1
|
Wei LQ, Li CL, Wen CJ, Lai HF. Dual-linker Ir-Zr-MOF shows improved porosity to enhance aqueous sulfide photooxidation. Dalton Trans 2024. [PMID: 39676712 DOI: 10.1039/d4dt02649g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The hetero photooxidation of sulfide under aqueous conditions is of great importance in the green synthesis of sulfoxide. This process requires a type of solid photocatalyst with the properties of high porosity and water stability, as well as photosensitivity. Herein, a stable Ir-Zr-MOF material (compound 1) with high porosity is assembled from two linear linkers of a 2-phenylquinoline-4-carboxylic acid-Ir(III) complex (Irphen) and 4,4'-stilbenedicarboxylic acid (H2SDC), and a Zr6 cluster. 1 is isostructural to JLU-Liu34 with a composition of [Zr6O4.78(OH)3.22(SDC)3.82(Irphen)0.78TFA2.8]·2.8MeOH and permanent porosity with a BET surface area of 1507 m2 g-1. 1 exhibits improved activity for the photocatalytic aerobic oxidation of sulfide to sulfoxide via blue light irradiation under aqueous conditions. Mechanism studies demonstrate that a superoxide radical is the reactive oxygen species in the sulfide photooxidation. 1 can be readily recycled and reused at least 5 times without loss of catalytic activity. This work not only provides a good strategy for the assembly of an Ir(III) complex into MOFs but also an efficient method for the green synthesis of sulfoxide.
Collapse
Affiliation(s)
- Lian-Qiang Wei
- College of Chemistry and Bio-Engineering, Hechi University, Hechi, P. R. China.
| | - Cheng-Li Li
- College of Chemistry and Bio-Engineering, Hechi University, Hechi, P. R. China.
| | - Chun-Jian Wen
- College of Chemistry and Bio-Engineering, Hechi University, Hechi, P. R. China.
| | - Hong-Fang Lai
- College of Chemistry and Bio-Engineering, Hechi University, Hechi, P. R. China.
| |
Collapse
|
2
|
Xue R, Liu YS, Wang MY, Guo H, Yang W, Guo JX, Yang GY. Rational Conversion of Imine Linkages to Amide Linkages in Covalent Organic Frameworks for Photocatalytic Oxidation with Enhanced Photostability. CHEMSUSCHEM 2024; 17:e202400732. [PMID: 38661456 DOI: 10.1002/cssc.202400732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
Covalent organic frameworks (COFs) and their applications in photocatalysis have been extensively studied, but the instability of imine-linked COFs is an important factor limiting their performance. In this work, two imine-linked COFs were successfully converted to amide-linked COFs through post synthetic modification (PSM). The oxidized COFs presented lower binding energy to O2, exhibited higher photocatalytic activity for oxidation of thioethers and coupling of benzylamines with excellent stability. The present work can serve as a reliable reference for the development of novel highly active and stable COF-based photocatalysts.
Collapse
Affiliation(s)
- Rui Xue
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, China
| | - Yin-Sheng Liu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R China
| | - Ming-Yue Wang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R China
| | - Hao Guo
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R China
| | - Wu Yang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R China
| | - Ji-Xi Guo
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, China
| | - Guo-Yu Yang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/ Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
3
|
Huang XK, Zhou HY, Liu GF, Ye BH. Template Synthesis of Cyclometalated Macrocycle Iridium(III) Complexes Based on Photoinduced C-N Cross-Coupling Reactions In Situ. ACS OMEGA 2024; 9:24654-24664. [PMID: 38882114 PMCID: PMC11171095 DOI: 10.1021/acsomega.4c01111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024]
Abstract
The synthesis of metal macrocycle complexes holds paramount importance in coordination and supramolecular chemistry. Toward this end, we report a new, mild, and efficient protocol for the synthesis of cyclometalated macrocycle Ir(III) complexes: [Ir(L1)](PF6) (1), [Ir(L2)](PF6) (2), and [Ir(L3)](PF6) (3), where L1 presents 10,17-dioxa-3,6-diaza-2(2,8),7(8,2)-diquinolina-1,8(1,4)-dibenzenacyclooctadecaphane, L2 is 10,13,16,19,22,25-hexaoxa-3,6-diaza-2(2,8),7(8,2)-diquinolina-1,8(1,4)-dibenzenacyclohexacosaphane, and L3 is 4-methyl-10,13,16,19,22,25-hexaoxa-3,6-diaza-2(2,8),7(8,2)-diquinolina-1,8(1,4)-dibenzenacyclohexacosaphane. This synthesis involves the preassembly of two symmetric 2-phenylquinoline arms into C-shape complexes, followed by cyclization with diamine via in situ interligand C-N cross-coupling, employing a metal ion as a template. Moreover, the synthetic yield of these cyclometalated Ir(III) complexes, tethered by an 18-crown-6 ether-like chain, is significantly enhanced in the presence of K+ ion as a template. The resultant cyclometalated macrocycle Ir(III) complexes exhibit high stability, efficient singlet oxygen generation, and superior catalytic activity for the aerobic selective oxidation of sulfides into sulfoxides under visible light irradiation in aqueous media at room temperature. The photocatalyst 2 demonstrates recyclability and can be reused at least 10 times without a significant loss of catalytic activity. These results unveil a new and complementary approach to the design and in situ synthesis of cyclometalated macrocycle Ir(III) complexes via a mild interligand-coupling strategy.
Collapse
Affiliation(s)
- Xiao-Kang Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Hai-Yun Zhou
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Gao-Feng Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Bao-Hui Ye
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| |
Collapse
|
4
|
Sardivand-Chegini I, Zakavi S, Rezvani MA. Periodate-Mediated Aerobic Oxidation of Sulfides over a Bifunctional Porphyrin-polyoxometalate Catalyst: Photosensitized Singlet Oxygen Oxidation of Iodate to Periodate. Inorg Chem 2023; 62:13387-13399. [PMID: 37560902 DOI: 10.1021/acs.inorgchem.3c01740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Regeneration of terminal oxidants by molecular oxygen in metal-catalyzed oxidations of organic substrates has the advantage of avoiding the use of stoichiometric amounts of hazardous and/or expensive reagents to meet (some of) the green chemistry requirements. In the present study, photosensitized singlet oxygen oxidation of iodate to periodate has been used to regenerate the oxidant in polyoxometalate (POM)-catalyzed oxidation of sulfides to sulfoxides with periodate in water. To the best of our knowledge, it is the first report on singlet oxygen oxidation of iodate to periodate. In order to determine the contribution of photooxidation and oxidation pathways in the formation of sulfoxide, the oxidation of diphenyl sulfide with a very low reactivity toward aerobic photooxidation was studied; a sevenfold increase in the conversion of the sulfide to the diphenyl sulfoxide was observed for the reaction conducted in the presence of H2TMPyP-PW12O40/IO3-/O2/hν compared to that in the presence of H2TMPyP-PW12O40/O2/hν. Also, under the same conditions, a ca. 1.5-fold increase was observed in the case of methyl phenyl sulfide, which shows high reactivity toward both the oxidation and photooxidation reactions. A porphyrin-POM nanocomposite formed by the electrostatic immobilization of meso-tetra(N-methylpyridinium-4-yl)porphyrin (H2TMPyP) on PW12O40 was employed for the one-pot oxidation and photooxidation reactions. Field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), diffuse-reflectance UV-vis spectroscopy, thermal gravimetric analysis, and Fourier transform infrared were used to characterize the formation of the hybrid compound. An average particle size of 42 nm was estimated for H2TMPyP-PW12O40 from XRD peak broadening using the Scherrer equation. Also, FESEM images showed the formation of nearly spherical nanoparticles with a size of ca. 200 nm. The redshift of the Soret band of H2TMPyP upon immobilization on POM was attributed to strong N-H···O hydrogen-bond interactions between POM and porphyrin.
Collapse
Affiliation(s)
- Issa Sardivand-Chegini
- Department of Chemistry, Faculty of Science, University of Zanjan, University Blvd., Zanjan 45371-38791, Iran
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Saeed Zakavi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Mohammad Ali Rezvani
- Department of Chemistry, Faculty of Science, University of Zanjan, University Blvd., Zanjan 45371-38791, Iran
| |
Collapse
|
5
|
Liu Z, Li X, Chen J, Li C, Luo F, Cheng FX, Liu JJ. Merging of the photocatalyst decatungstate and naphthalene diimide in a hybrid structure for the oxidative coupling of amines. Dalton Trans 2022; 51:8472-8479. [PMID: 35603783 DOI: 10.1039/d2dt01003h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Designing and developing novel hybrid materials for the effective photoconversion of organic substrates is of great importance. Crystalline hybrid heterostructures, as an attractive class of material, are composed of semiconducting organic and inorganic components with fast-responsive charge-separated properties and thus they are promising photocatalysts. Naphthalene diimides (NDIs) and decatungstate (W10O324-) are two versatile semiconductor components that have been utilized as building blocks for the construction of functional materials for various applications. In this context, we demonstrated that the combination of an electron-deficient NDI derivative with W10O324- resulted in an organic-inorganic hybrid compound, namely Zn2(DPNDI)(W10O32)(DMA)6 (DPNDI = N,N'-di-(4-pyridyl)-1,4,5,8-naphthalene diimide) (1). Because of consecutive photo-induced electron transfer processes among the components, this hybrid compound exhibits fast-responsive reversible photochromic properties, and it efficiently photocatalytically oxidizes amines to imines under mild conditions with high yields and an excellent substrate application range.
Collapse
Affiliation(s)
- Zhengfen Liu
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China.
| | - Xiaobo Li
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China.
| | - Jian Chen
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China.
| | - Chao Li
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China.
| | - Fumang Luo
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China.
| | - Fei-Xiang Cheng
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China.
| | - Jian-Jun Liu
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China.
| |
Collapse
|
6
|
Wei XM, Huang SL, Yang GY, Qi YF. Ru(N˄N)3‐Metalloligand Pillared Zr6–Organic Layers for Aerobic Photooxidation. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiao-Mei Wei
- Beijing Institute of Technology School of Chemisty and Chemical Engineering CHINA
| | - Sheng-Li Huang
- Beijing Institute of Technology School of Chemistry and Chemical Engineering No. 5 Yard, Zhong Guan Cun South Street. 100081 Beijing CHINA
| | - Guo-Yu Yang
- Beijing Institute of Technology School of Chemistry and Chemical Engineering CHINA
| | - Yong-Fang Qi
- Henan Open University College of Rural Revitalization CHINA
| |
Collapse
|
7
|
Skolia E, Gkizis PL, Kokotos CG. Aerobic Photocatalysis: Oxidation of Sulfides to Sulfoxides. Chempluschem 2022; 87:e202200008. [PMID: 35199489 DOI: 10.1002/cplu.202200008] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/14/2022] [Indexed: 12/19/2022]
Abstract
Sulfoxides constitute one of the most important functional groups in organic chemistry found in numerous pharmaceuticals and natural products. Sulfoxides are usually obtained from the oxidation of the corresponding sulfides. Among various oxidants, oxygen or air are considered the greenest and most sustainable reagent. Photochemistry and photocatalysis is increasingly applied in new, as well as traditional, yet demanding, reaction, like the aerobic oxidation of sulfides to sulfoxides, since photocatalysis has provided the means to access them in mild and effective ways. In this review, we will summarize the photochemical protocols that have been developed for the oxidation of sulfides to sulfoxides, employing air or oxygen as the oxidant. The aim of this review is to present: i) a historical overview, ii) the key mechanistic studies and proposed mechanisms and iii) categorize the different catalytic systems in literature.
Collapse
Affiliation(s)
- Elpida Skolia
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis 15771, Athens, Greece
| | - Petros L Gkizis
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis 15771, Athens, Greece
| | - Chistoforos G Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis 15771, Athens, Greece
| |
Collapse
|
8
|
Torregrosa-Chinillach A, Chinchilla R. Visible Light-Induced Aerobic Oxidative Dehydrogenation of C-N/C-O to C=N/C=O Bonds Using Metal-Free Photocatalysts: Recent Developments. Molecules 2022; 27:497. [PMID: 35056812 PMCID: PMC8780101 DOI: 10.3390/molecules27020497] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/31/2021] [Accepted: 01/11/2022] [Indexed: 12/14/2022] Open
Abstract
Performing synthetic transformation using visible light as energy source, in the presence of a photocatalyst as a promoter, is currently of high interest, and oxidation reactions carried out under these conditions using oxygen as the final oxidant are particularly convenient from an environmental point of view. This review summarizes the recent developments achieved in the oxidative dehydrogenation of C-N and C-O bonds, leading to C=N and C=O bonds, respectively, using air or pure oxygen as oxidant and metal-free homogeneous or recyclable heterogeneous photocatalysts under visible light irradiation.
Collapse
Affiliation(s)
| | - Rafael Chinchilla
- Department of Organic Chemistry, Faculty of Sciences, Institute of Organic Synthesis (ISO), University of Alicante, Apdo. 99, 03080 Alicante, Spain;
| |
Collapse
|
9
|
Ghanbari N, Zakavi S. A hypervalent iodine secondary oxidant synthesized by photosensitized singlet oxygen: Synthesis, characterization and oxidative reactivity. J Catal 2022. [DOI: 10.1016/j.jcat.2021.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Mojarrad AG, Zakavi S. Significantly Increased Stability of Donor-Acceptor Molecular Complexes under Heterogeneous Conditions: Synthesis, Characterization, and Photosensitizing Activity of a Nanostructured Porphyrin-Lewis Acid Adduct. ACS APPLIED MATERIALS & INTERFACES 2020; 12:46190-46204. [PMID: 32967421 DOI: 10.1021/acsami.0c13598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
While the BF3 complexes of meso-tetra(aryl)porphyrins are readily decomposed into their components under aqueous conditions, immobilization of meso-tetrakis(N-methylpyridinium-4-yl)porphyrin (H2TMPyP) on a nanosized polymer (sodium salt of Amberlyst 15, nanoAmbSO3Na) formed a water-stable BF3 complex applicable for efficient aerobic photooxidation of 1,5-dihydroxylnaphthalene and sulfides under green conditions. NanoAmbSO3@H2TMPyP(BF3)2 was characterized by diffuse reflectance UV-vis spectroscopy, dynamic light scattering, thermal gravimetric analysis, Brunauer-Emmett-Teller analysis, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, and energy-dispersive X-ray spectroscopy techniques. The catalyst was successfully used for 10 consecutive reactions with no detectable degradation of the complex and decrease in the catalyst activity. NanoAmbSO3@H2TMPyP(BF3)2 was also completely stable toward dissociation to its components under different light conditions in acetonitrile. The singlet oxygen quantum yields φΔ of H2TMPyP, nanoAmbSO3@H2TMPyP, and their molecular complexes with BF3, determined chemically by using 1,3-diphenylisobenzofuran, revealed substantially higher values in the case of the heterogenized porphyrin and molecular complex.
Collapse
Affiliation(s)
- Aida G Mojarrad
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Saeed Zakavi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| |
Collapse
|
11
|
Effect of degree of β-chlorination on photocatalytic activity of meso-tetraphenylporphyrin under homogeneous and nanoscale heterogeneous conditions: Chlorination vs. bromination. J Catal 2020. [DOI: 10.1016/j.jcat.2020.04.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Zhao FJ, Zhang G, Ju Z, Tan YX, Yuan D. The Combination of Charge and Energy Transfer Processes in MOFs for Efficient Photocatalytic Oxidative Coupling of Amines. Inorg Chem 2020; 59:3297-3303. [DOI: 10.1021/acs.inorgchem.9b03743] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Feng-Juan Zhao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Fujian Normal University, Cangshan Campus, No. 8 Shangsan Road, Cangshan District, Fuzhou 350007, Fujian, China
| | - Guoliang Zhang
- School of Mechanical Engineering, Tianjin University of Technology and Education, Tianjin 300222, China
| | - Zhanfeng Ju
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
| | - Yan-Xi Tan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
| | - Daqiang Yuan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Fujian Normal University, Cangshan Campus, No. 8 Shangsan Road, Cangshan District, Fuzhou 350007, Fujian, China
| |
Collapse
|
13
|
Blanchard V, Asbai Z, Cottet K, Boissonnat G, Port M, Amara Z. Continuous Flow Photo-oxidations Using Supported Photocatalysts on Silica. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.9b00420] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
| | - Zakariae Asbai
- Equipe Chimie Moléculaire, Laboratoire de Génomique, Bioinformatique et Chimie Moléculaire (GBCM), EA 7528, Conservatoire national des arts et métiers, HESAM Université, 2 rue Conté, 75003 Paris Cedex 03, France
| | | | | | - Marc Port
- Equipe Chimie Moléculaire, Laboratoire de Génomique, Bioinformatique et Chimie Moléculaire (GBCM), EA 7528, Conservatoire national des arts et métiers, HESAM Université, 2 rue Conté, 75003 Paris Cedex 03, France
| | - Zacharias Amara
- Equipe Chimie Moléculaire, Laboratoire de Génomique, Bioinformatique et Chimie Moléculaire (GBCM), EA 7528, Conservatoire national des arts et métiers, HESAM Université, 2 rue Conté, 75003 Paris Cedex 03, France
| |
Collapse
|
14
|
Mojarrad AG, Zakavi S. Lewis acid induced spectral changes of sterically hindered and unhindered meso-tetra(aryl)porphyrins: fluorescence emission spectra. NEW J CHEM 2020. [DOI: 10.1039/c9nj06040e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescence spectra of a series of electron-rich and electron-deficient meso-tetra(aryl)porphyrins and their molecular complexes with DDQ, TCNE and BF3 were investigated and compared. In spite of the great resemblance between the absorption spectra of the molecular complexes, large differences were observed between their emission spectra.
Collapse
Affiliation(s)
- Aida G. Mojarrad
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan 45137-66731
- Iran
| | - Saeed Zakavi
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan 45137-66731
- Iran
| |
Collapse
|
15
|
Effects of β-bromine substitution and core protonation on photosensitizing properties of porphyrins: Long wavelength photosensitizers. J Catal 2019. [DOI: 10.1016/j.jcat.2019.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Wei LQ, Ye BH. Cyclometalated Ir-Zr Metal-Organic Frameworks as Recyclable Visible-Light Photocatalysts for Sulfide Oxidation into Sulfoxide in Water. ACS APPLIED MATERIALS & INTERFACES 2019; 11:41448-41457. [PMID: 31604013 DOI: 10.1021/acsami.9b15646] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Aerobic photo-oxidation of sulfide into sulfoxide in water is of great interest in green chemistry. In this study, three highly stable Ir(III)-Zr(IV) metal-organic frameworks (Ir-Zr MOFs), namely Zr6-Irbpy (bpy is 2,2'-bipyridine), Zr6-IrbpyOMe (bpyOMe is 4,4'-dimethoxy-2,2'-bipyridine), and Zr6-Irphen (phen is 1,10-phenanthroline), are constructed by using [Ir(pqc)2(L)2]Cl complexes (where pqc is 2-phenylquinoline-4-carboxylic acid and L is an ancillary ligand bpy, bpyOMe, or phen) as linkers and Zr6 cluster as nodes. The constructed Ir-Zr MOFs present high catalytic activity on aerobic photo-oxidation of sulfide into sulfoxide under visible light irradiation in water at room temperature. Moreover, the reaction is high chemoselectivity and functional group tolerance. The catalyst can be readily recycled and reused at least 10 times without loss of catalytic activity. Mechanism studies demonstrate that superoxide radical is the reactive oxygen species in the sulfoxidation, which is generated by electron transfer from the excited triplet photosensitizer 3[Ir-Zr-MOF]* to O2. The high activity of photocatalytic sulfoxidation in water may be attributed to the stabilization of the persulfoxide intermediate by hydrogen bond formation with water solvent, which accelerates the conversion of persulfoxide into sulfoxide and prevents further oxidation of sulfoxide into sulfone. This work provides a new strategy for the green synthesis of sulfoxides under ambient conditions.
Collapse
Affiliation(s)
- Lian-Qiang Wei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-sen University , Guangzhou 510275 , China
- College of Chemistry and Bioengineering , Hechi University , Yizhou , 546300 , China
| | - Bao-Hui Ye
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-sen University , Guangzhou 510275 , China
| |
Collapse
|
17
|
Oveisi AR, Karimi P, Delarami HS, Daliran S, Khorramabadi-Zad A, Khajeh M, Sanchooli E, Ghaffari-Moghaddam M. New porphyrins: synthesis, characterization, and computational studies. Mol Divers 2019; 24:335-344. [PMID: 31062142 DOI: 10.1007/s11030-019-09955-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/29/2019] [Indexed: 10/26/2022]
Abstract
New trans-A2B2-porphyrins substituted at phenyl positions were synthesized from 4-methylphthalic acid as a starting material through sequential multistep reactions. These macrocycles were characterized by 1H NMR, 13C NMR, 19F NMR, 1H-1H COSY NMR, and MALDI-TOF mass spectrometry. Computational studies were performed on the porphyrins to investigate various factors such as structural features, electronic energy, energy gaps, and aromaticity. Energy band gap values of these compounds especially N-hydroxyphthalimide-functionalized porphyrins were small that makes them as good candidates for solar cell systems and photocatalysis. Relationships between electronic energies and aromaticity of the compounds were then investigated. The data indicated that the aromaticity features at the center of two series of these compounds (fluorinated and non-fluorinated porphyrins) were in the opposite manner.
Collapse
Affiliation(s)
- Ali Reza Oveisi
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran.
| | - Pouya Karimi
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran
| | | | - Saba Daliran
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838695, Iran
| | | | - Mostafa Khajeh
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran
| | - Esmael Sanchooli
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran
| | | |
Collapse
|
18
|
Nasrollahi R, Heydari-turkmani A, Zakavi S. Kinetic and mechanistic aspects of solid state, nanostructured porphyrin diacid photosensitizers in photooxidation of sulfides. Catal Sci Technol 2019. [DOI: 10.1039/c8cy02433b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The kinetics and mechanism of aerobic photooxidation of sulfides in the presence of a series of electron-rich and electron-deficient porphyrins immobilized on Amberlyst 15 nanoparticles in the form of porphyrin diacids are reported.
Collapse
Affiliation(s)
- Rahele Nasrollahi
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan 45137-66731
- Iran
| | - Akram Heydari-turkmani
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan 45137-66731
- Iran
| | - Saeed Zakavi
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan 45137-66731
- Iran
| |
Collapse
|