1
|
Chen J, Yu Z, Liang Y, Feng G, Gan T, Huang Z, Hu H, Zhang Y. Facile construction of a stable biomass-derived carbon-supported AlZr composite with crystalline solid solution and Brønsted-Lewis dual acidity for efficient catalytic conversion of cellulose. Int J Biol Macromol 2024:136061. [PMID: 39448284 DOI: 10.1016/j.ijbiomac.2024.136061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024]
Abstract
Exploiting cellulose-derived levulinic acid (LA) in biorefinery has potential application prospects, and the development of efficient and stable catalysts is crucial yet challenging. In this study, a bimetallic synergy strategy was proposed to construct an efficient and durable solid acid catalyst with crystalline solid solution by a totally solid-phase method. Mechanical activation (MA)-treated precursor (metal salts, starch, and urea) was calcined to obtain a stable biomass-derived carbon (BC)-supported AlZr (MA-AZ/BC) composite, which was applied for catalytic conversion of cellulose to LA in aqueous-phase system. The results indicate that the synergistic effect of bimetallic crystalline solid solution and the existence of Brønsted-Lewis dual-acid sites in the MA-AZ/BC catalyst contributed to a cellulose conversion efficiency of 97.5 % and a LA yield of 67.1 %. Benefiting from the strong bimetal-support interaction, the MA-AZ/BC catalyst exhibited favorable stability and recoverability. On the basis of comprehensive analysis, a reaction mechanism of Brønsted-Lewis dual-acid sites for synergistic catalytic conversion of cellulose was proposed. This study provides a new idea for the rational design and environmentally friendly fabrication of functional BC-based catalysts for efficiently producing platform compounds derived from biomass.
Collapse
Affiliation(s)
- Jiashuo Chen
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Zi Yu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yongxin Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Guifen Feng
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Tao Gan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; Key Laboratory of New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China
| | - Zuqiang Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; Key Laboratory of New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China
| | - Huayu Hu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; Key Laboratory of New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China
| | - Yanjuan Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; Key Laboratory of New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China.
| |
Collapse
|
2
|
Liu X, Zhu Z. Synthesis and Catalytic Applications of Advanced Sn- and Zr-Zeolites Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306533. [PMID: 38148424 PMCID: PMC10953593 DOI: 10.1002/advs.202306533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/09/2023] [Indexed: 12/28/2023]
Abstract
The incorporation of isolated Sn (IV) and Zr (IV) ions into silica frameworks is attracting widespread attention, which exhibits remarkable catalytic performance (conversion, selectivity, and stability) in a broad range of reactions, especially in the field of biomass catalytic conversion. As a representative example, the conversion route of carbohydrates into valuable platform and commodity chemicals such as lactic acid and alkyl lactates, has already been established. The zeotype materials also possess water-tolerant ability and are capable to be served as promising heterogeneous catalysts for aqueous reactions. Therefore, dozens of Sn- and Zr-containing silica materials with various channel systems have been prepared successfully in the past decades, containing 8 membered rings (MR) small pore CHA zeolite, 10-MR medium pore zeolites (FER, MCM-56, MEL, MFI, MWW), 12-MR large pore zeolites (Beta, BEC, FAU, MOR, MSE, MTW), and 14-MR extra-large pore UTL zeolite. This review about Sn- and Zr-containing metallosilicate materials focuses on their synthesis strategy, catalytic applications for diverse reactions, and the effect of zeolite characteristics on their catalytic performances.
Collapse
Affiliation(s)
- Xue Liu
- Department of ChemistryCollege of ScienceHebei Agricultural UniversityLingyusi Road 289Baoding071001P. R. China
| | - Zhiguo Zhu
- College of Chemistry and Chemical EngineeringYantai UniversityQingquan Road 30Yantai264005P. R. China
| |
Collapse
|
3
|
Wei Y, Lu J, Zhang S, Wu C, Nong X, Li J, Liu CL, Dong WS. A nitrogen-doped carbon nanotube confined CuCo nanoalloy catalyzing one-pot conversion of levulinic acid to 1,4-pentanediol. Chem Commun (Camb) 2023; 59:2477-2480. [PMID: 36752165 DOI: 10.1039/d2cc06252f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Nitrogen-doped carbon nanotube confined CuCo nanoalloy catalysts are fabricated by using ZIF-67 as a sacrificial template for the one-pot selective hydrogenation of levulinic acid (LA) to 1,4-pentanediol (1,4-PDO). The optimal catalyst achieves a high 1,4-PDO yield of 87.8% at full LA conversion. It also exhibits good recycling stability and can be reused at least 5 times.
Collapse
Affiliation(s)
- Yan Wei
- Key Laboratory of Applied Surface and Colloid Chemistry (SNNU), Ministry of Education (MOE), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, Shaanxi, China.
| | - Jingjing Lu
- Key Laboratory of Applied Surface and Colloid Chemistry (SNNU), Ministry of Education (MOE), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, Shaanxi, China.
| | - Shuxian Zhang
- Synfuels China Co., Ltd, Beijing, 101407, P. R. China
| | - Chengming Wu
- Key Laboratory of Applied Surface and Colloid Chemistry (SNNU), Ministry of Education (MOE), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, Shaanxi, China.
| | - Xiaoyao Nong
- Key Laboratory of Applied Surface and Colloid Chemistry (SNNU), Ministry of Education (MOE), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, Shaanxi, China.
| | - Jifan Li
- Key Laboratory of Applied Surface and Colloid Chemistry (SNNU), Ministry of Education (MOE), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, Shaanxi, China.
| | - Chun-Ling Liu
- Key Laboratory of Applied Surface and Colloid Chemistry (SNNU), Ministry of Education (MOE), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, Shaanxi, China.
| | - Wen-Sheng Dong
- Key Laboratory of Applied Surface and Colloid Chemistry (SNNU), Ministry of Education (MOE), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, Shaanxi, China.
| |
Collapse
|
4
|
Lu J, Wei Y, Lu K, Wu C, Nong X, Li J, Liu CL, Dong WS. Co-C N embedded in N-doped carbon as robust catalysts for the synthesis of γ-valerolactone from the hydrogenation of levulinic acid under low hydrogen pressure. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
To DT, Chiang YC, Lee JF, Chen CL, Lin YC. Nitrogen-Doped Co Catalyst Derived from Carbothermal Reduction of Cobalt Phyllosilicate and its Application in Levulinic Acid Hydrogenation to γ-Valerolactone. Catal Letters 2022. [DOI: 10.1007/s10562-021-03784-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Hijazi A, Khalaf N, Kwapinski W, Leahy JJ. Catalytic valorisation of biomass levulinic acid into gamma valerolactone using formic acid as a H 2 donor: a critical review. RSC Adv 2022; 12:13673-13694. [PMID: 35530384 PMCID: PMC9073962 DOI: 10.1039/d2ra01379g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/29/2022] [Indexed: 12/12/2022] Open
Abstract
This review sheds light on the catalytic valorisation of agroforestry biomass through levulinic acid and formic acid towards γ-valerolactone and other higher-value chemicals. γ-Valerolactone is produced by the hydrogenation of levulinic acid, which can be achieved through an internal hydrogen transfer reaction with formic acid in the presence of catalyst. By reviewing corresponding catalysts, the paper underlines the most efficient steps constituting an integrated sustainable process that eliminates the need for external H2 sources while producing biofuels as an alternative energy source. Furthermore, the review emphasizes the role of catalysts in the hydrogenation of levulinic acid, with special focus on heterogeneous catalysts. The authors highlighted the dual role of different catalysts by comparing their activity, morphology, electronic structure, synergetic relation between support and doped species, as well as their deactivation and recyclability. Acknowledging the need for green and sustainable H2 production, the review extends to cover the role of photo catalysis in dissociating H2-donor solvents for reducing levulinic acid into γ-valerolactone under mild temperatures. To wrap up, the critical discussion presented enables readers to hone their knowledge about different schools and emphasizes research gaps emerging from experimental work. The review concludes with a comprehensive table summarizing the recent catalysts reported between the years 2017-2021.
Collapse
Affiliation(s)
- Ayman Hijazi
- Chemical and Environmental Science Department, University of Limerick Limerick V94 T9PX Ireland +353-83-3783841
| | - Nidal Khalaf
- Chemical and Environmental Science Department, University of Limerick Limerick V94 T9PX Ireland +353-83-3783841
| | - Witold Kwapinski
- Chemical and Environmental Science Department, University of Limerick Limerick V94 T9PX Ireland +353-83-3783841
| | - J J Leahy
- Chemical and Environmental Science Department, University of Limerick Limerick V94 T9PX Ireland +353-83-3783841
| |
Collapse
|
7
|
Lan F, Zhang H, Zhao C, Shu Y, Guan Q, Li W. Copper Clusters Encapsulated in Carbonaceous Mesoporous Silica Nanospheres for the Valorization of Biomass-Derived Molecules. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01270] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Fujun Lan
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Huiling Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Chaoyue Zhao
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Yu Shu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Qingxin Guan
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Wei Li
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| |
Collapse
|
8
|
Zeng Y, Wang B, Yan F, Xu W, Bai G, Li Y, Yan X, Chen L. Boron modified Cu/Al2O3 catalysts for the selective reductive amination of levulinic acid to N‐substituted pyrrolidinones. ChemCatChem 2022. [DOI: 10.1002/cctc.202200311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yuyao Zeng
- Tianjin University School of Chemical Engineering And Technology School of Chemical Engineering and Technology CHINA
| | - Bowei Wang
- Tianjin University School of Chemical Engineering And Technology School of Chemical Engineering and Technology CHINA
| | - Fanyong Yan
- Tiangong University Tianjin Key Laboratory of Green Chemical Engineering Process Engineering CHINA
| | - Wensheng Xu
- Tianjin University School of Chemical Engineering And Technology School of Chemical Engineering and Technology CHINA
| | - Guoyi Bai
- Hebei University College of Chemistry and Environmental Science CHINA
| | - Yang Li
- Tianjin University School of Chemical Engineering And Technology School of Chemical Engineering and Technology CHINA
| | - Xilong Yan
- Tianjin University School of Chemical Engineering And Technology School of Chemical Engineering and Technology CHINA
| | - Ligong Chen
- Tianjin University School of Chemical Engineering and Technology Yaguan road 135# 300350 Tianjin CHINA
| |
Collapse
|
9
|
Ding S, Zhang H, Li B, Xu W, Chen X, Yao S, Xiong L, Guo H, Chen X. Selective hydrogenation of butyl levulinate to γ-valerolactone over sulfonated activated carbon-supported SnRuB bifunctional catalysts. NEW J CHEM 2022. [DOI: 10.1039/d1nj04800g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The sulfonated activated carbon (SAC) supported SnRuB catalyst was developed through the co-impregnation followed by a chemical reduction process and applied for BL hydrogenation to GVL for the first time.
Collapse
Affiliation(s)
- Shuai Ding
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
- Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
- R&D Center of Xuyi Attapulgite Energy and Environmental Materials, Xuyi 211700, China
| | - Hairong Zhang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
- R&D Center of Xuyi Attapulgite Energy and Environmental Materials, Xuyi 211700, China
| | - Bo Li
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
- R&D Center of Xuyi Attapulgite Energy and Environmental Materials, Xuyi 211700, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenping Xu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
- R&D Center of Xuyi Attapulgite Energy and Environmental Materials, Xuyi 211700, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuefang Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
- R&D Center of Xuyi Attapulgite Energy and Environmental Materials, Xuyi 211700, China
| | - Shimiao Yao
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
- R&D Center of Xuyi Attapulgite Energy and Environmental Materials, Xuyi 211700, China
| | - Lian Xiong
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
- R&D Center of Xuyi Attapulgite Energy and Environmental Materials, Xuyi 211700, China
| | - Haijun Guo
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
- R&D Center of Xuyi Attapulgite Energy and Environmental Materials, Xuyi 211700, China
| | - Xinde Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
- R&D Center of Xuyi Attapulgite Energy and Environmental Materials, Xuyi 211700, China
| |
Collapse
|
10
|
Dutta S, Bhat NS. Recent Advances in the Value Addition of Biomass‐Derived Levulinic Acid: A Review Focusing on its Chemical Reactivity Patterns. ChemCatChem 2021. [DOI: 10.1002/cctc.202100032] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Saikat Dutta
- Department of Chemistry National Institute of Technology Karnataka Surathkal Mangalore 575025 India
| | - Navya Subray Bhat
- Department of Chemistry National Institute of Technology Karnataka Surathkal Mangalore 575025 India
| |
Collapse
|
11
|
Feng Y, Long S, Tang X, Sun Y, Luque R, Zeng X, Lin L. Earth-abundant 3d-transition-metal catalysts for lignocellulosic biomass conversion. Chem Soc Rev 2021; 50:6042-6093. [PMID: 34027943 DOI: 10.1039/d0cs01601b] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Transformation of biomass to chemicals and fuels is a long-term goal in both science and industry. However, high cost is one of the major obstacles to the industrialization of this sustainable technology. Thus, developing catalysts with high activity and low-cost is of great importance for biomass conversion. The last two decades have witnessed the increasing achievement of the use of earth-abundant 3d-transition-metals in catalysis due to their low-cost, high efficiency and excellent stability. Here, we aim to review the fast development and recent advances of 3d-metal-based catalysts including Cu, Fe, Co, Ni and Mn in lignocellulosic biomass conversion. Moreover, present research trends and invigorating perspectives on future development are given.
Collapse
Affiliation(s)
- Yunchao Feng
- College of Energy, Xiamen University, Xiamen 361102, China.
| | | | | | | | | | | | | |
Collapse
|
12
|
Guo H, Ding S, Zhang H, Wang C, Peng F, Xiong L, Chen X, Ouyang X. Improvement on the catalytic performances of butyl levulinate hydrogenation to γ-valerolactone over self-regenerated CuNiCoB/Palygorskite catalyst. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Tsou YJ, To TD, Chiang YC, Lee JF, Kumar R, Chung PW, Lin YC. Hydrophobic Copper Catalysts Derived from Copper Phyllosilicates in the Hydrogenation of Levulinic Acid to γ-Valerolactone. ACS APPLIED MATERIALS & INTERFACES 2020; 12:54851-54861. [PMID: 33232108 DOI: 10.1021/acsami.0c17612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A reduction-silylation-reduction method was developed to synthesize hydrophobic Cu catalysts derived from Cu phyllosilicates (CuPS). Triethoxy(octyl)silane (OTS) was used as the coupling agent. The OTS-grafted, reduced CuPS catalysts were applied in the hydrogenation of levulinic acid (LA) to γ-valerolactone (GVL). The most promising catalyst was synthesized by reducing CuPS at a high temperature (350 °C for 3 h), followed by OTS grafting, and then by repeating the previous reduction step. High LA conversion (95.7%), GVL yield (85.2%), and stability (3 cycles with a 7.5% loss of initial activity) were obtained at a mild reaction condition (130 °C with a H2 pressure of 12 bar). A high reduction temperature not only leads to a low oxidation state of Cu species but also suppresses the formation of silylation-induced acids. Moreover, the intrinsic activity of a reduced CuPS catalyst was nearly intact after subjecting to silylation and the second reduction treatment.
Collapse
Affiliation(s)
- Ya-Ju Tsou
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan
| | - Thien Dien To
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan
| | - Yu-Chia Chiang
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan
| | - Jyh-Fu Lee
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan
| | - Raju Kumar
- Institute of Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Po-Wen Chung
- Institute of Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Yu-Chuan Lin
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan
| |
Collapse
|
14
|
Lu Y, Wang Y, Wang Y, Cao Q, Xie X, Fang W. Hydrogenation of levulinic acid to γ-valerolactone over bifunctional Ru/(AlO)(ZrO) catalyst: Effective control of Lewis acidity and surface synergy. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111097] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
15
|
Ni Supported on Natural Clays as a Catalyst for the Transformation of Levulinic Acid into γ-Valerolactone without the Addition of Molecular Hydrogen. ENERGIES 2020. [DOI: 10.3390/en13133448] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
γ-Valerolactone (GVL) is a valuable chemical that can be used as a clean additive for automotive fuels. This compound can be produced from biomass-derived compounds. Levulinic acid (LA) is a compound that can be obtained easily from biomass and it can be transformed into GVL by dehydration and hydrogenation using metallic catalysts. In this work, catalysts of Ni (a non-noble metal) supported on a series of natural and low-cost clay-materials have been tested in the transformation of LA into GVL. Catalysts were prepared by a modified wet impregnation method using oxalic acid trying to facilitate a suitable metal dispersion. The supports employed are attapulgite and two sepiolites with different surface areas. Reaction tests have been undertaken using an aqueous medium at moderate reaction temperatures of 120 and 180 °C. Three types of experiments were undertaken: (i) without H2 source, (ii) using formic acid (FA) as hydrogen source and (iii) using Zn in order to transform water in hydrogen through the reaction Zn + H2O → ZnO + H2. The best results have been obtained combining Zn (which plays a double role as a reactant for hydrogen formation and as a catalyst) and Ni/attapulgite. Yields to GVL higher than 98% have been obtained at 180 °C in the best cases. The best catalytic performance has been related to the presence of tiny Ni particles as nickel crystallites larger than 4 nm were not present in the most efficient catalysts.
Collapse
|
16
|
García A, Sanchis R, Miguel PJ, Dejoz AM, Pico MP, López ML, Álvarez-Serrano I, García T, Solsona B. Low temperature conversion of levulinic acid into γ-valerolactone using Zn to generate hydrogen from water and nickel catalysts supported on sepiolite. RSC Adv 2020; 10:20395-20404. [PMID: 35517762 PMCID: PMC9054250 DOI: 10.1039/d0ra04018e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/21/2020] [Indexed: 11/21/2022] Open
Abstract
In the present article, γ-valerolactone has been obtained from levulinic acid with a yield exceeding 25% using very mild conditions without feeding hydrogen (30 °C, atmospheric pressure, water as the hydrogen source). The overall reaction conducted is a two-step process: first, a redox reaction involving the oxidation of metallic Zn to ZnO for in situ hydrogen production through the water splitting reaction and, second, a catalytic reaction involving Ni-supported catalysts for the production of γ-valerolactone from levulinic acid. Ni active sites have been supported on sepiolite, an abundant and cheap material. The nickel particle size has been demonstrated to be a parameter of paramount importance determining the catalytic activity, since the best catalytic performance is obtained with the smallest Ni nanoparticles. This combination of Zn and Ni supported on sepiolite shows a good catalytic stability after three catalytic runs.
Collapse
Affiliation(s)
- Adrián García
- Departament d'Enginyeria Química, ETSE, Universitat de València Av. Universitat, 46100 Burjassot Valencia Spain
| | - Rut Sanchis
- Departament d'Enginyeria Química, ETSE, Universitat de València Av. Universitat, 46100 Burjassot Valencia Spain
| | - Pablo J Miguel
- Departament d'Enginyeria Química, ETSE, Universitat de València Av. Universitat, 46100 Burjassot Valencia Spain
| | - Ana M Dejoz
- Departament d'Enginyeria Química, ETSE, Universitat de València Av. Universitat, 46100 Burjassot Valencia Spain
| | - María Pilar Pico
- Sepiolsa Avda. del Acero, 14-16, Pol. UP-1 (Miralcampo), 19200 Azuqueca de Henares Spain
| | - María Luisa López
- Departamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid 28040 Madrid Spain
| | - Inmaculada Álvarez-Serrano
- Departamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid 28040 Madrid Spain
| | - Tomás García
- Instituto de Carboquímica (CSIC) C/Miguel Luesma Castán 50018 Zaragoza Spain
| | - Benjamín Solsona
- Departament d'Enginyeria Química, ETSE, Universitat de València Av. Universitat, 46100 Burjassot Valencia Spain
| |
Collapse
|
17
|
Yu Z, Meng F, Wang Y, Sun Z, Liu Y, Shi C, Wang W, Wang A. Catalytic Transfer Hydrogenation of Levulinic Acid to γ-Valerolactone over Ni3P-CePO4 Catalysts. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00257] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhiquan Yu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Fanxing Meng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yao Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Liaoning Key Laboratory of Petrochemical Technology and Equipment, Dalian University of Technology, Dalian 116024, China
| | - Zhichao Sun
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yingya Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Chuan Shi
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Wei Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Yinchuan Energy Institute, Yongning Wangtaibu, Yinchuan 750105, China
| | - Anjie Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Liaoning Key Laboratory of Petrochemical Technology and Equipment, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|