1
|
Wang Y, Liang X, Dai Y, Zou L, Sun D, Li F. Coupling effect of reaction conditions on the catalytic activity of Cu-Mn composite oxide catalysts for toluene. RSC Adv 2023; 13:25978-25988. [PMID: 37664214 PMCID: PMC10472379 DOI: 10.1039/d3ra04129h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/14/2023] [Indexed: 09/05/2023] Open
Abstract
Volatile organic compounds (VOCs) are one of the major components of air pollution. Catalytic combustion is a promising technology for the treatment of VOCs and at its center is the preparation of efficient and cheap catalysts. In this study, by loading copper (Cu) and manganese (Mn) on Santa Barbara Amorphous-15 (SBA-15) molecular sieve, the Cux-Mny/SBA-15 (x = 1, 2; y = 1, 2) composite metal oxide catalyst was prepared using the equal volume impregnation method. Their performance in the toluene catalytic combustion reaction was investigated by adjusting the molar ratio (x : y), and the loading of Cu and Mn. The results of the Brunner-Emmett-Teller (BET), X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) analyses show that the CuMnO spinel phase can be detected in the Cu-Mn composite metal oxide catalyst doped with a low concentration of Cu. The overall rod-like structure of the fibrous network structure provides a large specific surface area, and the particle crystallinity is low and the dispersion is good. Due to the synergistic effect of Cu and Mn, the greater the amount of Mn3+ and adsorbed oxygen species (Oads) that are available, and the higher the turnover frequency (TOF) value, the better and more superior catalytic performance and excellent stability is obtained, when compared with the single-component oxides used in toluene catalytic combustion. After a continuous catalytic reaction for 12 h, the toluene conversion rate remained above 95%. The coupling effect of the catalytic reaction temperature and concentration of oxygen on the catalytic combustion of toluene was also studied. At a low reaction temperature (<250 °C), the increase of the concentration of oxygen played a superior role in promoting the conversion of toluene. The kinetic analysis of the toluene catalytic combustion process showed that the catalytic combustion of toluene by Cu-Mn/SBA-15 followed both the Mars-Van Krevelen (MVK) and Langmuir-Hinshelwood (L-H) reaction mechanisms. With the increase of the Oads amount caused by the decrease of the Cu ratio, the proportion of the L-H reaction mechanism increases.
Collapse
Affiliation(s)
- Yungang Wang
- Key Laboratory of Thermo-Fluid Science and Engineering (Ministry of Education), Xi'an Jiaotong University Xi'an 710049 Shaanxi China
| | - Xu Liang
- Key Laboratory of Thermo-Fluid Science and Engineering (Ministry of Education), Xi'an Jiaotong University Xi'an 710049 Shaanxi China
| | - Yanjun Dai
- Key Laboratory of Thermo-Fluid Science and Engineering (Ministry of Education), Xi'an Jiaotong University Xi'an 710049 Shaanxi China
| | - Li Zou
- Key Laboratory of Thermo-Fluid Science and Engineering (Ministry of Education), Xi'an Jiaotong University Xi'an 710049 Shaanxi China
| | - Dou Sun
- Key Laboratory of Thermo-Fluid Science and Engineering (Ministry of Education), Xi'an Jiaotong University Xi'an 710049 Shaanxi China
| | - Feixiang Li
- Hubei Special Equipment Inspection and Testing Institute Wuhan 430077 China
| |
Collapse
|
2
|
Gao W, Tang X, Yi H, Jiang S, Yu Q, Xie X, Zhuang R. Mesoporous molecular sieve-based materials for catalytic oxidation of VOC: A review. J Environ Sci (China) 2023; 125:112-134. [PMID: 36375898 DOI: 10.1016/j.jes.2021.11.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/15/2021] [Accepted: 11/11/2021] [Indexed: 06/16/2023]
Abstract
As the main contributor of the formation of particulate matter as well as ozone, volatile organic compounds (VOCs) greatly affect human health and the environmental quality. Catalytic combustion/oxidation has been viewed as an efficient, economically feasible and environmentally friendly way for the elimination of VOCs. Supported metal catalyst is the preferred type of catalysts applied for VOCs catalytic combustion because of the synergy between active components and support as well as its flexibility in the composition. The presence of support not only plays the role of keeping the catalyst with good stability and mechanical strength, but also provides a large specific surface for the good dispersion of active components, which could effectively improve the performance of catalyst as well as decrease the usage of active components, especially the noble metal amount. Mesoporous molecular sieves, owing to their large surface area, unique porous structures, large pore size as well as uniform pore-size distribution, were viewed as superior support for dispersing active components. This review focuses on the recent development of mesoporous molecular sieve supported metal catalysts and their application in catalytic oxidation of VOCs. The effect of active component types, support structure, preparation method, precursors, etc. on the valence state, dispersion as well as the loading of active species were also discussed and summarized. Moreover, the corresponding conversion route of VOCs was also addressed. This review aims to provide some enlightment for designing the supported metal catalysts with superior activity and stability for VOCs removal.
Collapse
Affiliation(s)
- Wei Gao
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaolong Tang
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Honghong Yi
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Shanxue Jiang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Qingjun Yu
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| | - Xizhou Xie
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ruijie Zhuang
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
3
|
Regulating CeO2 morphologies on the catalytic oxidation of toluene at lower temperature: a study of the structure-activity relationship. J Catal 2023. [DOI: 10.1016/j.jcat.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
4
|
Zhao Q, Hou X, Wang J, Cheng DG, Chen F, Zhan X. Engineering Specific Mo–O Bond Stretching to Activate Lattice Oxygen in V-Doped Bi 2MoO 6 for Enhanced Oxidative Dehydrogenation of 1-Butene. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Qinyang Zhao
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou310027, China
| | - Xinglin Hou
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou310027, China
| | - Jinling Wang
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou310027, China
| | - Dang-guo Cheng
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou310027, China
- Institute of Zhejiang University-Quzhou, Quzhou324000, China
| | - Fengqiu Chen
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou310027, China
- Institute of Zhejiang University-Quzhou, Quzhou324000, China
| | - Xiaoli Zhan
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou310027, China
- Institute of Zhejiang University-Quzhou, Quzhou324000, China
| |
Collapse
|
5
|
Uniform mesoporous cobalt oxide supported Pd and/ or Au catalysts: effect of the order of metal deposition on the activity in the total oxidation of toluene. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04896-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Assaouka HT, Daawe DM, Fomekong RL, Nsangou IN, Kouotou PM. Inexpensive and easily replicable precipitation of CuO nanoparticles for low temperature carbon monoxide and toluene catalytic oxidation. Heliyon 2022; 8:e10689. [PMID: 36164522 PMCID: PMC9508573 DOI: 10.1016/j.heliyon.2022.e10689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/17/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Herein CuO nanoparticles (NPs) with nanostructures were prepared by precipitation method using hydrate copper sulfate (CuSO4.5H2O) and sodium hydroxide followed by heat treatment at 400 °C. The as-prepared CuO NPs with nanostructures were investigated using X-ray diffraction (XRD), Fourier Transformed Infra-red spectroscopy (FTIR), Raman spectroscopy, Scanning electron microscopy (SEM), X-ray photochemical spectroscopy (XPS), Energy dispersive spectroscopy (EDS), and Ultra-violet-visible (UV-vis) spectroscopy. In order to evaluate the reducibility, temperature programmed reduction (H2-TPR) was applied. More importantly, CuO NPs was successfully tested as catalyst towards the total conversion of carbon monoxide (CO) and toluene (C7H8). Both XRD and Raman analysis as well as FTIR show that the sample exhibited a monoclinic spinel structure. SEM images indicate that CuO NPs are well-covered by grains size exhibiting homogeneous morphology composed of very fine interconnected particles with an apparent porosity. The sample was made up of Cu and O, according to the XPS and EDS measurements. The band gap energy obtained from optical property analysis is ∼2.65 eV. The catalytic performances of CuO NPs can be assigned to the combined effects of crystal structure, morphology, surface oxygen mobility, redox property and the higher specific surface area (∼87 m2/g). More precisely XPS and H2-TPR data suggests that, the conversion of CO and C7H8 over CuO NPs follows a Mars-van Krevelen type mechanism. More importantly CuO NPs catalysts is reusable and exhibited good stability in the prolonged isothermal test. Thus, CuO NPs is confirmed as an efficient and inexpensive catalysts for CO and C7H8 conversion at low temperatures.
Collapse
Affiliation(s)
- Hippolyte Todou Assaouka
- Department of Chemistry, Faculty of Sciences, University of Maroua, P.O. Box.: 55, Maroua, Cameroon
| | - Daniel Manhouli Daawe
- National Advanced School of Engineering, University of Maroua, P.O. Box. 46, Maroua, Cameroon
| | | | - Issah Njiawouo Nsangou
- Department of Chemistry, Faculty of Sciences, University of Maroua, P.O. Box.: 55, Maroua, Cameroon
| | - Patrick Mountapmbeme Kouotou
- National Advanced School of Engineering, University of Maroua, P.O. Box. 46, Maroua, Cameroon.,Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
7
|
Zhu W, Wang XB, Li C, Chen X, Li WY, Liu Z, Liang C. Defect engineering over Co3O4 catalyst for surface lattice oxygen activation and boosted propane total oxidation. J Catal 2022. [DOI: 10.1016/j.jcat.2022.06.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Xu J, Zhang T, Fang S, Li J, Wu Z, Wang W, Zhu J, Gao E, Yao S. Exploring the roles of oxygen species in H 2 oxidation at β-MnO 2 surfaces using operando DRIFTS-MS. Commun Chem 2022; 5:97. [PMID: 36697951 PMCID: PMC9814464 DOI: 10.1038/s42004-022-00717-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/08/2022] [Indexed: 01/28/2023] Open
Abstract
Understanding of the roles of oxygen species at reducible metal oxide surfaces under real oxidation conditions is important to improve the performance of these catalysts. The present study addresses this issue by applying a combination of operando diffuse reflectance infrared Fourier transform spectroscopy with a temperature-programmed reaction cell and mass spectrometry to explore the behaviors of oxygen species during H2 oxidation in a temperature range of 25-400 °C at β-MnO2 surfaces. It is revealed that O2 is dissociated simultaneously into terminal-type oxygen (M2+-O2-) and bridge-type oxygen (M+-O2--M+) via adsorption at the Mn cation with an oxygen vacancy. O2 adsorption is inhibited if the Mn cation is covered with terminal-adsorbed species (O, OH, or H2O). In a temperature range of 110-150 °C, OH at Mn cation becomes reactive and its reaction product (H2O) can desorb from the Mn cation, resulting in the formation of bare Mn cation for O2 adsorption and dissociation. At a temperature above 150 °C, OH is reactive enough to leave bare Mn cation for O2 adsorption and dissociation. These results suggest that bare metal cations with oxygen vacancies are important to improve the performance of reducible metal oxide catalysts.
Collapse
Affiliation(s)
- Jiacheng Xu
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, China
- School of Material Science and Engineering, Changzhou University, Changzhou, China
| | - Tiantian Zhang
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, China
| | - Shiyu Fang
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, China
| | - Jing Li
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, China
- Advanced Plasma Catalysis Engineering Laboratory for China Petrochemical Industry, Changzhou, China
| | - Zuliang Wu
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, China
- Advanced Plasma Catalysis Engineering Laboratory for China Petrochemical Industry, Changzhou, China
| | - Wei Wang
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, China
- Advanced Plasma Catalysis Engineering Laboratory for China Petrochemical Industry, Changzhou, China
| | - Jiali Zhu
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, China
- Advanced Plasma Catalysis Engineering Laboratory for China Petrochemical Industry, Changzhou, China
| | - Erhao Gao
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, China
- Advanced Plasma Catalysis Engineering Laboratory for China Petrochemical Industry, Changzhou, China
| | - Shuiliang Yao
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, China.
- School of Material Science and Engineering, Changzhou University, Changzhou, China.
- Advanced Plasma Catalysis Engineering Laboratory for China Petrochemical Industry, Changzhou, China.
| |
Collapse
|
9
|
He D, Ding X, Li S, Liang Y, Liu Y, Zhao M, Wang J, Chen Y. Constructing a Pt/YMn 2O 5 Interface to Form Multiple Active Centers to Improve the Hydrothermal Stability of NO Oxidation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20875-20887. [PMID: 35475604 DOI: 10.1021/acsami.2c01371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The hydrothermal stability of NO oxidation is the key to the practical application of diesel oxidation catalysts in diesel engines, which in the laboratory requires that NO activity does not decrease after aging for 10 h with 10% H2O/air at 800 °C. On the one hand, the construction of a metal/oxide interface can lead to abundant oxygen vacancies (Ov), which compensate for the loss of activity caused by the aggregation of Pt particles after aging. On the other hand, YMn2O5 (YMO) has excellent thermal stability and NO oxidation capacity. Therefore, a Pt/YMn2O5-La-Al2O3 (Pt/YMO-LA) catalyst was prepared by the impregnation method. The support of the catalyst, YMn2O5-La-Al2O3 (YMO-LA), was obtained by mixing high specific surface LA and YMO ball-milling. Under laboratory-simulated diesel exhaust flow, the NO oxidation performance of Pt/YMO-LA did not decrease after hydrothermal aging. Combining high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and oxygen temperature-programmed desorption (O2-TPD), the Pt/YMn2O5 interface was formed after hydrothermal aging, and the increased Ov can provide reactive oxygen to Pt and YMO. The cooperative catalysis of multiple active centers composed of Pt, YMO, and Ov is the crucial factor to maintain the NO oxidation performance. In addition, in situ diffuse reflectance infrared Fourier transform spectra (DRIFTs) show that an increase in Ov is beneficial to the adsorption and desorption of more nitrate and nitrite intermediates, thus achieving the hydrothermal stability of NO oxidation.
Collapse
Affiliation(s)
- Darong He
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Wangjiang Road 29, Chengdu 610064, Sichuan, China
| | - Xinmei Ding
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Wangjiang Road 29, Chengdu 610064, Sichuan, China
| | - Shanshan Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Wangjiang Road 29, Chengdu 610064, Sichuan, China
| | - Yanli Liang
- College of Chemical Engineering, Sichuan University of Science & Engineering, Zigong 643002, Sichuan, China
| | - Yaxin Liu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Wangjiang Road 29, Chengdu 610064, Sichuan, China
| | - Ming Zhao
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Wangjiang Road 29, Chengdu 610064, Sichuan, China
- Center of Engineering of Vehicular Exhaust Gases Abatement, Chengdu 610064, Sichuan, China
- Center of Engineering of Environmental Catalytic Material, Chengdu 610064, Sichuan, China
| | - Jianli Wang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Wangjiang Road 29, Chengdu 610064, Sichuan, China
- Center of Engineering of Vehicular Exhaust Gases Abatement, Chengdu 610064, Sichuan, China
- Center of Engineering of Environmental Catalytic Material, Chengdu 610064, Sichuan, China
| | - Yaoqiang Chen
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Wangjiang Road 29, Chengdu 610064, Sichuan, China
- Center of Engineering of Vehicular Exhaust Gases Abatement, Chengdu 610064, Sichuan, China
- Center of Engineering of Environmental Catalytic Material, Chengdu 610064, Sichuan, China
- Institute of New Energy and Low-Carbon Technology, Chengdu 610064, Sichuan, China
| |
Collapse
|
10
|
Zeng J, Xie H, Zhang H, Huang M, Liu X, Zhou G, Jiang Y. Insight into the effects of oxygen vacancy on the toluene oxidation over α-MnO 2 catalyst. CHEMOSPHERE 2022; 291:132890. [PMID: 34801567 DOI: 10.1016/j.chemosphere.2021.132890] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/27/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
In order to clarify the role of oxygen vacancy (OV), five α-MnO2 catalysts with abundant OVs are fabricated via a novel and facile redox-precipitation approach and employed to the toluene oxidation in air. The concentration of OVs in α-MnO2 catalysts is regulated via the alkyl chain length of alcohols, and its correlation with catalytic performances is scientifically investigated based on various characterization technologies and density functional theory (DFT) calculation. The α-MnO2-C2 catalyst exhibits excellent catalytic activity (T90 = 217 °C), stability, and water resistance for toluene oxidation in air. The OVs can induce the new bandgap states (BGS), which upshift the antibonding orbitals relative to the Fermi level (Ef), eventually favoring the formation of adsorbed active oxygen species. Furthermore, the OVs cause an increase in the amount of Mn3+, resulting in the elongated Mn-O bonds due to the strong Jahn-Teller effect of Mn3+. Therefore, the synergistic effects of OVs benefit toluene oxidation through L-H and MvK mechanisms over the prepared α-MnO2-Cx catalysts. This work reveals the important role of OVs in the promotion of toluene catalytic oxidation activity and also may provide new insights for the design of high-performance VOCs oxidation elimination catalyst.
Collapse
Affiliation(s)
- Jia Zeng
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Chengdu Institute of Organic Chemistry, Chinese Academy of Science, Chengdu, 610041, China; University of Chinese Academy of Science, Beijing, 100049, China
| | - Hongmei Xie
- Key Laboratory of Catalysis Science and Technology of Chongqing Education Commission, Department of Chemical Engineering, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Hanyi Zhang
- Key Laboratory of Catalysis Science and Technology of Chongqing Education Commission, Department of Chemical Engineering, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Min Huang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Chengdu Institute of Organic Chemistry, Chinese Academy of Science, Chengdu, 610041, China; University of Chinese Academy of Science, Beijing, 100049, China
| | - Xuecheng Liu
- Key Laboratory of Catalysis Science and Technology of Chongqing Education Commission, Department of Chemical Engineering, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Guilin Zhou
- Key Laboratory of Catalysis Science and Technology of Chongqing Education Commission, Department of Chemical Engineering, Chongqing Technology and Business University, Chongqing, 400067, China.
| | - Yi Jiang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Chengdu Institute of Organic Chemistry, Chinese Academy of Science, Chengdu, 610041, China.
| |
Collapse
|
11
|
Xia T, Yao S, Wu Z, Li G, Li J. High ratio of Ce 3+/(Ce 3++Ce 4+) enhanced the plasma catalytic degradation of n-undecane on CeO 2/γ-Al 2O 3. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127700. [PMID: 34799160 DOI: 10.1016/j.jhazmat.2021.127700] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/15/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
n-Undecane (C11) is the main component of volatile organic compounds (VOCs) emitted from the printing industry, and its emission to the atmosphere should be controlled. In this study, a dielectric barrier discharge reactor coupled with CeO2/γ-Al2O3 catalysts was used to degrade C11. The effect of the chemical state of CeO2 on C11 degradation was evaluated by varying the CeO2 loading on γ-Al2O3. The C11 conversion and COx selectivity were as high as 92% and 80%, respectively, under mild reaction conditions of energy density 34 J/L and 423 K to degrade 134 mg/m3 C11 in a simulated air using 10 wt%CeO2 impregnated on γ-Al2O3. After analyses using in-situ plasma diffuse reflectance Fourier transform infrared spectroscopy and gas chromatography-mass spectrometry, it was found that most of C11 were degraded to CO2, and the main by-products on catalyst surfaces were alcohols and ketones. It was concluded from X-ray photoemission spectroscopy that the good performance of the 10 wt%CeO2/γ-Al2O3 catalyst was due to its high Ce3+/(Ce3++Ce4+) ratio as well as the oxygen vacancies. The Ce3+/(Ce3++Ce4+) ratio of CeO2 on γ-Al2O3 is crucial for the degradation of C11, providing a further roadmap for the plasma catalytic oxidation of alkanes.
Collapse
Affiliation(s)
- Tongtong Xia
- School of Environmental and Safety Engineering, Advanced Plasma Catalysis Engineering Laboratory for China Petrochemical Industry, Changzhou University, Jiangsu 213164, China
| | - Shuiliang Yao
- School of Environmental and Safety Engineering, Advanced Plasma Catalysis Engineering Laboratory for China Petrochemical Industry, Changzhou University, Jiangsu 213164, China.
| | - Zuliang Wu
- School of Environmental and Safety Engineering, Advanced Plasma Catalysis Engineering Laboratory for China Petrochemical Industry, Changzhou University, Jiangsu 213164, China
| | - Guojian Li
- Engineering Research Center of Construction Technology of Precast Concrete of Zhejiang Province, Hangzhou 310018, China
| | - Jing Li
- School of Environmental and Safety Engineering, Advanced Plasma Catalysis Engineering Laboratory for China Petrochemical Industry, Changzhou University, Jiangsu 213164, China; Engineering Research Center of Construction Technology of Precast Concrete of Zhejiang Province, Hangzhou 310018, China.
| |
Collapse
|
12
|
Fan J, Sun Y, Fu M, Li J, Ye D. Modulate the metal support interactions to optimize the surface-interface features of Pt/CeO 2 catalysts for enhancing the toluene oxidation. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127505. [PMID: 34736184 DOI: 10.1016/j.jhazmat.2021.127505] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/27/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Metal support interactions modulation is one of the effective strategies to enhance the catalytic performance. Herein, we reported that modulating metal support interactions by switching the strength (CO, H2, NH3) and temperature (200, 300, 400 °C) of reducing gases is a facile way to improve the catalytic performance of Pt/CeO2 for toluene oxidation. The distinct reduction treatments will stepwise enhance the reducibility, ratio of Pt0 and oxygen vacancy concentration, which dominated the activity. The metal support interactions modulation can significantly affect toluene deep oxidation (from benzoate to formate or monodentate carbonate) via enhancing the mobility of surface/lattice oxygen and activation ability towards O2 molecules, since the main activation sites for O2 molecules expand from Pt0 sites to oxygen vacancies and Pt0 sites with temperature increasing.
Collapse
Affiliation(s)
- Jie Fan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yuhang Sun
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Mingli Fu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control (SCUT), Guangzhou 510006, China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou 510006, China
| | - Jiaqi Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - Daiqi Ye
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control (SCUT), Guangzhou 510006, China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou 510006, China.
| |
Collapse
|
13
|
Xiao M, Yu X, Guo Y, Ge M. Boosting Toluene Combustion by Tuning Electronic Metal-Support Interactions in In Situ Grown Pt@Co 3O 4 Catalysts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1376-1385. [PMID: 34939778 DOI: 10.1021/acs.est.1c07016] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electronic metal-support interaction (EMSI) has attracted great attention in volatile organic compound (VOC) abatement. Herein, Pt@Co3O4 catalysts were prepared via a metal-organic framework (MOF) in situ growth approach to boost toluene degradation. The partial electron transfer from Co3O4 to Pt species was induced by the EMSI effect to generate the electron-rich Pt and Co3+ species. The electrophilic O2 molecules could be activated by picking up the electrons from electron-rich Pt species to form nucleophilic oxygen species, which is conducive to attack C-H bonds in toluene. The redox ability and surface oxygen species activity of catalysts were improved due to strong EMSI. As expected, the excellent toluene activity was achieved, meanwhile exhibiting satisfactory water resistance and long-term stability for toluene combustion. In situ diffuse reflectance infrared Fourier transform spectroscopy results elucidated that surface lattice oxygen species should deeply participate in toluene degradation, which could be efficiently replenished by gaseous oxygen. This work may provide a new idea for exploring the relationship between the electron transfer effect and efficient catalytic performance of VOCs.
Collapse
Affiliation(s)
- Menglan Xiao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiaolin Yu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yucong Guo
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Maofa Ge
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| |
Collapse
|
14
|
Uniform platinum nanoparticles loaded on Universitetet i Oslo-66 (UiO-66): Active and stable catalysts for gas toluene combustion. J Colloid Interface Sci 2022; 606:1811-1822. [PMID: 34507172 DOI: 10.1016/j.jcis.2021.08.127] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 01/18/2023]
Abstract
Highly dispersed Pt nanoparticles supported UiO-66 catalysts were successfully prepared by the incipient wetness impregnation method. Their thermal catalytic performances were evaluated by toluene degradation. The physicochemical properties of the samples were characterized using a series of characterization methods. The catalytic activity of catalysts remained essentially unchanged in the high weight hourly space velocity, stability and water resistance test, which also indicated good catalytic performance. In the reusability test, the catalytic performance was found to be enhanced after the reaction, because of the catalyst might follow a Pt0-PtO synergistic catalytic mechanism (similar to Mars-van Krevelen mechanism) and there was a phase transition between Pt0 and PtO during the reaction. Firstly, the toluene adsorbed on the catalyst surface was oxidized by the activated lattice oxygen of the PtO. Then, consumption of oxygen atoms led to formation of oxygen vacancies, and finally the molecular oxygen adsorbed by Pt0 was activated and passed to the PtO to supplement the oxygen vacancies, forming a redox cycle. In addition, the possible catalytic oxidation mechanism of toluene was also revealed.
Collapse
|
15
|
Wang Y, He J, Li X, Wang M, Zhou Y, Xiao J, Chen D, Lu J. Low Temperature Combustion of VOCs with Enhanced Catalytic Activity Over MnO 2 Nanotubes Loaded with Pt and Ni-Fe Spinel. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46830-46839. [PMID: 34547206 DOI: 10.1021/acsami.1c15372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
MnO2 nanotubes loaded with Pt and Ni-Fe spinel were synthesized using simple hydrothermal and sol-gel techniques. After loading with Ni-Fe spinel, the specific surface area of the material increases 3-fold. This change helped to provide more active sites and facilitated the association between the catalyst and volatile organic compounds (VOCs). X-ray photoelectron spectroscopy determined that the adsorbed oxygen concentrations were all greatly increased after Pt loading, indicating that Pt promoted the adsorption of oxygen and so accelerated the combustion process. The performance of the catalyst after loading with 2 wt % Pt was greatly improved, such that the T90 for benzene decomposition was decreased to 113 °C. In addition, the 2% Pt/2Mn@NFO exhibited excellent low-temperature catalytic activity when reacting with low concentrations of toluene and ethyl acetate. This work therefore demonstrates a viable new approach to the development of Mn-based catalysts for the low temperature catalytic remediation of VOCs.
Collapse
Affiliation(s)
- Yaru Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Jiaqin He
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Xunxun Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Mengmeng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Yuanbo Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Jun Xiao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Dongyun Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| |
Collapse
|
16
|
Abstract
In this contribution, the three Mn-Zr catalysts with MnxZr1−xO2 hybrid phase were synthesized by two-step precipitation route (TP), conventional coprecipitation method (CP) and ball milling process (MP). The components, textural and redox properties of the Mn-Zr hybrid catalysts were studied via XRD, BET, XPS, HR-TEM, H2-TPR. Regarding the variation of synthesis routes, the TP and CP routes offer a more obvious advantage in the adjustment of the concentration of MnxZr1−xO2 solid solution compared to the MP process, which directly commands the content of Mn4+ and oxygen vacancy and lattice oxygen, and thereby leads to the enhanced mobility of reactive oxygen species and catalytic activity for toluene combustion. Moreover, the TP-Mn2Zr3 catalyst with the enriched exposure content of 51.4% for the defective (111) lattice plane of MnxZr1−xO2 exhibited higher catalytic activity and thermal stability for toluene oxidation than that of the CP-Mn2Zr3 sample with a value of 49.3%. This new observation will provide a new perspective on the design of bimetal catalysts with a higher VOCs combustion abatement.
Collapse
|
17
|
Yuan E, Zhou M, Gu M, Jian P, Xia L, Xiao J. Boosting Creation of Oxygen Vacancies in Co-Co3O4 Homogeneous Hybrids for Aerobic Oxidation of Cyclohexane. Catal Letters 2021. [DOI: 10.1007/s10562-021-03638-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Zhu W, Chen X, Li C, Liu Z, Liang C. Manipulating morphology and surface engineering of spinel cobalt oxides to attain high catalytic performance for propane oxidation. J Catal 2021. [DOI: 10.1016/j.jcat.2021.02.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Zeng J, Xie H, Liu Z, Liu X, Zhou G, Jiang Y. Oxygen vacancy induced MnO2 catalysts for efficient toluene catalytic oxidation. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01274f] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The α-MnO2, with abundant oxygen vacancies, facilitates the adsorption and activation of O2 to produce active adsorbed oxygen species and weakens lattice oxygens species. These oxygen species can significantly improve toluene catalytic oxidation.
Collapse
Affiliation(s)
- Jia Zeng
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Chengdu Institute of Organic Chemistry, Chinese Academy of Science, Chengdu 610041, Sichuan, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Hongmei Xie
- Chongqing Key Laboratory of Catalysis and Environmental New Materials, Department of Chemical Engineering, Chongqing Technology and Business University, Chongqing 400067, China
| | - Zhao Liu
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Chengdu Institute of Organic Chemistry, Chinese Academy of Science, Chengdu 610041, Sichuan, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Xuecheng Liu
- Chongqing Key Laboratory of Catalysis and Environmental New Materials, Department of Chemical Engineering, Chongqing Technology and Business University, Chongqing 400067, China
| | - Guilin Zhou
- Chongqing Key Laboratory of Catalysis and Environmental New Materials, Department of Chemical Engineering, Chongqing Technology and Business University, Chongqing 400067, China
| | - Yi Jiang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Chengdu Institute of Organic Chemistry, Chinese Academy of Science, Chengdu 610041, Sichuan, China
| |
Collapse
|
20
|
Wang M, Chen D, Li N, Xu Q, Li H, He J, Lu J. Nanocage-Shaped Co 3- x Zr x O 4 Solid-Solution Supports Loaded with Pt Nanoparticles as Effective Catalysts for the Enhancement of Toluene Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2005715. [PMID: 33241643 DOI: 10.1002/smll.202005715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Nanocage-shaped Co3- x Zrx O4 solid-solution supports and the corresponding platinum loaded nanocomposites, yPt/Co3- x Zrx O4 (x =0.27, 0.50, 0.69; y = 0.5, 1.0, 2.0 wt.%), are successfully fabricated via a Cu2 O nanocube hard template method and a glycol reduction method, respectively. The hollow nanocage structures obviously improve surface areas; moreover, the Zr doping forms the Co3- x Zrx O4 solid-solution supports, and the corresponding yPt/Co3- x Zrx O4 catalysts promote the enhancement of catalytic performance. Catalytic activity toward toluene combustion is enhanced for the 2.0 wt% Pt/Co2.73 Zr0.27 O4 catalyst. The catalysts are characterized using multiple techniques. Pt nanoparticles are uniformly dispersed across the Co2.73 Zr0.27 O4 nanocage surface. The 2.0 wt% Pt/Co2.73 Zr0.27 O4 catalyst exhibits the highest catalytic activity among all the samples and demonstrates good stability, with 90% toluene conversion obtained at a temperature of 165 °C. The same catalyst accomplishes full toluene oxidation at 180 °C, at a weight hourly space velocity of 36 000 mL h-1 g-1 . The apparent activation energy (Ea ) over the yPt/Co2.73 Zr0.27 O4 samples are significantly lower than those over the Co3- x Zrx O4 supports, with the 2.0 wt% Pt/Co2.73 Zr0.27 O4 catalyst exhibiting the lowest Ea value. These findings demonstrate the potential of the 2.0 wt% Pt/Co2.73 Zr0.27 O4 catalyst as a promising catalyst toward atmospheric toluene removal.
Collapse
Affiliation(s)
- Mengmeng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Dongyun Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Najun Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Qingfeng Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Hua Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Jinghui He
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|