian 116024, P. R. China
| | - Anjie Wang
- State
Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- Liaoning
Key Laboratory of Petrochemical Technology and Equipment, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
39
|
Yang T, Feng Y, Ma R, Li Q, Yan H, Liu Y, He Y, Miller JT, Li D. Improvement of Selectivity in Acetylene Hydrogenation with Comparable Activity over Ordered PdCu Catalysts Induced by Post-treatment. ACS APPLIED MATERIALS & INTERFACES 2021; 13:706-716. [PMID: 33356137 DOI: 10.1021/acsami.0c19329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this work, a simple post-treatment has been carried out on a solid palladium-copper alloy to enhance the ethylene selectivity without any loss of activity. In all catalysts, PdCu/C catalysts post-treated at 375 °C exhibit improved ethylene selectivity (86%) compared to the solid PdCu/C catalysts (61%) at 100% acetylene conversion with comparable catalytic activity. During the post-treatment, the average size of PdCu nanoparticles is maintained at 6.6-6.8 nm, and no obvious segregation is observed. X-ray photoelectron spectroscopy and in situ extended X-ray absorption fine structure (EXAFS) results display that Pd is in a metallic state for all PdCu catalysts before and after post-treatment. Moreover, the EXAFS fitting results show that the Pd-Pd bond is gradually replaced by the Pd-Cu bond. The good separation of Pd atoms by Cu is also proven by XRD characterization, which shows that a body-centered cubic PdCu structure with uniform distribution of Pd and Cu in a unit cell forms under 375 °C post-treatment. The rearrangement of Pd and Cu atoms has a limited impact on the surface Pd dispersion, avoiding the activity loss due to the decrease in Pd sites. The improved selectivity could be attributed to the isolation of Pd and the accompanied d-band center downshifting, which favors the desorption of π-bonded ethylene species.
Collapse
Affiliation(s)
- Tianxing Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuliang Feng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Rui Ma
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qiang Li
- Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Hong Yan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yanan Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yufei He
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jeffrey T Miller
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Dianqing Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
40
|
Zhao J, He L, Yu J, Shi Y, Miao R, Guan Q, Ning P. Preparation of MCM-41 supported nickel NPs for the high-efficiency semi-hydrogenation of acetylene. NEW J CHEM 2021. [DOI: 10.1039/d0nj03632c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High-efficiency nonnoble-metal catalysts for acetylene hydrogenation.
Collapse
Affiliation(s)
- Jieyu Zhao
- Faculty of Environmental Science and Engineering
- Kunming University of Science and Technology
- Kunming
- China
| | - Liang He
- BiomassChem Group
- Faculty of Chemical Engineering
- Kunming University of Science and Technology
- Kunming
- China
| | - Jiangdong Yu
- Development Research Center of Yunnan Provincial People's Government
- Kunming
- P. R. China
| | - Yuzhen Shi
- Faculty of Environmental Science and Engineering
- Kunming University of Science and Technology
- Kunming
- China
| | - Rongrong Miao
- Faculty of Environmental Science and Engineering
- Kunming University of Science and Technology
- Kunming
- China
| | - Qingqing Guan
- Faculty of Civil Engineering and Mechanics
- Kunming University of Science and Technology
- Kunming
- China
| | - Ping Ning
- Faculty of Environmental Science and Engineering
- Kunming University of Science and Technology
- Kunming
- China
| |
Collapse
|
41
|
Liu Y, Fu F, McCue A, Jones W, Rao D, Feng J, He Y, Li D. Adsorbate-Induced Structural Evolution of Pd Catalyst for Selective Hydrogenation of Acetylene. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03897] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yanan Liu
- State Key Laboratory of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fengzhi Fu
- State Key Laboratory of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Alan McCue
- Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, U.K
| | - Wilm Jones
- Department of Chemistry, University College London, 20 Gower Street, London WC1E 6BT, U.K
| | - Deming Rao
- Institute of Science and Technology Strategy, Jiangxi Academy of Science, Jiangxi 330096, China
| | - Junting Feng
- State Key Laboratory of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yufei He
- State Key Laboratory of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dianqing Li
- State Key Laboratory of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
42
|
Lu C, Wang Y, Zhang R, Wang B, Wang A. Preparation of an Unsupported Copper-Based Catalyst for Selective Hydrogenation of Acetylene from Cu 2O Nanocubes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:46027-46036. [PMID: 32945161 DOI: 10.1021/acsami.0c12522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Designing cheap, earth-abundant, and nontoxic metal catalysts for acetylene hydrogenation is of pivotal importance, but challenging. Here, a nonprecious metal catalyst for selective hydrogenation of acetylene in excess ethylene was prepared from Cu2O nanocubes. The preparation includes two steps: (1) thermal treatment in acetylene-containing gas at 160 °C and (2) hydrogen reduction at 180 °C. The resultant catalyst showed outstanding performance at low temperature (80-100 °C) and 0.1-0.5 MPa pressure, completely converting acetylene with a low selectivity to undesired ethane (<20%). The characterization results of high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy corroborated that the formation of an interstitial copper carbide (CuxC) might give rise to significantly enhanced hydrogenation activity. Preliminary density functional theory calculation demonstrated that the lattice spacing of Cu3C was nearly identical to that of the new CuxC crystallite measured in HRTEM and determined by XRD. The calculated dissociation energy of hydrogen on Cu3C(0001) was considerably lower than that on Cu(111), suggesting superior hydrogenation activity of Cu3C(0001). It is experimentally verified that copper(I) acetylide (Cu2C2) might be the precursor of CuxC. Cu2C2 underwent partial hydrogenation to fabricate CuxC crystallites and the thermal decomposition to Cu and carbon materials in parallel.
Collapse
Affiliation(s)
- Chenyang Lu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yao Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- Liaoning Key Laboratory of Petrochemical Technology and Equipment, Dalian University of Technology, Dalian 116024, P. R. China
| | - Riguang Zhang
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024 Shanxi, P. R. China
| | - Baojun Wang
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024 Shanxi, P. R. China
| | - Anjie Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- Liaoning Key Laboratory of Petrochemical Technology and Equipment, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
43
|
Hui T, Miao C, Feng J, Liu Y, Wang Q, Wang Y, Li D. Atmosphere induced amorphous and permeable carbon layer encapsulating PtGa catalyst for selective cinnamaldehyde hydrogenation. J Catal 2020. [DOI: 10.1016/j.jcat.2020.05.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
44
|
Effect of IB-metal on Ni/SiO2 catalyst for selective hydrogenation of acetylene. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(20)63568-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
45
|
Cao Y, Zhang H, Ji S, Sui Z, Jiang Z, Wang D, Zaera F, Zhou X, Duan X, Li Y. Adsorption Site Regulation to Guide Atomic Design of Ni–Ga Catalysts for Acetylene Semi‐Hydrogenation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004966] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yueqiang Cao
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Hao Zhang
- Shanghai Institute of Applied Physics Chinese Academy of Science Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Shufang Ji
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Zhijun Sui
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Zheng Jiang
- Shanghai Institute of Applied Physics Chinese Academy of Science Shanghai 201800 China
- Shanghai Synchrotron Radiation Facility, Zhangjiang Lab Shanghai Advanced Research Institute Chinese Academy of Science Shanghai 201210 China
| | - Dingsheng Wang
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Francisco Zaera
- Department of Chemistry and UCR Center for Catalysis University of California Riverside CA 92521 USA
| | - Xinggui Zhou
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Xuezhi Duan
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Yadong Li
- Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
46
|
Cao Y, Zhang H, Ji S, Sui Z, Jiang Z, Wang D, Zaera F, Zhou X, Duan X, Li Y. Adsorption Site Regulation to Guide Atomic Design of Ni–Ga Catalysts for Acetylene Semi‐Hydrogenation. Angew Chem Int Ed Engl 2020; 59:11647-11652. [DOI: 10.1002/anie.202004966] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Yueqiang Cao
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Hao Zhang
- Shanghai Institute of Applied Physics Chinese Academy of Science Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Shufang Ji
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Zhijun Sui
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Zheng Jiang
- Shanghai Institute of Applied Physics Chinese Academy of Science Shanghai 201800 China
- Shanghai Synchrotron Radiation Facility, Zhangjiang Lab Shanghai Advanced Research Institute Chinese Academy of Science Shanghai 201210 China
| | - Dingsheng Wang
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Francisco Zaera
- Department of Chemistry and UCR Center for Catalysis University of California Riverside CA 92521 USA
| | - Xinggui Zhou
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Xuezhi Duan
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Yadong Li
- Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
47
|
Li S, Wang D, Wu X, Chen Y. Recent advance on VOCs oxidation over layered double hydroxides derived mixed metal oxides. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(19)63446-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
48
|
Pure Acetylene Semihydrogenation over Ni-Cu Bimetallic Catalysts: Effect of the Cu/Ni Ratio on Catalytic Performance. NANOMATERIALS 2020; 10:nano10030509. [PMID: 32168927 PMCID: PMC7153591 DOI: 10.3390/nano10030509] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 11/28/2022]
Abstract
Ethylene is an important chemical raw material and with the increasing consumption of petroleum resources, the production of ethylene through the calcium carbide acetylene route has important research significance. In this work, a series of bimetallic catalysts with different Cu/Ni molar ratios are prepared by co-impregnation method for the hydrogenation of calcium carbide acetylene to ethylene. The introduction of an appropriate amount of Cu effectively inhibits not only the formation of ethane and green oil, thus increasing the selectivity of ethylene, but also the formation of carbon deposits, which improves the stability of the catalyst. The ethylene selectivity of the Ni–Cu bimetallic catalyst increases from 45% to 63% compared with the Ni monometallic counterpart and the acetylene conversion still can reach 100% at the optimal conditions of 250 °C, 8000 mL·g−1·h−1 and V(H2)/V(C2H2) = 3. X-ray diffraction and transmission electron microscopy confirmed that the metal particles were highly dispersed on the support, High-resolution transmission electron microscopy and H2-Temperature programmed reduction proved that there was an interaction between Ni and Cu, combined with X-ray photoelectron spectroscopy and density functional theory calculations results, Cu transferred electrons to Ni changed the Ni electron cloud density in NiCux catalysts, thus reducing the adsorption of acetylene and ethylene, which is favorable to ethylene selectivity.
Collapse
|
49
|
Tang F, Wang L, Dessie Walle M, Mustapha A, Liu YN. An alloy chemistry strategy to tailoring the d-band center of Ni by Cu for efficient and selective catalytic hydrogenation of furfural. J Catal 2020. [DOI: 10.1016/j.jcat.2020.01.019] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
50
|
Bao Z, Yang L, Cheng Z, Zhou Z. Selective Hydrogenation of the C 8 Aromatic Fraction of Pyrolysis Gasoline over NiZn 3/α-Al 2O 3: Experimental and Modeling Studies. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06476] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhichang Bao
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lei Yang
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhenmin Cheng
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhiming Zhou
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|