1
|
Wang F, Zhu Y, Qian L, Yin Y, Yuan Z, Dai Y, Zhang T, Yang D, Qiu F. Lamellar Ti 3C 2 MXene composite decorated with platinum-doped MoS 2 nanosheets as electrochemical sensing functional platform for highly sensitive analysis of organophosphorus pesticides. Food Chem 2024; 459:140379. [PMID: 38991437 DOI: 10.1016/j.foodchem.2024.140379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 07/13/2024]
Abstract
Precisely detecting organophosphorus pesticides (OPs) is paramount in upholding human safety and environmental preservation, especially in food safety. Herein, an electrochemical acetylcholinesterase (AChE) sensing platform entrapped in chitosan (Chit) on the glassy carbon electrodes (GCEs) decorated with Pt/MoS2/Ti3C2 MXene (Pt/MoS2/TM) was constructed for the detection of chlorpyrifos. It is worth noting that Pt/MoS2/TM possesses good biocompatibility, remarkable electrical conductivity, environmental stability and large specific surface area. Besides, the heterostructure formed by the composite of TM and MoS2 improves the conductivity and maintains the original structure, which is conducive to improving the electrochemical property. The coordination effect between the individual components enables the even distribution of functional components and enhances the electrochemical performance of the biosensor (AChE-Chit/Pt/MoS2/TM). Under optimal efficiency and sensitivity, the AChE-Chit/Pt/MoS2/TM/GCE sensing platform exerts comparable analytical performance and a wide concentration range of chlorpyrifos from 10-12 to 10-6 M as well as a low limit of detection (4.71 × 10-13 M). Furthermore, the biosensor is utilized to detect OPs concerning three kinds of fruits and vegetables with good feasibility and recoveries (94.81% to 104.0%). This work would provide a new scheme to develop high-sensitivity sensors based on the two-dimensional nanosheet/laminar hybrid structure for practical applications in environmental monitoring and agricultural product detection.
Collapse
Affiliation(s)
- Fei Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yao Zhu
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Long Qian
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuhao Yin
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ziyu Yuan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuting Dai
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Dongya Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
2
|
Chen W, Shi Y, Liu C, Ren Z, Huang Z, Chen Z, Zhang X, Liang S, Xie L, Lian C, Qian G, Zhang J, Liu X, Chen D, Zhou X, Yuan W, Duan X. Restructuring the interfacial active sites to generalize the volcano curves for platinum-cobalt synergistic catalysis. Nat Commun 2024; 15:8995. [PMID: 39424795 PMCID: PMC11489437 DOI: 10.1038/s41467-024-53474-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024] Open
Abstract
Computationally derived volcano curve has become the gold standard in catalysis, whose practical application usually relies on empirical interpretations of composition or size effects by the identical active site assumption. Here, we present a proof-of-concept study on disclosing both the support- and adsorbate-induced restructuring of Pt-Co bimetallic catalysts, and the related interplays among different interfacial sites to propose the synergy-dependent volcano curves. Multiple characterizations, isotopic kinetic investigations, and multiscale simulations unravel that the progressive incorporation of Co into Pt catalysts, driven by strong Pt-C bonding (metal-support interfaces) and Co-O bonding (metal-adsorbate interfaces), initiates the formation of Pt-rich alloys accompanied by isolated Co species, then Co segregation to epitaxial CoOx overlayers and adjacent Co3O4 clusters, and ultimately structural collapse into amorphous alloys. Accordingly, three distinct synergies, involving lattice oxygen redox from Pt-Co alloy/Co3O4 clusters, dual-active sites engineering via Pt-rich alloy/CoOx overlayer, and electron coupling within exposed alloy, are identified and quantified for CO oxidation (gas-phase), ammonia borane hydrolysis (liquid-phase), and hydrogen evolution reaction (electrocatalysis), respectively. The resultant synergy-dependent volcano curves represent an advancement over traditional composition-/size-dependent ones, serving as a bridge between theoretical models and experimental observations in bimetallic catalysis.
Collapse
Affiliation(s)
- Wenyao Chen
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Yao Shi
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Changwei Liu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhouhong Ren
- School of Chemistry and Chemical Engineering, In-situ Center for Physical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Zikun Huang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhou Chen
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiangxue Zhang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Shanshan Liang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Lei Xie
- Shanghai Synchrotron Radiation Faciality, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Cheng Lian
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, China.
| | - Gang Qian
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Jing Zhang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Xi Liu
- School of Chemistry and Chemical Engineering, In-situ Center for Physical Sciences, Shanghai Jiao Tong University, Shanghai, China.
| | - De Chen
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | - Xinggui Zhou
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Weikang Yuan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Xuezhi Duan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
3
|
Wang Y, Li L, Shen M, Tang R, Zhou J, Han L, Zhang X, Zhang L, Kim G, Wang J. Simple One-Step Molten Salt Method for Synthesizing Highly Efficient MXene-Supported Pt Nanoalloy Electrocatalysts. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303693. [PMID: 37863664 PMCID: PMC10667796 DOI: 10.1002/advs.202303693] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/14/2023] [Indexed: 10/22/2023]
Abstract
MXene-supported noble metal alloy catalysts exhibit remarkable electrocatalytic activity in various applications. However, there is no facile one-step method for synthesizing these catalysts, because the synthesis of MXenes requires a strongly oxidizing environment and the preparation of platinum nanoalloys requires a strongly reducing environment and high temperatures. Hence, achieving coupling in one step is extremely challenging. In this paper, a straightforward one-step molten salt method for preparing MXene-supported platinum nanoalloy catalysts is proposed. The molten salt acts as the reaction medium to dissolve the transition metals and platinum ions at high temperatures. Transition metal ions oxidize the A-site element from its MAX precursor at high temperatures, and the resulting transition metals further reduce platinum ions to form alloys. By coupling Al oxidation and platinum ion reduction using a molten salt solvent, this method directly converts Ti3 AlC2 to a Pt-M@Ti3 C2 Tx catalyst (where M denotes the transition metal). It further offers the possibility of extending the Pt-M phase to binary, ternary, or quaternary platinum-containing nanoalloys and converting the Al-containing MAX phase to Ti2 AlC and Ti3 AlCN. Due to the strong interfacial interaction, the as-prepared Pt-Co@Ti3 C2 Tx is superior to commercial Pt/C (20 wt.%) in the hydrogen evolution reaction.
Collapse
Affiliation(s)
- Ya Wang
- Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghai201800China
- University of Chinese Academy of SciencesBeijing100049China
| | - Lili Li
- State Key Laboratory of Crystal Materials and Institute of Crystal MaterialsShandong UniversityJinan250100China
| | - Miao Shen
- Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghai201800China
- University of Chinese Academy of SciencesBeijing100049China
| | - Rui Tang
- Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghai201800China
- University of Chinese Academy of SciencesBeijing100049China
| | - Jing Zhou
- Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghai201800China
- University of Chinese Academy of SciencesBeijing100049China
| | - Ling Han
- Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghai201800China
- University of Chinese Academy of SciencesBeijing100049China
| | - Xiuqing Zhang
- School of Mechanical and Power EngineeringEast China University of Science and Technology200237ShanghaiChina
| | - Linjuan Zhang
- Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghai201800China
- University of Chinese Academy of SciencesBeijing100049China
| | - Guntae Kim
- Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghai201800China
- University of Chinese Academy of SciencesBeijing100049China
| | - Jian‐Qiang Wang
- Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghai201800China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
4
|
Xie Y, Yang Z. Morphological and Coordination Modulations in Iridium Electrocatalyst for Robust and Stable Acidic OER Catalysis. CHEM REC 2023; 23:e202300129. [PMID: 37229769 DOI: 10.1002/tcr.202300129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/12/2023] [Indexed: 05/27/2023]
Abstract
Proton exchange membrane water splitting (PEMWS) technology has high-level current density, high operating pressure, small electrolyzer-size, integrity, flexibility, and has good adaptability to the volatility of wind power and photovoltaics, but the development of both active and high stability of the anode electrocatalyst in acidic environment is still a huge challenge, which seriously hinders the promotion and application of PEMWS. In recent years, researchers have made tremendous attempts in the development of high-quality active anode electrocatalyst, and we summarize some of the research progress made by our group in the design and synthesis of PEMWS anode electrocatalysts with different nanostructures, and makes full use of electrocatalytic activity points to increase the inherent activity of Iridium (Ir) sites, and provides optimization strategies for the long-term non-decay of catalysts under high anode potential in acidic environments. At this stage, these research advances are expected to facilitate the research and technological progress of PEMWS, and providing some research ideas and references for future research on efficient and inexpensive PEMWS anode electrocatalysts.
Collapse
Affiliation(s)
- Yuhua Xie
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China, University of Geosciences Wuhan, 388 Lumo RD, Wuhan, 430074, P. R. China
| | - Zehui Yang
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China, University of Geosciences Wuhan, 388 Lumo RD, Wuhan, 430074, P. R. China
- Zhejiang Institute, China University of Geosciences, Hangzhou, 311305, P. R. China
| |
Collapse
|
5
|
Liu X, Chen L, Yang Y, Xu L, Sun J, Gan T. MXene-reinforced octahedral PtCu nanocages with boosted electrocatalytic performance towards endocrine disrupting pollutants sensing. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130000. [PMID: 36137886 DOI: 10.1016/j.jhazmat.2022.130000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/28/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Rational tailoring of hollow and porous bimetallic structures with excellent electrocatalytic performance is appealing yet challenging. Further, combining independent bimetallic nanoparticles with flexible two-dimensional substrate by forming stable heterocomplex is still highly desired for electrocatalysis. Herein, hierarchical PtCu alloy octahedrons with hollow interiors and nanosheet-assembled nanoshells were synthesized by a facile and efficient chemical transformation strategy using Cu2O as sacrificial templates. Such octahedral PtCu nanocages displayed significantly enhanced electrocatalytic activity owing to their unique hollow and porous architectures which provided easy access for analytes to the catalyst surface. Thereafter, introduction of Ti3C2Tx MXene was realized via simple incubation of Ti3C2Tx in solution containing the 3-aminopropyltriethoxysilane-capped PtCu, and their electrostatic interaction guaranteed the firm adsorption of PtCu nanocages on Ti3C2Tx nanosheets. It turned out that the sensitivity of the hybrid sensor was remarkably improved for electrochemical monitoring of endocrine disrupting pollutants in water, exhibiting ultrawide linear ranges and sub-nanomole detection limits. The eminent electrode performance is attributed to the high specific area, fast electrochemical kinetics, decent electrical catalytic ability, and the synergistic effect between Pt, Cu, and MXene.
Collapse
Affiliation(s)
- Xian Liu
- College of Chemistry and Chemical Engineering & Xinyang key laboratory of functional nanomaterials for bioanalysis, Xinyang Normal University, Xinyang 464000, PR China
| | - Like Chen
- College of Chemistry and Chemical Engineering & Xinyang key laboratory of functional nanomaterials for bioanalysis, Xinyang Normal University, Xinyang 464000, PR China
| | - Yang Yang
- College of Chemistry and Chemical Engineering & Xinyang key laboratory of functional nanomaterials for bioanalysis, Xinyang Normal University, Xinyang 464000, PR China
| | - Liping Xu
- College of Chemistry and Chemical Engineering & Xinyang key laboratory of functional nanomaterials for bioanalysis, Xinyang Normal University, Xinyang 464000, PR China
| | - Junyong Sun
- College of Chemistry and Chemical Engineering & Xinyang key laboratory of functional nanomaterials for bioanalysis, Xinyang Normal University, Xinyang 464000, PR China; Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, PR China; Fujian Provincial University Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou 363000, PR China
| | - Tian Gan
- College of Chemistry and Chemical Engineering & Xinyang key laboratory of functional nanomaterials for bioanalysis, Xinyang Normal University, Xinyang 464000, PR China.
| |
Collapse
|
6
|
Shi L, Tang Q, Yang B, Liu W, Li B, Yang C, Jin Y. Portable and Label-Free Sensor Array for Discriminating Multiple Analytes via a Handheld Gas Pressure Meter. Anal Chem 2022; 94:14453-14459. [PMID: 36194124 DOI: 10.1021/acs.analchem.2c03497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cross-reactive sensor arrays are useful for discriminating multiple analytes in a complex sample. Herein, a portable and label-free gas pressure sensor array was proposed for multiplex analysis via a handheld gas pressure meter. It is based on the interaction diversity of analytes with catalase-like nanomaterials, including Pt nanoparticles (PtNP), Co3O4 nanosheets (Co3O4NS), and Pt-Co alloy nanosheets (PtCoNS), respectively. Thus, the diverse influence of analytes on the catalase-like activity could be output as the difference in the gas pressure. By using principal component analysis, eight proteins were well distinguished by the gas pressure sensor array at the 10 nM level within 12 min. Moreover, different concentrations of proteins and mixtures of proteins could likewise be discriminated. More importantly, the effective discrimination of proteins in human serum and discrimination of five kinds of cells further confirmed the potential of the gas pressure sensor array. Therefore, it provides a portable, cheap, sensitive, and label-free gas pressure sensor array, which is totally different from the reported sensor arrays and holds great potential for portable and cheap discrimination of multiple analytes.
Collapse
Affiliation(s)
- Lu Shi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Qiaorong Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Bing Yang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Wei Liu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Baoxin Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Chaoyong Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yan Jin
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
7
|
Wei M, Huang L, Li L, Ai F, Su J, Wang J. Coordinatively Unsaturated PtCo Flowers Assembled with Ultrathin Nanosheets for Enhanced Oxygen Reduction. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Min Wei
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Lei Huang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lubing Li
- International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Fei Ai
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Jinzhan Su
- International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Jike Wang
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| |
Collapse
|
8
|
Li S, Sun W, Luo Y, Gao Y, Jiang X, Yuan C, Han L, Cao K, Gong Y, Xie C. Hollow PtCo alloy nanospheres as a high- Z and oxygen generating nanozyme for radiotherapy enhancement in non-small cell lung cancer. J Mater Chem B 2021; 9:4643-4653. [PMID: 34009230 DOI: 10.1039/d1tb00486g] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Radiotherapy, as well as chemotherapy and surgery, occupies an essential position in tumor treatment. Nonetheless, insufficient radiation deposition and hypoxia-related radioresistance of cancer cells still are serious challenges in radiotherapy. Herein, we proposed a hollow PtCo nanosphere (PtCo NS)-based novel radiosensitizer with three advantages to sensitize tumor radiotherapy: (i) the high-Z element Pt ensured higher radiation absorption to cause more DNA damage, (ii) the platinum (Pt) and cobalt (Co) elements exhibited a dual catalase-like enzymatic activity to convert endogenic H2O2 to O2 efficiently, and (iii) the unique hollow nature of the PtCo NS provided a large specific surface area, which could amplify the catalytic reaction of H2O2 to induce reactive oxygen species and cancer cell apoptosis upon combination with radiation. Both in vivo and in vitro studies showed that the hollow PtCo NS could significantly inhibit tumor growth, simultaneously relieving tumor hypoxia with good biocompatibility and biosafety. This work presents a simple but multifunctional radiosensitizer with a unique hollow structure for radiotherapy enhancement.
Collapse
Affiliation(s)
- Shuying Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Wenjie Sun
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Yuan Luo
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Yanping Gao
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Xueping Jiang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Cheng Yuan
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Linzhi Han
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Kuo Cao
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China. and Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China. and Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China and Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Nanomaterials as electrocatalyst for hydrogen and oxygen evolution reaction: Exploitation of challenges and current progressions. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.114871] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Zhu J, Wei M, Meng Q, Chen Z, Fan Y, Hasan SW, Zhang X, Lyu D, Tian ZQ, Shen PK. Ultrathin-shell IrCo hollow nanospheres as highly efficient electrocatalysts towards the oxygen evolution reaction in acidic media. NANOSCALE 2020; 12:24070-24078. [PMID: 33241831 DOI: 10.1039/d0nr06601j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Improving the utilization of Ir electrocatalysts for the oxygen evolution reaction (OER) to significantly reduce their loading is essential for low-cost hydrogen production in proton exchange membrane water electrolysis. Herein, IrCo hollow nanospheres featuring a novel structure with ultrathin continuous shells which have only eleven atomic layers (2.26 nm) were synthesized by a facile sequential reduction route using NaBH4 as a reducing agent at room temperature. It is revealed that the key intermediate in the formation of hollow nanospheres is amorphous cobalt boride formed between Co2+ and NaHB4 in the first reducing step. The average diameter of the IrCo nanospheres was found to be 73.71 nm with the atomic ratio of 47.1% and 52.9% for Co and Ir, respectively. The IrCo hollow nanospheres exhibit highly efficient OER activity and long-term durability with a low overpotential of 284 mV at 10 mA cm-2 (32.5 μgIr cm-2) and a high mass activity of 8.49 A mg-1 (5.7 times higher than that of commercial IrO2 (1.49 A mg-1) at 1.7 V. The performance is also proved using an overall water splitting device with the overpotential of 318 mV to achieve 10 mA cm-2 as well as a 17 mV shift at 5 mA cm-2 after 14 h. This improvement is critically attributed to the advantages of the hollow structure, ultrathin continuous shells which are oxidized into IrOxin situ and strong lattice strain effects induced by the specific hollow structure and alloying Co into Ir crystal lattices (1.6% against metallic iridium). These characteristics endow the hollow nanospheres with great potential to minimize the Ir loading dramatically for practical applications, compared to other previously reported structures like nanoparticles, nanoneedles and nanowires.
Collapse
Affiliation(s)
- Jinhui Zhu
- Guangxi Key Laboratory of Electrochemical Energy Materials; Key Laboratory of New Processing Technology for Non-ferrous Metal and Materials, Ministry of Education; Collaborative Innovation Center of Sustainable Energy Materials, School of Physical Science and Technology, Guangxi University, Nanning, 530004, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Hu J, Fang C, Jiang X, Zhang D, Cui Z. PtMn/PtCo alloy nanofascicles: robust electrocatalysts for electrocatalytic hydrogen evolution reaction under both acidic and alkaline conditions. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00961j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Herein, PtMn and PtCo nanofascicles were prepared by ultrathin nanofibers using a versatile method, and can be employed as effective electrocatalysts toward the HER under both acidic and alkaline conditions.
Collapse
Affiliation(s)
- Jinwu Hu
- College of Chemistry and Materials Science
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecular-Based Materials
- Center for Nano Science and Technology
| | - Caihong Fang
- College of Chemistry and Materials Science
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecular-Based Materials
- Center for Nano Science and Technology
| | - Xiaomin Jiang
- College of Chemistry and Materials Science
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecular-Based Materials
- Center for Nano Science and Technology
| | - Deliang Zhang
- College of Chemistry and Materials Science
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecular-Based Materials
- Center for Nano Science and Technology
| | - Zhiqing Cui
- College of Chemistry and Materials Science
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecular-Based Materials
- Center for Nano Science and Technology
| |
Collapse
|