1
|
Peighambardoust N, Sadigh Akbari S, Lomlu R, Aydemir U, Karadas F. Tunable Photocatalytic Activity of CoFe Prussian Blue Analogue Modified SrTiO 3 Core-Shell Structures for Solar-Driven Water Oxidation. ACS MATERIALS AU 2024; 4:214-223. [PMID: 38496046 PMCID: PMC10941283 DOI: 10.1021/acsmaterialsau.3c00090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 03/19/2024]
Abstract
This study presents a pioneering semiconductor-catalyst core-shell architecture designed to enhance photocatalytic water oxidation activity significantly. This innovative assembly involves the in situ deposition of CoFe Prussian blue analogue (PBA) particles onto SrTiO3 (STO) and blue SrTiO3 (bSTO) nanocubes, effectively establishing a robust p-n junction, as demonstrated by Mott-Schottky analysis. Of notable significance, the STO/PB core-shell catalyst displayed remarkable photocatalytic performance, achieving an oxygen evolution rate of 129.6 μmol g-1 h-1, with stability over an extended 9-h in the presence of S2O82- as an electron scavenger. Thorough characterization unequivocally verified the precise alignment of the band energies within the STO/PB core-shell assembly. Our research underscores the critical role of tailored semiconductor-catalyst interfaces in advancing the realm of photocatalysis and its broader applications in renewable energy technologies.
Collapse
Affiliation(s)
- Naeimeh
Sadat Peighambardoust
- Koç
University Boron and Advanced Materials Application and Research Center
(KUBAM), Sariyer, Istanbul - 34450, Türkiye
| | - Sina Sadigh Akbari
- Department
of Chemistry, Faculty of Science, Bilkent
University, Ankara - 06800, Türkiye
| | - Rana Lomlu
- Department
of Chemistry, Faculty of Science, Bilkent
University, Ankara - 06800, Türkiye
| | - Umut Aydemir
- Koç
University Boron and Advanced Materials Application and Research Center
(KUBAM), Sariyer, Istanbul - 34450, Türkiye
- Department
of Chemistry, Koç University, Sariyer, Istanbul - 34450, Türkiye
| | - Ferdi Karadas
- Department
of Chemistry, Faculty of Science, Bilkent
University, Ankara - 06800, Türkiye
| |
Collapse
|
2
|
Sohail M, Rauf S, Irfan M, Hayat A, Alghamdi MM, El-Zahhar AA, Ghernaout D, Al-Hadeethi Y, Lv W. Recent developments, advances and strategies in heterogeneous photocatalysts for water splitting. NANOSCALE ADVANCES 2024; 6:1286-1330. [PMID: 38419861 PMCID: PMC10898449 DOI: 10.1039/d3na00442b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/28/2023] [Indexed: 03/02/2024]
Abstract
Photocatalytic water splitting (PWS) is an up-and-coming technology for generating sustainable fuel using light energy. Significant progress has been made in the developing of PWS innovations over recent years. In addition to various water-splitting (WS) systems, the focus has primarily been on one- and two-steps-excitation WS systems. These systems utilize singular or composite photocatalysts for WS, which is a simple, feasible, and cost-effective method for efficiently converting prevalent green energy into sustainable H2 energy on a large commercial scale. The proposed principle of charge confinement and transformation should be implemented dynamically by conjugating and stimulating the photocatalytic process while ensuring no unintentional connection at the interface. This study focuses on overall water splitting (OWS) using one/two-steps excitation and various techniques. It also discusses the current advancements in the development of new light-absorbing materials and provides perspectives and approaches for isolating photoinduced charges. This article explores multiple aspects of advancement, encompassing both chemical and physical changes, environmental factors, different photocatalyst types, and distinct parameters affecting PWS. Significant factors for achieving an efficient photocatalytic process under detrimental conditions, (e.g., strong light absorption, and synthesis of structures with a nanometer scale. Future research will focus on developing novel materials, investigating potential synthesis techniques, and improving existing high-energy raw materials. The endeavors aim is to enhance the efficiency of energy conversion, the absorption of radiation, and the coherence of physiochemical processes.
Collapse
Affiliation(s)
- Muhammad Sohail
- Huzhou Key Laboratory of Smart and Clean Energy, Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China Huzhou 313001 P. R. China
| | - Sana Rauf
- College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen 518060 PR China
| | - Muhammad Irfan
- Department of Chemistry, Hazara University Mansehra 21300 Pakistan
| | - Asif Hayat
- College of Chemistry and Life Sciences, Zhejiang Normal University 321004 Jinhua Zhejiang P. R. China
| | - Majed M Alghamdi
- Department of Chemistry, College of Science, King Khalid University P. O. Box 9004 Abha 61413 Saudi Arabia
| | - Adel A El-Zahhar
- Department of Chemistry, College of Science, King Khalid University P. O. Box 9004 Abha 61413 Saudi Arabia
| | - Djamel Ghernaout
- Chemical Engineering Department, College of Engineering, University of Ha'il PO Box 2440 Ha'il 81441 Saudi Arabia
- Chemical Engineering Department, Faculty of Engineering, University of Blida PO Box 270 Blida 09000 Algeria
| | - Yas Al-Hadeethi
- Physics Department, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
- Lithography in Devices Fabrication and Development Research Group, Deanship of Scientific Research, King Abdulaziz University Jeddah 21589 Saudi Arabia
- King Fahd Medical Research Center (KFMRC), King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Weiqiang Lv
- Huzhou Key Laboratory of Smart and Clean Energy, Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China Huzhou 313001 P. R. China
| |
Collapse
|
3
|
Garcia‐Esparza AT, Qureshi M, Skoien D, Hersbach TJP, Sokaras D. A multimodal flow reactor for photocatalysis under atmospheric conditions. J Chem Phys 2023; 159:244201. [PMID: 38153150 PMCID: PMC10756709 DOI: 10.1063/5.0179259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/05/2023] [Indexed: 12/29/2023] Open
Abstract
Photocatalysis is a promising concept for the direct conversion of solar energy into fuels and chemicals. The design, experimental protocol, and performance of a multimodal and versatile flow reactor for the characterization of powdered and immobilized photocatalysts are herein presented. Ultimately, this instrument enables rigorous evaluation of photocatalysis performance metrics. The apparatus quantifies transient gas-phase reaction products via online real-time gas analyzer mass spectrometry (RTGA-MS). For H2, the most challenging gas, the photocatalytic system's RTGA-MS gas detection sensitivity spans over three orders of magnitude and can detect down to tens of parts per million under atmospheric conditions. Using Pt nanoparticles supported on anatase TiO2 photocatalyst via wet impregnation, the instrument's capability for the characterization of photocatalytic H2 evolution is demonstrated, resulting in an apparent quantum yield (AQY) of 48.1% ± 0.9% at 320 nm, 45.7% ± 0.3% at 340 nm and 31% ± 1% at 360 nm. The photodeposition of Pt on anatase TiO2 was employed to demonstrate the instrument's capability to track the transient behavior of photocatalysts, resulting in an improved 55% ± 2% AQY for H2 evolution at 340 nm from aqueous methanol. This photocatalytic instrument enables systematic study of a wide variety of photocatalytic reactions such as water splitting and CO2 reduction to valuable C2+ fuels and chemicals.
Collapse
Affiliation(s)
- Angel T. Garcia‐Esparza
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Muhammad Qureshi
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Dean Skoien
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Thomas J. P. Hersbach
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Dimosthenis Sokaras
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| |
Collapse
|
4
|
Yoshida H, Pan Z, Shoji R, Nandal V, Matsuzaki H, Seki K, Lin L, Kaneko M, Fukui T, Yamashita K, Takata T, Hisatomi T, Domen K. An Oxysulfide Photocatalyst Evolving Hydrogen with an Apparent Quantum Efficiency of 30 % under Visible Light. Angew Chem Int Ed Engl 2023; 62:e202312938. [PMID: 37786233 DOI: 10.1002/anie.202312938] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/04/2023]
Abstract
Photocatalytic water splitting is a simple means of converting solar energy into storable hydrogen energy. Narrow-band gap oxysulfide photocatalysts have attracted much attention in this regard owing to the significant visible-light absorption and relatively high stability of these compounds. However, existing materials suffer from low efficiencies due to difficulties in synthesizing these oxysulfides with suitable degrees of crystallinity and particle sizes, and in constructing effective reaction sites. The present work demonstrates the production of a Gd2 Ti2 O5 S2 (λ<650 nm) photocatalyst capable of efficiently driving photocatalytic reactions. Single-crystalline, plate-like Gd2 Ti2 O5 S2 particles with atomically ordered surfaces were synthesized by flux and chemical etching methods. Ultrafine Pt-IrO2 cocatalyst particles that promoted hydrogen (H2 ) and oxygen (O2 ) evolution reactions were subsequently loaded on the Gd2 Ti2 O5 S2 while ensuring an intimate contact by employing a microwave-heating technique. The optimized Gd2 Ti2 O5 S2 was found to evolve H2 from an aqueous methanol solution with a remarkable apparent quantum efficiency of 30 % at 420 nm. This material was also stable during O2 evolution in the presence of a sacrificial reagent. The results presented herein demonstrates a highly efficient narrow-band gap oxysulfide photocatalyst with potential applications in practical solar hydrogen production.
Collapse
Affiliation(s)
- Hiroaki Yoshida
- Mitsubishi Chemical Corporation, Science & Innovation Center, 1000 Kamoshida-cho, Aoba-ku, Yokohama-shi, Kanagawa, 227-8502, Japan
- Japan Technological Research Association of Artificial Photosynthetic Chemical Process (ARPChem), 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Zhenhua Pan
- Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano-shi, Nagano, 380-8553, Japan
| | - Ryota Shoji
- Research Institute for Material and Chemical Measurement, National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Vikas Nandal
- Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba, 16-1 Onogawa, Ibaraki, 305-8569, Japan
| | - Hiroyuki Matsuzaki
- Research Institute for Material and Chemical Measurement, National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Kazuhiko Seki
- Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba, 16-1 Onogawa, Ibaraki, 305-8569, Japan
| | - Lihua Lin
- Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano-shi, Nagano, 380-8553, Japan
| | - Masanori Kaneko
- Graduate School of Nanobioscience, Yokohama City University, Kanazawa-ku, Yokohama, 236-0027, Japan
| | - Tsuyoshi Fukui
- Mitsubishi Chemical Corporation, Science & Innovation Center, 1000 Kamoshida-cho, Aoba-ku, Yokohama-shi, Kanagawa, 227-8502, Japan
- Japan Technological Research Association of Artificial Photosynthetic Chemical Process (ARPChem), 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Koichi Yamashita
- Graduate School of Nanobioscience, Yokohama City University, Kanazawa-ku, Yokohama, 236-0027, Japan
| | - Tsuyoshi Takata
- Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano-shi, Nagano, 380-8553, Japan
| | - Takashi Hisatomi
- Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano-shi, Nagano, 380-8553, Japan
| | - Kazunari Domen
- Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano-shi, Nagano, 380-8553, Japan
- Office of University Professors, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
5
|
Blocking the reverse reactions of overall water splitting on a Rh/GaN–ZnO photocatalyst modified with Al2O3. Nat Catal 2023. [DOI: 10.1038/s41929-022-00907-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
6
|
Navalón S, Dhakshinamoorthy A, Álvaro M, Ferrer B, García H. Metal-Organic Frameworks as Photocatalysts for Solar-Driven Overall Water Splitting. Chem Rev 2022; 123:445-490. [PMID: 36503233 PMCID: PMC9837824 DOI: 10.1021/acs.chemrev.2c00460] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metal-organic frameworks (MOFs) have been frequently used as photocatalysts for the hydrogen evolution reaction (HER) using sacrificial agents with UV-vis or visible light irradiation. The aim of the present review is to summarize the use of MOFs as solar-driven photocatalysts targeting to overcome the current efficiency limitations in overall water splitting (OWS). Initially, the fundamentals of the photocatalytic OWS under solar irradiation are presented. Then, the different strategies that can be implemented on MOFs to adapt them for solar photocatalysis for OWS are discussed in detail. Later, the most active MOFs reported until now for the solar-driven HER and/or oxygen evolution reaction (OER) are critically commented. These studies are taken as precedents for the discussion of the existing studies on the use of MOFs as photocatalysts for the OWS under visible or sunlight irradiation. The requirements to be met to use MOFs at large scale for the solar-driven OWS are also discussed. The last section of this review provides a summary of the current state of the field and comments on future prospects that could bring MOFs closer to commercial application.
Collapse
Affiliation(s)
- Sergio Navalón
- Departamento
de Química, Universitat Politècnica
de València, Camino de Vera s/n, Valencia46022, Spain,S.N.: email,
| | - Amarajothi Dhakshinamoorthy
- Departamento
de Química, Universitat Politècnica
de València, Camino de Vera s/n, Valencia46022, Spain,School
of Chemistry, Madurai Kamaraj University, Palkalai Nagar, Madurai625021, Tamil
NaduIndia,A.D.: email,
| | - Mercedes Álvaro
- Departamento
de Química, Universitat Politècnica
de València, Camino de Vera s/n, Valencia46022, Spain
| | - Belén Ferrer
- Departamento
de Química, Universitat Politècnica
de València, Camino de Vera s/n, Valencia46022, Spain
| | - Hermenegildo García
- Departamento
de Química, Universitat Politècnica
de València, Camino de Vera s/n, Valencia46022, Spain,Instituto
Universitario de Tecnología Química, CSIC-UPV, Universitat Politècnica de València, Avenida de los Naranjos, Valencia46022, Spain,H.G.:
email,
| |
Collapse
|
7
|
Controlled Synthesis of Chromium-Oxide-Based Protective Layers on Pt: Influence of Layer Thickness on Selectivity. Catalysts 2022. [DOI: 10.3390/catal12101077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Chromium-oxyhydroxide (CrxOyHz)-based thin films have previously been shown in photocatalysis and industrial chlorate production to prevent unwanted reduction reactions to occur, thereby enhancing the selectivity for hydrogen evolution and thus the overall process efficiency. Here, a highly reproducible synthesis protocol was developed to allow for the electrodeposition of CrxOyHz-based thin films with controlled thickness in the range of the sub-monolayer up to (>4) multilayer coverage. Electrodeposited CrxOyHz coatings were electrochemically characterized using voltammetry and stripping experiments, allowing thickness-dependent film selectivity to be deduced in detail. The results are discussed in terms of mass transport properties and structure of the electrodeposited chromium oxyhydroxide films. It is shown that the permeation of diatomic probe molecules, such as O2 and CO, was significantly reduced by films as thin as four monolayers. Importantly, it is shown that the prepared thin film coatings enabled prolonged hydrogen oxidation in the presence of CO (up to 5 vol.%), demonstrating the benefits of thin-film-protected electrocatalysts. In general, this study provides insight into the synthesis and use of thin-film-protected electrodes leading to improvements in (electro)catalyst selectivity and durability.
Collapse
|
8
|
Vikanova KV, Redina EA, Kustov LM. Hydrogen spillover on cerium-based catalysts. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3567-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Xu BB, Fu XB, You XM, Zhao E, Li FF, Chen Z, Li YX, Wang XL, Yao YF. Synergistic Promotion of Single-Atom Co Surrounding a PtCo Alloy Based On a g-C 3N 4 Nanosheet for Overall Water Splitting. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bei-Bei Xu
- Physics Department and Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, North Zhongshan Road 3663, Shanghai 200062, P. R. China
| | - Xiao-Bin Fu
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Xiao-Meng You
- Physics Department and Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, North Zhongshan Road 3663, Shanghai 200062, P. R. China
| | - En Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China
| | - Fang-Fang Li
- Physics Department and Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, North Zhongshan Road 3663, Shanghai 200062, P. R. China
| | - Zupeng Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China
| | - Yu-Xiao Li
- Department of Radiology, Shanghai Changhai Hospital, the Second Military Medical University, Shanghai 200433, P. R. China
| | - Xue Lu Wang
- Physics Department and Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, North Zhongshan Road 3663, Shanghai 200062, P. R. China
| | - Ye-Feng Yao
- Physics Department and Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, North Zhongshan Road 3663, Shanghai 200062, P. R. China
| |
Collapse
|
10
|
Irshad M, Ain QT, Zaman M, Aslam MZ, Kousar N, Asim M, Rafique M, Siraj K, Tabish AN, Usman M, Hassan Farooq MU, Assiri MA, Imran M. Photocatalysis and perovskite oxide-based materials: a remedy for a clean and sustainable future. RSC Adv 2022; 12:7009-7039. [PMID: 35424711 PMCID: PMC8982362 DOI: 10.1039/d1ra08185c] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/21/2022] [Indexed: 01/08/2023] Open
Abstract
The massive use of non-renewable energy resources by humankind to fulfill their energy demands is causing severe environmental issues. Photocatalysis is considered one of the potential solutions for a clean and sustainable future because of its cleanliness, inexhaustibility, efficiency, and cost-effectiveness. Significant efforts have been made to design highly proficient photocatalyst materials for various applications such as water pollutant degradation, water splitting, CO2 reduction, and nitrogen fixation. Perovskite photocatalyst materials are gained special attention due to their exceptional properties because of their flexibility in chemical composition, structure, bandgap, oxidation states, and valence states. The current review is focused on perovskite materials and their applications in photocatalysis. Special attention has been given to the structural, stoichiometric, and compositional flexibility of perovskite photocatalyst materials. The photocatalytic activity of perovskite materials in different photocatalysis applications is also discussed. Various mechanisms involved in photocatalysis application from wastewater treatment to hydrogen production are also provided. The key objective of this review is to encapsulate the role of perovskite materials in photocatalysis along with their fundamental properties to provide valuable insight for addressing future environmental challenges.
Collapse
Affiliation(s)
- Muneeb Irshad
- Department of Physics, University of Engineering and Technology Lahore 54890 Pakistan
| | - Quar Tul Ain
- Department of Physics, University of Engineering and Technology Lahore 54890 Pakistan
| | - Muhammad Zaman
- Department of Physics, University of Engineering and Technology Lahore 54890 Pakistan
| | | | - Naila Kousar
- Department of Physics, University of Engineering and Technology Lahore 54890 Pakistan
| | - Muhammad Asim
- Department of Physics, University of Engineering and Technology Lahore 54890 Pakistan
| | | | - Khurram Siraj
- Department of Physics, University of Engineering and Technology Lahore 54890 Pakistan
| | - Asif Nadeem Tabish
- Department of Chemical Engineering, University of Engineering and Technology, New Campus Lahore Pakistan
| | - Muhammad Usman
- Department of Mechanical Engineering, University of Engineering and Technology Lahore 54890 Pakistan
| | - Masood Ul Hassan Farooq
- Department of Basic Sciences, University of Engineering and Technology, New Campus Lahore Pakistan
| | - Mohammed Ali Assiri
- Department of Chemistry, Faculty of Science, Research Center for Advanced Materials Science (RCAMS), King Khalid University P. O. Box 9004 Abha 61413 Saudia Arabia
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, Research Center for Advanced Materials Science (RCAMS), King Khalid University P. O. Box 9004 Abha 61413 Saudia Arabia
| |
Collapse
|
11
|
Lv S, Pei M, Liu Y, Si Z, Wu X, Ran R, Weng D, Kang F. A strategy to construct a highly active Co xP/SrTiO 3(Al) catalyst to boost the photocatalytic overall water splitting reactions. NANOSCALE 2022; 14:2427-2433. [PMID: 35098289 DOI: 10.1039/d1nr07398b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hydrogen production from overall water splitting using SrTiO3(Al)-based semiconductors is one of the most promising routes to address energy and environmental concerns. Noble metals are needed to accelerate water splitting by promoting the charge transfer and providing active sites. However, noble metal-based catalysts have high prices and rare resources. Herein, we demonstrate a strategy to construct highly active CoxP/SrTiO3(Al) for overall water splitting. Hydrothermal method followed by an ultrasonic process was applied to prepare CoxP dots, which were loaded on the whole surface of SrTiO3(Al) as bifunctional cocatalysts. Interestingly, the CoxP dots on the (110) planes of SrTiO3(Al) were partially oxidized for the OER reaction. However, CoxP dots on the (100) planes of SrTiO3(Al) for HER kept it as it was. The as-prepared CoxP/SrTiO3(Al) photocatalyst shows a stable HER rate of 1.36 mmol-1 h-1 and OER rate of 0.635 mmol-1 h-1. The strong interaction between CoxP and SrTiO3(Al) not only facilitates rapid charge separation but also provides a highly active site for overall water splitting. Our study provides a valuable method for constructing noble-metal-free SrTiO3(Al)-based photocatalysts.
Collapse
Affiliation(s)
- Shangchun Lv
- Shenzhen International Graduate School, Tsinghua University, Shenzhen City, 518055, China.
| | - Mengxi Pei
- Shenzhen International Graduate School, Tsinghua University, Shenzhen City, 518055, China.
| | - Yuxiang Liu
- Shenzhen International Graduate School, Tsinghua University, Shenzhen City, 518055, China.
- The Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing City, 100084, China.
| | - Zhichun Si
- Shenzhen International Graduate School, Tsinghua University, Shenzhen City, 518055, China.
| | - Xiaodong Wu
- The Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing City, 100084, China.
| | - Rui Ran
- The Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing City, 100084, China.
| | - Duan Weng
- Shenzhen International Graduate School, Tsinghua University, Shenzhen City, 518055, China.
- The Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing City, 100084, China.
| | - Feiyu Kang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen City, 518055, China.
- The Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing City, 100084, China.
| |
Collapse
|
12
|
Yang Y, Peltier CR, Zeng R, Schimmenti R, Li Q, Huang X, Yan Z, Potsi G, Selhorst R, Lu X, Xu W, Tader M, Soudackov AV, Zhang H, Krumov M, Murray E, Xu P, Hitt J, Xu L, Ko HY, Ernst BG, Bundschu C, Luo A, Markovich D, Hu M, He C, Wang H, Fang J, DiStasio RA, Kourkoutis LF, Singer A, Noonan KJT, Xiao L, Zhuang L, Pivovar BS, Zelenay P, Herrero E, Feliu JM, Suntivich J, Giannelis EP, Hammes-Schiffer S, Arias T, Mavrikakis M, Mallouk TE, Brock JD, Muller DA, DiSalvo FJ, Coates GW, Abruña HD. Electrocatalysis in Alkaline Media and Alkaline Membrane-Based Energy Technologies. Chem Rev 2022; 122:6117-6321. [PMID: 35133808 DOI: 10.1021/acs.chemrev.1c00331] [Citation(s) in RCA: 105] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hydrogen energy-based electrochemical energy conversion technologies offer the promise of enabling a transition of the global energy landscape from fossil fuels to renewable energy. Here, we present a comprehensive review of the fundamentals of electrocatalysis in alkaline media and applications in alkaline-based energy technologies, particularly alkaline fuel cells and water electrolyzers. Anion exchange (alkaline) membrane fuel cells (AEMFCs) enable the use of nonprecious electrocatalysts for the sluggish oxygen reduction reaction (ORR), relative to proton exchange membrane fuel cells (PEMFCs), which require Pt-based electrocatalysts. However, the hydrogen oxidation reaction (HOR) kinetics is significantly slower in alkaline media than in acidic media. Understanding these phenomena requires applying theoretical and experimental methods to unravel molecular-level thermodynamics and kinetics of hydrogen and oxygen electrocatalysis and, particularly, the proton-coupled electron transfer (PCET) process that takes place in a proton-deficient alkaline media. Extensive electrochemical and spectroscopic studies, on single-crystal Pt and metal oxides, have contributed to the development of activity descriptors, as well as the identification of the nature of active sites, and the rate-determining steps of the HOR and ORR. Among these, the structure and reactivity of interfacial water serve as key potential and pH-dependent kinetic factors that are helping elucidate the origins of the HOR and ORR activity differences in acids and bases. Additionally, deliberately modulating and controlling catalyst-support interactions have provided valuable insights for enhancing catalyst accessibility and durability during operation. The design and synthesis of highly conductive and durable alkaline membranes/ionomers have enabled AEMFCs to reach initial performance metrics equal to or higher than those of PEMFCs. We emphasize the importance of using membrane electrode assemblies (MEAs) to integrate the often separately pursued/optimized electrocatalyst/support and membranes/ionomer components. Operando/in situ methods, at multiscales, and ab initio simulations provide a mechanistic understanding of electron, ion, and mass transport at catalyst/ionomer/membrane interfaces and the necessary guidance to achieve fuel cell operation in air over thousands of hours. We hope that this Review will serve as a roadmap for advancing the scientific understanding of the fundamental factors governing electrochemical energy conversion in alkaline media with the ultimate goal of achieving ultralow Pt or precious-metal-free high-performance and durable alkaline fuel cells and related technologies.
Collapse
Affiliation(s)
- Yao Yang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Cheyenne R Peltier
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Rui Zeng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Roberto Schimmenti
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Qihao Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xin Huang
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Zhifei Yan
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Georgia Potsi
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Ryan Selhorst
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xinyao Lu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Weixuan Xu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Mariel Tader
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Alexander V Soudackov
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Hanguang Zhang
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Mihail Krumov
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Ellen Murray
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Pengtao Xu
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Jeremy Hitt
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Linxi Xu
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Hsin-Yu Ko
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Brian G Ernst
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Colin Bundschu
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Aileen Luo
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Danielle Markovich
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Meixue Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Cheng He
- Chemical and Materials Science Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Hongsen Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jiye Fang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Robert A DiStasio
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Lena F Kourkoutis
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Andrej Singer
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Kevin J T Noonan
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Li Xiao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lin Zhuang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Bryan S Pivovar
- Chemical and Materials Science Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Piotr Zelenay
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Enrique Herrero
- Instituto de Electroquímica, Universidad de Alicante, Alicante E-03080, Spain
| | - Juan M Feliu
- Instituto de Electroquímica, Universidad de Alicante, Alicante E-03080, Spain
| | - Jin Suntivich
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Emmanuel P Giannelis
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | | | - Tomás Arias
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Manos Mavrikakis
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Thomas E Mallouk
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Joel D Brock
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - David A Muller
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Francis J DiSalvo
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Geoffrey W Coates
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Héctor D Abruña
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States.,Center for Alkaline Based Energy Solutions (CABES), Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
13
|
Cui J, Yang X, Yang Z, Sun Y, Chen X, Liu X, Wang D, Jiang S, Liu L, Ye J. Zr-Al co-doped SrTiO 3 with suppressed charge recombination for efficient photocatalytic overall water splitting. Chem Commun (Camb) 2021; 57:10640-10643. [PMID: 34581715 DOI: 10.1039/d1cc04514h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zr-Al co-doped SrTiO3 with reduced Ti3+ concentration demonstrates more than 2 times enhancement compared with Al-doped SrTiO3 in photocatalytic overall water splitting. Systematic studies reveal that the co-doping of Zr4+ can reduce the substitution of Ti4+ by Al3+ and effectively suppress the formation of charge carrier recombination centers (Ti3+).
Collapse
Affiliation(s)
- Jiwei Cui
- TJU-NIMS International Collaboration Laboratory, Key Lab of Advanced Ceramics and Machining Technology (Ministry of Education) and Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, P. R. China.
| | - Xinmin Yang
- TJU-NIMS International Collaboration Laboratory, Key Lab of Advanced Ceramics and Machining Technology (Ministry of Education) and Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, P. R. China.
| | - Zhongshan Yang
- TJU-NIMS International Collaboration Laboratory, Key Lab of Advanced Ceramics and Machining Technology (Ministry of Education) and Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, P. R. China.
| | - Yanhui Sun
- TJU-NIMS International Collaboration Laboratory, Key Lab of Advanced Ceramics and Machining Technology (Ministry of Education) and Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, P. R. China.
| | - Xin Chen
- TJU-NIMS International Collaboration Laboratory, Key Lab of Advanced Ceramics and Machining Technology (Ministry of Education) and Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, P. R. China.
| | - Xiaolu Liu
- TJU-NIMS International Collaboration Laboratory, Key Lab of Advanced Ceramics and Machining Technology (Ministry of Education) and Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, P. R. China.
| | - Defa Wang
- TJU-NIMS International Collaboration Laboratory, Key Lab of Advanced Ceramics and Machining Technology (Ministry of Education) and Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, P. R. China.
| | - Shaokun Jiang
- Purification Equipment Research Institute of Handan, Handan 056000, Hebei, China
| | - Lequan Liu
- TJU-NIMS International Collaboration Laboratory, Key Lab of Advanced Ceramics and Machining Technology (Ministry of Education) and Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, P. R. China.
| | - Jinhua Ye
- TJU-NIMS International Collaboration Laboratory, Key Lab of Advanced Ceramics and Machining Technology (Ministry of Education) and Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, P. R. China. .,International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
| |
Collapse
|
14
|
Qin Y, Fang F, Xie Z, Lin H, Zhang K, Yu X, Chang K. La,Al-Codoped SrTiO 3 as a Photocatalyst in Overall Water Splitting: Significant Surface Engineering Effects on Defect Engineering. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02874] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Yalei Qin
- College of Materials Science and Technology, Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China
| | - Fan Fang
- College of Materials Science and Technology, Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China
| | - Zhengzheng Xie
- College of Materials Science and Technology, Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China
| | - Huiwen Lin
- College of Materials Science and Technology, Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China
| | - Kai Zhang
- College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China
| | - Xu Yu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Kun Chang
- College of Materials Science and Technology, Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China
| |
Collapse
|
15
|
Habib NR, Asedegbega-Nieto E, Taddesse AM, Diaz I. Non-noble MNP@MOF materials: synthesis and applications in heterogeneous catalysis. Dalton Trans 2021; 50:10340-10353. [PMID: 34241616 DOI: 10.1039/d1dt01531a] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transition metals have a long history in heterogeneous catalysis. Noble or precious transition metals have been widely used in this field. The advantage of noble and precious metals is obvious in 'heterogeneous catalysis'. However, the choice of Earth abundant metals is a sustainable alternative due to their abundance and low cost. Preparing these metals in the nanoscale dimension increases their surface area which also increases the catalytic reactions of these materials. Nevertheless, metals are unstable in the nanoparticle form and tend to form aggregates which restrict their applications. Loading metal nanoparticles (MNPs) into highly porous materials is among the many alternatives for combating the unstable nature of the active species. Among porous materials, highly crystalline metal-organic frameworks (MOFs), which are an assembly of metal ions/clusters with organic ligands, are the best candidate. MOFs, on their own, possess catalytic activity derived from the linkers and metal ions or clusters. The catalytic properties of both non-noble metal nanoparticles (MNPs) and MOFs can be improved by loading non-noble MNPs in MOFs yielding MNP@MOF composites with a variety of potential applications, given the synergy and based on the nature of the MNP and MOF. Here, we discussed the synthesis of MNP@MOF materials and the applications of non-noble MNP@MOF materials in heterogeneous catalysis.
Collapse
Affiliation(s)
| | - Esther Asedegbega-Nieto
- Departamento de Química Inorgánica y Técnica, Facultad de Ciencias, UNED, c/Senda del Rey no. 9, 28040, Madrid, Spain
| | - Abi M Taddesse
- Department of Chemistry, Haramaya University, Haramaya, Ethiopia
| | - Isabel Diaz
- Instituto de Catálisis y Petroleoquímica, CSIC, c/Marie Curie 2, 28049 Madrid, Spain.
| |
Collapse
|
16
|
Morales‐García Á, Viñes F, Gomes JRB, Illas F. Concepts, models, and methods in computational heterogeneous catalysis illustrated through
CO
2
conversion. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1530] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ángel Morales‐García
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB) Universitat de Barcelona Barcelona Spain
| | - Francesc Viñes
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB) Universitat de Barcelona Barcelona Spain
| | - José R. B. Gomes
- CICECO—Aveiro Institute of Materials, Department of Chemistry University of Aveiro Aveiro Portugal
| | - Francesc Illas
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB) Universitat de Barcelona Barcelona Spain
| |
Collapse
|
17
|
Liu L, Corma A. Structural transformations of solid electrocatalysts and photocatalysts. Nat Rev Chem 2021; 5:256-276. [PMID: 37117283 DOI: 10.1038/s41570-021-00255-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2021] [Indexed: 01/13/2023]
Abstract
Heterogeneous catalysts often undergo structural transformations when they operate under thermal reaction conditions. These transformations are reflected in their evolving catalytic activity, and a fundamental understanding of the changing nature of active sites is vital for the rational design of solid materials for applications. Beyond thermal catalysis, both photocatalysis and electrocatalysis are topical because they can harness renewable energy to drive uphill reactions that afford commodity chemicals and fuels. Although structural transformations of photocatalysts and electrocatalysts have been observed in operando, the resulting implications for catalytic behaviour are not fully understood. In this Review, we summarize and compare the structural evolution of solid thermal catalysts, electrocatalysts and photocatalysts. We suggest that well-established knowledge of thermal catalysis offers a good basis to understand emerging photocatalysis and electrocatalysis research.
Collapse
|
18
|
Xing Y, Guo Z, Su W, Wen W, Wang X, Zhang H. A review of the hot spot analysis and the research status of single-atom catalysis based on the bibliometric analysis. NEW J CHEM 2021. [DOI: 10.1039/d0nj05673a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The bibliometric method was used to analyze the development trend and research hotspots in past 10 years since the concept of single-atom catalysis was proposed in 2011. This article can provide some guidance for future research of SACs.
Collapse
Affiliation(s)
- Yi Xing
- School of Energy and Environmental Engineering
- University of Science and Technology Beijing
- Beijing 100083
- China
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants
| | - Zefeng Guo
- School of Energy and Environmental Engineering
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - Wei Su
- School of Energy and Environmental Engineering
- University of Science and Technology Beijing
- Beijing 100083
- China
- Key Laboratory of Knowledge Automation for Industrial Processes
| | - Wei Wen
- School of Energy and Environmental Engineering
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - Xiaona Wang
- School of Energy and Environmental Engineering
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - Hui Zhang
- School of Energy and Environmental Engineering
- University of Science and Technology Beijing
- Beijing 100083
- China
| |
Collapse
|
19
|
Liu Y, Xu X, Lv S, Li H, Si Z, Wu X, Ran R, Weng D. Nitrogen doped graphene quantum dots as a cocatalyst of SrTiO3(Al)/CoOx for photocatalytic overall water splitting. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00388g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nitrogen doped graphene quantum dots as a cocatalyst of SrTiO3(Al)/CoOx for photocatalytic overall water splitting.
Collapse
Affiliation(s)
- Yuxiang Liu
- The Key Laboratory of Advanced Materials of Ministry of Education
- School of Materials Science and Engineering
- Tsinghua University
- Beijing City
- China
| | - Xuejun Xu
- College of Materials Science and Energy Engineering
- Foshan University
- Foshan City
- China
| | - Shangchun Lv
- International Graduate School at Shenzhen
- Tsinghua University
- Shenzhen City
- China
| | - Hewen Li
- Wenzheng College
- Soochow University
- Suzhou City
- China
| | - Zhichun Si
- International Graduate School at Shenzhen
- Tsinghua University
- Shenzhen City
- China
| | - Xiaodong Wu
- The Key Laboratory of Advanced Materials of Ministry of Education
- School of Materials Science and Engineering
- Tsinghua University
- Beijing City
- China
| | - Rui Ran
- The Key Laboratory of Advanced Materials of Ministry of Education
- School of Materials Science and Engineering
- Tsinghua University
- Beijing City
- China
| | - Duan Weng
- The Key Laboratory of Advanced Materials of Ministry of Education
- School of Materials Science and Engineering
- Tsinghua University
- Beijing City
- China
| |
Collapse
|
20
|
VALADEZ HUERTA G, NANBA Y, ZULKIFLI NDB, RIVERA ROCABADO DS, ISHIMOTO T, KOYAMA M. First-Principles Calculations of Stability, Electronic Structure, and Sorption Properties of Nanoparticle Systems. JOURNAL OF COMPUTER CHEMISTRY-JAPAN 2021. [DOI: 10.2477/jccj.2021-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Yusuke NANBA
- Research Initiative for Supra Materials, Shinshu University
| | | | | | | | | |
Collapse
|
21
|
Lan Y, Tang W, Yuan C, Xue XG, Liu X, Zhu B, Meng L, Zhou C, Liu F, Xu J, Wang J, Rao G. High-field polarization boosting visible-light photocatalytic H 2 evolution of narrow-bandgap semiconducting (1 − x)KNbO 3– xBa(Ni 1/2Nb 1/2)O 3−δ ferroelectric ceramics. NEW J CHEM 2021. [DOI: 10.1039/d1nj03796j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photocatalytic H2 evolution of semiconducting KN-based ferroelectrics and its further boosting via a high-field polarization has been studied.
Collapse
Affiliation(s)
- Yuchen Lan
- College of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, P. R. China
| | - Wenbin Tang
- College of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, P. R. China
| | - Changlai Yuan
- College of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, P. R. China
- Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, P. R. China
| | - Xiao Gang Xue
- College of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, P. R. China
| | - Xiao Liu
- College of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, P. R. China
| | - Baohua Zhu
- College of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, P. R. China
| | - Liufang Meng
- College of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, P. R. China
| | - Changrong Zhou
- College of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, P. R. China
| | - Fei Liu
- School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, P. R. China
| | - Jiwen Xu
- College of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, P. R. China
| | - Jiang Wang
- College of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, P. R. China
| | - Guanghui Rao
- College of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, P. R. China
- Institute of Physics, Chinese Academy of Sciences, P. R. China
| |
Collapse
|
22
|
Qi X, Shinagawa T, Kishimoto F, Takanabe K. Determination and perturbation of the electronic potentials of solid catalysts for innovative catalysis. Chem Sci 2020; 12:540-545. [PMID: 34163783 PMCID: PMC8179014 DOI: 10.1039/d0sc05148a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Concerns about energy and the environment are motivating a reexamination of catalytic processes, aiming to achieve more efficient and improved catalysis compatible with sustainability. Designing an active site for such heterogeneous catalytic processes remains a challenge leading to a next level breakthrough. Herein, we discuss a fundamental aspect of heterogeneous catalysis: the chemical potential of electrons in solid catalysts during thermal catalysis, which directly reflects the consequent catalytic reaction rate. The use of electrochemical tools during thermal catalysis allows for the quantitative determination of the ill-defined chemical potentials of solids in operando, whereby the potential-rate relationship can be established. Furthermore, the electrochemical means can also introduce the direct perturbation of catalyst potentials, in turn, perturbing the coverage of adsorbates functioning as poison, promoters, or reactants. We collect selected publications on these aspects, and provide a viewpoint bridging the fields of thermal- and electro-catalysis.
Collapse
Affiliation(s)
- Xingyu Qi
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo Japan
| | - Tatsuya Shinagawa
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo Japan
| | - Fuminao Kishimoto
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo Japan
| | - Kazuhiro Takanabe
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo Japan
| |
Collapse
|
23
|
Kumar A, Kumar A, Krishnan V. Perovskite Oxide Based Materials for Energy and Environment-Oriented Photocatalysis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02947] [Citation(s) in RCA: 205] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Ashish Kumar
- School of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| | - Ajay Kumar
- School of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| | - Venkata Krishnan
- School of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| |
Collapse
|
24
|
Zhang L, Yin J, Wei K, Li B, Jiao T, Chen Y, Zhou J, Peng Q. Fabrication of hierarchical SrTiO 3@MoS 2 heterostructure nanofibers as efficient and low-cost electrocatalysts for hydrogen-evolution reactions. NANOTECHNOLOGY 2020; 31:205604. [PMID: 31995537 DOI: 10.1088/1361-6528/ab70ff] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The construction of low-cost, high-performance electrocatalysts instead of platinum catalysts is critical to solving the energy crisis. Here, using simple electrospinning and hydrothermal methods, new MoS2 nanosheets on SrTiO3 nanofibers (NFs) and 2D SrTiO3@MoS2 heterostructure NFs are synthesized. In addition, SrTiO3@MoS2 heterostructure NFs are compared with bare SrTiO3 NFs and MoS2 nanosheets. Importantly, the prepared SrTiO3@MoS2 heterostructure shows better hydrogen-evolution reaction performance than other MoS2-based electrocatalysts with an overpotential of 165 mV at 10 mA cm-2, a Tafel slope of 81.41 mV dec-1, and long-term electrochemical durability of 3000 cycles. Therefore, the present work strongly demonstrates the positive synergy between SrTiO3 NFs and layered MoS2, and also provides a strategy for preparing low-cost and high-activity water-decomposition electrocatalysts.
Collapse
Affiliation(s)
- Lun Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, People's Republic of China. Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Photocatalytic synthesis of N-benzyleneamine from benzylamine on ultrathin BiOCl nanosheets under visible light. J Catal 2019. [DOI: 10.1016/j.jcat.2019.10.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Jeantelot G, Qureshi M, Harb M, Ould-Chikh S, Anjum DH, Abou-Hamad E, Aguilar-Tapia A, Hazemann JL, Takanabe K, Basset JM. TiO2-supported Pt single atoms by surface organometallic chemistry for photocatalytic hydrogen evolution. Phys Chem Chem Phys 2019; 21:24429-24440. [DOI: 10.1039/c9cp04470a] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Platinum single atoms are grafted by SOMC on morphology-controlled TiO2. Their structure is characterized by EXAFS and other techniques, and their activity and stability in HER and backwards reaction are studied and compared to Pt nanoparticles.
Collapse
Affiliation(s)
- Gabriel Jeantelot
- Kaust Catalysis Center (KCC), Physical Science and Engineering Division (PSE)
- King Abdullah University of Science and Technology (KAUST)
- Thuwal 23955-6900
- Saudi Arabia
| | - Muhammad Qureshi
- Kaust Catalysis Center (KCC), Physical Science and Engineering Division (PSE)
- King Abdullah University of Science and Technology (KAUST)
- Thuwal 23955-6900
- Saudi Arabia
| | - Moussab Harb
- Kaust Catalysis Center (KCC), Physical Science and Engineering Division (PSE)
- King Abdullah University of Science and Technology (KAUST)
- Thuwal 23955-6900
- Saudi Arabia
| | - Samy Ould-Chikh
- Kaust Catalysis Center (KCC), Physical Science and Engineering Division (PSE)
- King Abdullah University of Science and Technology (KAUST)
- Thuwal 23955-6900
- Saudi Arabia
| | - Dalaver H. Anjum
- Core Labs
- King Abdullah University of Science and Technology (KAUST)
- Thuwal
- Saudi Arabia
| | - Edy Abou-Hamad
- Core Labs
- King Abdullah University of Science and Technology (KAUST)
- Thuwal
- Saudi Arabia
| | | | | | - Kazuhiro Takanabe
- Kaust Catalysis Center (KCC), Physical Science and Engineering Division (PSE)
- King Abdullah University of Science and Technology (KAUST)
- Thuwal 23955-6900
- Saudi Arabia
| | - Jean-Marie Basset
- Kaust Catalysis Center (KCC), Physical Science and Engineering Division (PSE)
- King Abdullah University of Science and Technology (KAUST)
- Thuwal 23955-6900
- Saudi Arabia
| |
Collapse
|