1
|
He Z, Li K, Chen T, Feng Y, Villalobos-Portillo E, Marini C, Lo TWB, Yang F, Zhang L, Liu L. High-purity hydrogen production from dehydrogenation of methylcyclohexane catalyzed by zeolite-encapsulated subnanometer platinum-iron clusters. Nat Commun 2025; 16:92. [PMID: 39746992 PMCID: PMC11696464 DOI: 10.1038/s41467-024-55370-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025] Open
Abstract
Liquid organic hydrogen carriers (LOHCs) are considered promising carriers for large-scale H2 storage and transportation, among which the toluene-methylcyclohexane cycle has attracted great attention from industry and academia because of the low cost and its compatibility with the current infrastructure facility for the transportation of chemicals. The large-scale deployment of the H2 storage/transportation plants based on the toluene-methylcyclohexane cycle relies on the use of high-performance catalysts, especially for the H2 release process through the dehydrogenation of methylcyclohexane. In this work, we have developed a highly efficient catalyst for MCH dehydrogenation reaction by incorporating subnanometer PtFe clusters with precisely controlled composition and location within a rigid zeolite matrix. The resultant zeolite-encapsulated PtFe clusters exhibit the up-to-date highest reaction rate for dehydrogenation of methylcyclohexane to toluene, very high chemoselectivity to toluene (enabling the production of H2 with purity >99.9%), remarkably high stability (>2000 h) and regenerability over consecutive reaction-regeneration cycles.
Collapse
Affiliation(s)
- Zhe He
- Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, China
| | - Kailang Li
- Center for Combustion Energy, Tsinghua University, Beijing, China
- School of Vehicle and Mobility, Tsinghua University, Beijing, China
| | - Tianxiang Chen
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hunghom, Hong Kong, China
| | - Yunchao Feng
- Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, China
| | | | - Carlo Marini
- ALBA Synchrotron Light Source, Cerdanyola del Vallès, Barcelona, Spain
| | - Tsz Woon Benedict Lo
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hunghom, Hong Kong, China.
| | - Fuyuan Yang
- School of Vehicle and Mobility, Tsinghua University, Beijing, China.
| | - Liang Zhang
- Center for Combustion Energy, Tsinghua University, Beijing, China.
- School of Vehicle and Mobility, Tsinghua University, Beijing, China.
| | - Lichen Liu
- Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, China.
| |
Collapse
|
2
|
Liu L, Chen T, Chen Z. Understanding the Dynamic Aggregation in Single-Atom Catalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308046. [PMID: 38287886 PMCID: PMC10987127 DOI: 10.1002/advs.202308046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/22/2023] [Indexed: 01/31/2024]
Abstract
The dynamic response of single-atom catalysts to a reactive environment is an increasingly significant topic for understanding the reaction mechanism at the molecular level. In particular, single atoms may experience dynamic aggregation into clusters or nanoparticles driven by thermodynamic or kinetic factors. Herein, the inherent mechanistic nuances that determine the dynamic profile during the reaction will be uncovered, including the intrinsic stability and site-migration barrier of single atoms, external stimuli (temperature, voltage, and adsorbates), and the influence of catalyst support. Such dynamic aggregation can be beneficial or deleterious on the catalytic performance depending on the optimal initial state. Those examples will be highlighted where in situ formed clusters, rather than single atoms, serve as catalytically active sites for improved catalytic performance. This is followed by the introduction of operando techniques to understand the structural evolution. Finally, the emerging strategies via confinement and defect-engineering to regulate dynamic aggregation will be briefly discussed.
Collapse
Affiliation(s)
- Laihao Liu
- School of Science and EngineeringThe Chinese University of Hong KongShenzhenGuangdong518172China
| | - Tiankai Chen
- School of Science and EngineeringThe Chinese University of Hong KongShenzhenGuangdong518172China
| | - Zhongxin Chen
- School of Science and EngineeringThe Chinese University of Hong KongShenzhenGuangdong518172China
| |
Collapse
|
3
|
Liu L, Corma A. Bimetallic Sites for Catalysis: From Binuclear Metal Sites to Bimetallic Nanoclusters and Nanoparticles. Chem Rev 2023; 123:4855-4933. [PMID: 36971499 PMCID: PMC10141355 DOI: 10.1021/acs.chemrev.2c00733] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Indexed: 03/29/2023]
Abstract
Heterogeneous bimetallic catalysts have broad applications in industrial processes, but achieving a fundamental understanding on the nature of the active sites in bimetallic catalysts at the atomic and molecular level is very challenging due to the structural complexity of the bimetallic catalysts. Comparing the structural features and the catalytic performances of different bimetallic entities will favor the formation of a unified understanding of the structure-reactivity relationships in heterogeneous bimetallic catalysts and thereby facilitate the upgrading of the current bimetallic catalysts. In this review, we will discuss the geometric and electronic structures of three representative types of bimetallic catalysts (bimetallic binuclear sites, bimetallic nanoclusters, and nanoparticles) and then summarize the synthesis methodologies and characterization techniques for different bimetallic entities, with emphasis on the recent progress made in the past decade. The catalytic applications of supported bimetallic binuclear sites, bimetallic nanoclusters, and nanoparticles for a series of important reactions are discussed. Finally, we will discuss the future research directions of catalysis based on supported bimetallic catalysts and, more generally, the prospective developments of heterogeneous catalysis in both fundamental research and practical applications.
Collapse
Affiliation(s)
- Lichen Liu
- Department
of Chemistry, Tsinghua University, Beijing 100084, China
| | - Avelino Corma
- Instituto
de Tecnología Química, Universitat
Politècnica de València−Consejo Superior de Investigaciones
Científicas (UPV-CSIC), Avenida de los Naranjos s/n, Valencia 46022, Spain
| |
Collapse
|
4
|
Velty A, Corma A. Advanced zeolite and ordered mesoporous silica-based catalysts for the conversion of CO 2 to chemicals and fuels. Chem Soc Rev 2023; 52:1773-1946. [PMID: 36786224 DOI: 10.1039/d2cs00456a] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
For many years, capturing, storing or sequestering CO2 from concentrated emission sources or from air has been a powerful technique for reducing atmospheric CO2. Moreover, the use of CO2 as a C1 building block to mitigate CO2 emissions and, at the same time, produce sustainable chemicals or fuels is a challenging and promising alternative to meet global demand for chemicals and energy. Hence, the chemical incorporation and conversion of CO2 into valuable chemicals has received much attention in the last decade, since CO2 is an abundant, inexpensive, nontoxic, nonflammable, and renewable one-carbon building block. Nevertheless, CO2 is the most oxidized form of carbon, thermodynamically the most stable form and kinetically inert. Consequently, the chemical conversion of CO2 requires highly reactive, rich-energy substrates, highly stable products to be formed or harder reaction conditions. The use of catalysts constitutes an important tool in the development of sustainable chemistry, since catalysts increase the rate of the reaction without modifying the overall standard Gibbs energy in the reaction. Therefore, special attention has been paid to catalysis, and in particular to heterogeneous catalysis because of its environmentally friendly and recyclable nature attributed to simple separation and recovery, as well as its applicability to continuous reactor operations. Focusing on heterogeneous catalysts, we decided to center on zeolite and ordered mesoporous materials due to their high thermal and chemical stability and versatility, which make them good candidates for the design and development of catalysts for CO2 conversion. In the present review, we analyze the state of the art in the last 25 years and the potential opportunities for using zeolite and OMS (ordered mesoporous silica) based materials to convert CO2 into valuable chemicals essential for our daily lives and fuels, and to pave the way towards reducing carbon footprint. In this review, we have compiled, to the best of our knowledge, the different reactions involving catalysts based on zeolites and OMS to convert CO2 into cyclic and dialkyl carbonates, acyclic carbamates, 2-oxazolidones, carboxylic acids, methanol, dimethylether, methane, higher alcohols (C2+OH), C2+ (gasoline, olefins and aromatics), syngas (RWGS, dry reforming of methane and alcohols), olefins (oxidative dehydrogenation of alkanes) and simple fuels by photoreduction. The use of advanced zeolite and OMS-based materials, and the development of new processes and technologies should provide a new impulse to boost the conversion of CO2 into chemicals and fuels.
Collapse
Affiliation(s)
- Alexandra Velty
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 València, Spain.
| | - Avelino Corma
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 València, Spain.
| |
Collapse
|
5
|
Song M, Zhang B, Zhai Z, Liu S, Wang L, Liu G. Highly Dispersed Pt Stabilized by ZnO x-Si on Self-Pillared Zeolite Nanosheets for Propane Dehydrogenation. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Affiliation(s)
- Mingxia Song
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Bofeng Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Ziwei Zhai
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Sibao Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Li Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Guozhu Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
| |
Collapse
|
6
|
Effects of Synthesis Procedures on Pt–Sn Alloy Formation and Their Catalytic Activity for Propane Dehydrogenation. Catal Letters 2023. [DOI: 10.1007/s10562-022-04263-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
7
|
Dendritic Mesoporous Silica Nanoparticle Supported PtSn Catalysts for Propane Dehydrogenation. Int J Mol Sci 2022; 23:ijms232112724. [DOI: 10.3390/ijms232112724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022] Open
Abstract
PtSn catalysts were synthesized by incipient-wetness impregnation using a dendritic mesoporous silica nanoparticle support. The catalysts were characterized by XRD, N2 adsorption–desorption, TEM, XPS and Raman, and their catalytic performance for propane dehydrogenation was tested. The influences of Pt/Sn ratios were investigated. Changing the Pt/Sn ratios influences the interaction between Pt and Sn. The catalyst with a Pt/Sn ratio of 1:2 possesses the highest interaction between Pt and Sn. The best catalytic performance was obtained for the Pt1Sn2/DMSN catalyst with an initial propane conversion of 34.9%. The good catalytic performance of this catalyst is ascribed to the small nanoparticle size of PtSn and the favorable chemical state and dispersion degree of Pt and Sn species.
Collapse
|
8
|
Wan H, Gong N, Liu L. Solid catalysts for the dehydrogenation of long-chain alkanes: lessons from the dehydrogenation of light alkanes and homogeneous molecular catalysis. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1415-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Pisarenko EV, Ponomarev AB, Smirnov AV, Pisarenko VN, Shevchenko AA. Prospects for Progress in Developing Production Processes for the Synthesis of Olefins Based on Light Alkanes. THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING 2022. [DOI: 10.1134/s0040579522050335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Yacob S, Caulfield M, Larson RB, Gomez E, Meyer RJ. The Interplay between Process Conceptualization and Experimental Research─Accelerating and Guiding Catalysis to Process Breakthroughs. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sara Yacob
- ExxonMobil Technology and Engineering Company, 1545 Route 22 East, Annandale, New Jersey 08801, United States
| | - Michael Caulfield
- ExxonMobil Technology and Engineering Company, 1545 Route 22 East, Annandale, New Jersey 08801, United States
| | - Robert B. Larson
- ExxonMobil Technology and Engineering Company, 1545 Route 22 East, Annandale, New Jersey 08801, United States
| | - Elaine Gomez
- ExxonMobil Technology and Engineering Company, 1545 Route 22 East, Annandale, New Jersey 08801, United States
| | - Randall J. Meyer
- ExxonMobil Technology and Engineering Company, 1545 Route 22 East, Annandale, New Jersey 08801, United States
| |
Collapse
|
11
|
Hu ZP, Han J, Wei Y, Liu Z. Dynamic Evolution of Zeolite Framework and Metal-Zeolite Interface. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Zhong-Pan Hu
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Jingfeng Han
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Yingxu Wei
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Zhongmin Liu
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| |
Collapse
|
12
|
Nakaya Y, Furukawa S. Tailoring Single-Atom Platinum for Selective and Stable Catalysts in Propane Dehydrogenation. Chempluschem 2022; 87:e202100560. [PMID: 35194957 DOI: 10.1002/cplu.202100560] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/12/2022] [Indexed: 11/08/2022]
Abstract
Propane dehydrogenation has been a promising method for producing propylene that has the potentials to meet the increasing global demand for propylene. However, owing to the restricted equilibrium conversion caused by the high endothermicity, even the Pt-based catalysts, which exhibit high activity and selectivity, severely suffer significantly from coke formation and/or nanoparticle sintering at realistic reaction temperatures, resulting in a short catalyst lifetime. As a result, few innovative catalysts in terms of catalytic activity, selectivity, and stability, have been produced. In this Review, we focus on the characteristics of single-atom-like Pt sites for PDH and attempt to provide suggestions for developing highly efficient catalysts. First, we briefly describe the fundamental strategies. Following that, the remarkable catalysis is addressed by three different distinct sorts of state-of-the-art single-atom-like Pt catalysts are discussed. Additionally, we present other promising catalyst design approaches that are not based on single-atom-like Pt catalysts, as well as future research challenges in this field.
Collapse
Affiliation(s)
- Yuki Nakaya
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo, Kita-ku, 001-0021, Japan
| | - Shinya Furukawa
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo, Kita-ku, 001-0021, Japan
- Department of Research Promotion, Japan Science and Technology Agency, Chiyoda, Tokyo, 102-0076, Japan
| |
Collapse
|
13
|
Li S, Yang H, Wang S, Wang J, Fan W, Dong M. Improvement of adsorption and catalytic properties of zeolites by precisely controlling their particle morphology. Chem Commun (Camb) 2022; 58:2041-2054. [PMID: 35060979 DOI: 10.1039/d1cc05537b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An aluminosilicate zeolite has a porous structure with openings comparable to the molecular size, which endows it with unique adsorptive and catalytic properties that are highly dependent on its chemical composition and crystal morphology. Thus, the precise control or rational design of zeolite's particle morphology has attracted much attention as it can greatly improve the adsorptive separation and catalytic properties by effectively adjusting the diffusion path of adsorbates, reactants and products. This paper reviews the recent progress made in the synthesis and application of zeolites with a specific crystal/particle morphology with emphasis on the control of the crystal size and facet exposure degree, oriented assembly of crystals, creation of hierarchical porous structures and synthesis of core-shell structures. It is shown that an appropriate decrease of the crystal size and/or an increase of the exposure degree of certain facets by adding seeds and optimizing the synthesis conditions enhances the catalytic stability and product selectivity in some reactions. This can also be achieved by introducing plenty of mesopores and/or macropores in zeolites as a result of significant alleviation of diffusion limitation. Assembly of zeolite crystals into membranes on porous substrates improves the adsorptive separation performance of zeolites, for e.g. alcohol/water mixture and xylene and butane isomers. Core-shell-structured composites with metal nanoparticles or subnanoparticles as the core and the zeolite, including its modified counterpart, as the shell show excellent catalytic performance in some hydrogenation, dehydrogenation and oxidation reactions. In addition, attempts to illustrate the relationship between zeolite's particle morphology and its catalytic performance are discussed and strategies for the rational design of zeolite's particle size and behavior are envisioned.
Collapse
Affiliation(s)
- Shiying Li
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 South Taoyuan Road, Taiyuan 030001, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huanhuan Yang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
| | - Sen Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 South Taoyuan Road, Taiyuan 030001, China.
| | - Jianguo Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 South Taoyuan Road, Taiyuan 030001, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weibin Fan
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 South Taoyuan Road, Taiyuan 030001, China.
| | - Mei Dong
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 South Taoyuan Road, Taiyuan 030001, China.
| |
Collapse
|
14
|
Luo Q, Wang H, Wang L, Xiao FS. Alloyed PdCu Nanoparticles within Siliceous Zeolite Crystals for Catalytic Semihydrogenation. ACS MATERIALS AU 2022; 2:313-320. [PMID: 36855384 PMCID: PMC9888633 DOI: 10.1021/acsmaterialsau.1c00080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Selective hydrogenation of acetylene to ethylene is an industrially important process to purify the raw ethylene stream for producing high-grade polyethylene. The supported Pd catalyst exhibits superior activity for acetylene hydrogenation but suffers from poor ethylene selectivity because of the easy overhydrogenation to produce ethane. Here, we report that the PdCu alloy nanoparticles within siliceous zeolite crystals effectively tuned Pd-catalyzed overhydrogenation into semihydrogenation. This catalyst displayed an ethylene selectivity of 92.9% with a full conversion of acetylene. Mechanism studies reveal that the zeolite fixation stabilized the alloyed structure, where the electron-enriched Pd surface benefits the rapid ethylene desorption to hinder the deep hydrogenation. This work provides an efficient strategy for a rational design of bimetallic metal catalysts for selective hydrogenations.
Collapse
|
15
|
Beale AM, Lezcano-González I, Cong P, Campbell E, Panchal M, Agote-Arán M, Celorrio V, He Q, Oord R, Weckhuysen BM. Structure‐Activity Relationships in Highly Active Platinum‐Tin MFI‐type Zeolite Catalysts for Propane Dehydrogenation. ChemCatChem 2022. [DOI: 10.1002/cctc.202101828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Andrew M. Beale
- University College London Chemistry 20 Gordon Street WC1H 0AJ London UNITED KINGDOM
| | | | - Peixi Cong
- UCL: University College London Chemistry UNITED KINGDOM
| | - Emma Campbell
- UCL: University College London Chemistry UNITED KINGDOM
| | - Monik Panchal
- UCL: University College London Chemistry UNITED KINGDOM
| | | | | | - Qian He
- NUS: National University of Singapore Chemical and Biomolecular Engineering SINGAPORE
| | - Ramon Oord
- Utrecht University Faculty of Science: Universiteit Utrecht Faculteit Betawetenschappen Scheikunde NETHERLANDS
| | - Bert M. Weckhuysen
- Utrecht University Faculty of Science: Universiteit Utrecht Faculteit Betawetenschappen Scheikunde NETHERLANDS
| |
Collapse
|
16
|
Xu J, Shi C, Zhang S, Zheng Q, Pan L, Zhang X, Zou J. Framework Zr Stabilized
PtSn
/
Zr‐MCM
‐41 as a Promising Catalyst for Non‐oxidative Ethane Dehydrogenation. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jisheng Xu
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
| | - Chengxiang Shi
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 China
- Zhejiang Institute of Tianjin University Ningbo Zhejiang 315201 China
| | - Shuguang Zhang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
| | - Qiancheng Zheng
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
| | - Lun Pan
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 China
- Zhejiang Institute of Tianjin University Ningbo Zhejiang 315201 China
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 China
- Zhejiang Institute of Tianjin University Ningbo Zhejiang 315201 China
| | - Ji‐Jun Zou
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 China
- Zhejiang Institute of Tianjin University Ningbo Zhejiang 315201 China
| |
Collapse
|
17
|
Zhu Q, Lu X, Ji S, Li H, Wang J, Li Z. Fully exposed cobalt nanoclusters anchored on nitrogen-doped carbon synthesized by a host-guest strategy for semi-hydrogenation of phenylacetylene. J Catal 2022. [DOI: 10.1016/j.jcat.2021.11.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Wang T, Xu Z, Yue Y, Wang T, Lin M, Zhu H. Bimetallic PtSn Nanoparticles Confined in Hierarchical ZSM-5 for Propane Dehydrogenation. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.11.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Liu L, Corma A. Isolated metal atoms and clusters for alkane activation: Translating knowledge from enzymatic and homogeneous to heterogeneous systems. Chem 2021. [DOI: 10.1016/j.chempr.2021.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
20
|
Krishna SH, Jones CB, Gounder R. Dynamic Interconversion of Metal Active Site Ensembles in Zeolite Catalysis. Annu Rev Chem Biomol Eng 2021; 12:115-136. [PMID: 33826852 DOI: 10.1146/annurev-chembioeng-092120-010920] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Catalysis science is founded on understanding the structure, number, and reactivity of active sites. Kinetic models that consider active sites to be static and noninteracting entities are routinely successful in describing the behavior of heterogeneous catalysts. Yet, active site ensembles often restructure in response to their external environment and even during steady-state catalytic turnover, sometimes requiring non-mean-field kinetic treatments to describe distance-dependent interactions among sites. Such behavior is being recognized more frequently in modern catalysis research, with the advent of experimental methods to quantify turnover rates with increasing precision, an expanding arsenal of operando characterization tools, and computational descriptions of atomic structure and motion at chemical potentials and timescales increasingly relevant to reaction conditions. This review focuses on dynamic changes to metal active site ensembles on zeolite supports, which are silica-based crystalline materials substituted with Al that generate binding sites for isolated and low-nuclearity metal site ensembles. Metal sites can become solvated and mobilized during reaction, facilitating interactions among sites that change their nuclearity and function. Such intersite communication can be regulated by the zeolite support, resulting in non-single-site and potentially non-mean-field kinetic behavior arising from mechanisms of catalytic action that combine elements of those canonically associated with homogeneous and heterogeneous catalysis.We discuss recent literature examples that document dynamic active site behavior in metal-zeolites and outline methodologies to identify and interpret such behavior. We conclude with our outlook on future research directions to develop this evolving branch of catalysis science and harness it for practical applications.
Collapse
Affiliation(s)
- Siddarth H Krishna
- Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA;
| | - Casey B Jones
- Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA;
| | - Rajamani Gounder
- Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA;
| |
Collapse
|
21
|
Liu S, Zhang B, Liu G. Metal-based catalysts for the non-oxidative dehydrogenation of light alkanes to light olefins. REACT CHEM ENG 2021. [DOI: 10.1039/d0re00381f] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review provides an overview of metal-based catalysts, including Pt-, Pd-, Rh- and Ni-based bimetallic catalysts for non-oxidative dehydrogenation of light alkanes to olefins.
Collapse
Affiliation(s)
- Sibao Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Bofeng Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Guozhu Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| |
Collapse
|