1
|
Alghamdi HS, Ali A, Ajeebi AM, Jedidi A, Sanhoob M, Aktary M, Shabi AH, Usman M, Alghamdi W, Alzahrani S, Abdul Aziz M, Shaikh MN. Catalysts for Liquid Organic Hydrogen Carriers (LOHCs): Efficient Storage and Transport for Renewable Energy. CHEM REC 2024:e202400082. [PMID: 39385654 DOI: 10.1002/tcr.202400082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/31/2024] [Indexed: 10/12/2024]
Abstract
Restructuring the current energy industry towards sustainability requires transitioning from carbon based to renewable energy sources, reducing CO2 emissions. Hydrogen, is considered a significant clean energy carrier. However, it faces challenges in transportation and storage due to its high reactivity, flammability, and low density under ambient conditions. Liquid organic hydrogen carriers offer a solution for storing hydrogen because they allow for the economical and practical storage of organic compounds in regular vessels through hydrogenation and dehydrogenation. This review evaluates several hydrogen technologies aimed at addressing the challenges associated with hydrogen transportation and its economic viablity. The discussion delves into exploring the catalysts and their activity in the context of catalysts' development. This review highlights the pivotal role of various catalyst materials in enhancing the hydrogenation and dehydrogenation activities of multiple LOHC systems, including benzene/cyclohexane, toluene/methylcyclohexane (MCH), N-ethylcarbazole (NEC)/dodecahydro-N-ethylcarbazole (H12-NEC), and dibenzyltoluene (DBT)/perhydrodibenzyltoluene (H18-DBT). By exploring the catalytic properties of noble metals, transition metals, and multimetallic catalysts, the review provides valuable insights into their design and optimization. Also, the discussion revolved around the implementation of a hydrogen economy on a global scale, with a particular focus on the plans pertaining to Saudi Arabia and the GCC (Gulf Cooperation Council) countries. The review lays out the challenges this technology will face, including the need to increase its H2 capacity, reduce energy consumption by providing solutions, and guarantee the thermal stability of the materials.
Collapse
Affiliation(s)
- Huda S Alghamdi
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, -31261, Saudi Arabia
| | - Ahsan Ali
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, -31261, Saudi Arabia
| | - Afnan M Ajeebi
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, -31261, Saudi Arabia
| | - Abdesslem Jedidi
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mohammed Sanhoob
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, -31261, Saudi Arabia
| | - Mahbuba Aktary
- Department of Materials Science and Engineering, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - A H Shabi
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, -31261, Saudi Arabia
| | - Mohammad Usman
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, -31261, Saudi Arabia
| | - Wasan Alghamdi
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, -31261, Saudi Arabia
| | - Shahad Alzahrani
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, -31261, Saudi Arabia
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, -31261, Saudi Arabia
| | - M Nasiruzzaman Shaikh
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, -31261, Saudi Arabia
- Department of Materials Science and Engineering, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
2
|
Streibel V, Aljama HA, Yang AC, Choksi TS, Sánchez-Carrera RS, Schäfer A, Li Y, Cargnello M, Abild-Pedersen F. Microkinetic Modeling of Propene Combustion on a Stepped, Metallic Palladium Surface and the Importance of Oxygen Coverage. ACS Catal 2022. [DOI: 10.1021/acscatal.1c03699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Verena Streibel
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, SUNCAT Center for Interface Science and Catalysis, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Hassan A. Aljama
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, SUNCAT Center for Interface Science and Catalysis, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - An-Chih Yang
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States
| | - Tej S. Choksi
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, SUNCAT Center for Interface Science and Catalysis, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | | | - Ansgar Schäfer
- BASF SE, Quantum Chemistry, Carl-Bosch-Straße 38, 67056 Ludwigshafen, Germany
| | - Yuejin Li
- BASF Corporation, Environmental Catalysis R&D and Application, 25 Middlesex-Essex Turnpike, Iselin, New Jersey 08830, United States
| | - Matteo Cargnello
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States
| | - Frank Abild-Pedersen
- SLAC National Accelerator Laboratory, SUNCAT Center for Interface Science and Catalysis, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| |
Collapse
|
3
|
Al-Qurashi OS, Jedidi A, Wazzan N. Single- and co-sensitization of triphenylamine-based and asymmetrical squaraine dyes on the anatase (001) surface for DSSC applications: Periodic DFT calculations. J Mol Graph Model 2021; 104:107833. [PMID: 33444981 DOI: 10.1016/j.jmgm.2021.107833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/26/2020] [Accepted: 12/30/2020] [Indexed: 01/06/2023]
Abstract
Dye aggregation causes poor performance of dye-sensitized solar cell (DSSC) applications through faster charge recombination of the photosensitizer with electrolyte. Triphenylamine (TBA)-based dyes feature a higher molar absorption coefficient and broadened wavelength but cannot absorb sunlight in the near-infrared (NIR) region. In contrast, the squaraine (SQ) photosensitizer, which is also called an NIR photosensitizer, has a maximum wavelength in the NIR region with high intensity. However, SQ dye suffers from dye aggregation due to its planar structure. The use of a co-sensitizer is one well-tested way to increase the power conversion efficiency (η) of solar cells by reducing dye aggregation and charge recombination. Using density functional theory (DFT) and time-dependent DFT (TDDFT), this work explains from a theoretical perspective the higher η values of the TZC1 and TZC2 dyes compared to that of asymmetric the SQ sensitizer (YR6) as free dyes. The electronic properties, reorganization energies, absorption and emission spectra, ICT parameters, and photovoltage parameters of the TZC1, TZC2, and YR6 dyes were computed using the M06/6-31G(d,p) level of theory in the gas phase and CH2Cl2 solvent (CPCM method). Additionally, the mono- and co-adsorption processes of TZC-based sensitizers with YR6 on the anatase (001) surface were investigated using periodic DFT calculations with the PBE + U/PAW method and the dispersion correction of the Grimme method D3. The results reveal that the use of the co-sensitized led to significant stabilization of the formed complexes by at least 1.21 eV, the panchromatic effect on the absorption spectra, and an increase in the light-harvesting ability in the NIR region, which improves the performance of DSSCs.
Collapse
Affiliation(s)
- Ohoud S Al-Qurashi
- King Abdulaziz University, Chemistry Department, Faculty of Science, P.O Box 42805 Jeddah, 21589, Saudi Arabia; University of Jeddah, Chemistry Department, Faculty of Science, Jeddah, Saudi Arabia
| | - Abdesslem Jedidi
- King Abdulaziz University, Chemistry Department, Faculty of Science, P.O Box 42805 Jeddah, 21589, Saudi Arabia
| | - Nuha Wazzan
- King Abdulaziz University, Chemistry Department, Faculty of Science, P.O Box 42805 Jeddah, 21589, Saudi Arabia.
| |
Collapse
|
4
|
Liu Y, Twombly A, Dang Y, Mirich A, Suib SL, Deshlahra P. Roles of Enhancement of C−H Activation and Diminution of C−O Formation Within M1‐Phase Pores in Propane Selective Oxidation. ChemCatChem 2020. [DOI: 10.1002/cctc.202001642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yilang Liu
- Department of Chemical and Biological Engineering Tufts University Medford MA 02155 USA
| | - Adam Twombly
- Department of Chemical and Biological Engineering Tufts University Medford MA 02155 USA
| | - Yanliu Dang
- Institute of Materials Science University of Connecticut Storrs CT 06269 USA
| | - Anne Mirich
- Institute of Materials Science University of Connecticut Storrs CT 06269 USA
| | - Steven L. Suib
- Institute of Materials Science University of Connecticut Storrs CT 06269 USA
- Department of Chemistry University of Connecticut Storrs CT 06269 USA
| | - Prashant Deshlahra
- Department of Chemical and Biological Engineering Tufts University Medford MA 02155 USA
| |
Collapse
|