1
|
Cai W, Chen C, Bao C, Gu JN, Li K, Jia J. Nitrate reduction to nitrogen in wastewater using mesoporous carbon encapsulated Pd-Cu nanoparticles combined with in-situ electrochemical hydrogen evolution. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 362:121346. [PMID: 38824884 DOI: 10.1016/j.jenvman.2024.121346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/29/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
The conversion of NO3--N to N2 is of great significance for zero discharge of industrial wastewater. Pd-Cu hydrogenation catalysis has high application prospects for the reduction of NO3--N to N2, but the existing form of Pd-Cu, the Pd-Cu mass ratio and the H2 evolution rate can affect the coverage of active hydrogen (*H) on the surface of Pd, thereby affecting N2 selectivity. In this work, mesoporous carbon (MC) is used as support to disperse Pd-Cu catalyst and is applied in an in-situ electrocatalytic H2 evolution system for NO3--N removal. The Pd-Cu particles with the average size of 6 nm are uniformly encapsulated in the mesopores of MC. Electrochemical in-situ H2 evolution can not only reduce the amount of H2 used, but the H2 bubbles can also be efficiently dispersed when PPy coated nickel foam (PPy/NF) is used as cathode. Moreover, the mesoporous structure of MC can further split H2 bubbles, reducing the coverage of *H on Pd. The highest 77% N2 selectivity and a relatively faster NO3--N removal rate constant (0.10362 min-1) can be achieved under the optimal conditions, which is superior to most reported Pd-Cu catalytic systems. The prepared catalyst is further applied to the denitrification of actual deplating wastewater. NO3--N with the initial concentration of 650 mg L-1 can be completely removed after 180 min of treatment, and the TN removal can be maintained at 72%.
Collapse
Affiliation(s)
- Wenlue Cai
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Chen Chen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Chenyu Bao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Jia-Nan Gu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Kan Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| | - Jinping Jia
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| |
Collapse
|
2
|
Hussain A, Lou B, Bushira FA, Xia S, Liu F, Guan Y, Chen W, Xu G. Ultrafast Response and High Selectivity of Diethylamine Gas Sensors at Room Temperature Using MOF-Derived 1D CuO Nano-Ellipsoids. Anal Chem 2023; 95:17568-17576. [PMID: 37988575 DOI: 10.1021/acs.analchem.3c02890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Environmental and health monitoring requires low-cost, high-performance diethylamine (DEA) sensors. Materials based on metal-organic frameworks (MOFs) can detect hazardous gases due to their large specific surface area, many metal sites, unsaturated sites, functional connectivity, and easy calcination to remove the scaffold. However, developing facile materials with high sensitivity and selectivity in harsh environments for accurate DEA detection at a low detection limit (LOD) at room temperature (RT) is challenging. In this study, p-type semiconducting porous CuOx sensing materials were synthesized using a simple solvothermal process and annealed in an argon atmosphere at three different temperatures (x = 400, 600, and 800 °C). Significant variations in particle size, specific area, crystallite size, and shape were noticed when the annealing temperature was elevated. Cu-MIL-53 annealed at 400 °C (CuO-400) has a typical nanoellipsoid (NEs) shape with a length of 61.5 nm and a diameter of 33.2 nm. Surprisingly, CuO-400 NEs showed an excellent response to DEA with an ultra-LOD (Rg/Ra = 7.3 @ 100 ppb, 55% relative humidity), excellent selectivity and sensitivity (Rg/Ra = 236 @ 15 ppm), exceptional long-term stability and repeatability, and a fast response/recovery period at RT, outperforming most previously reported materials. CuO-400 NEs have outstanding gas-sensing characteristics due to their high porosity, 1D nanostructure, unsaturated Cu sites (Cu+ and Cu2+), large specific surface area, and numerous oxygen vacancies. This study presents a generic approach to produce future CuO derived from Cu-MOFs-sensitive materials, revealing new insights into the design of effective sensors for environmental monitoring at RT.
Collapse
Affiliation(s)
- Altaf Hussain
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- University of Science and Technology of China, No. 96 Jinzhai Road, Hefei 230026, Anhui, P. R. China
| | - Baohua Lou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- University of Science and Technology of China, No. 96 Jinzhai Road, Hefei 230026, Anhui, P. R. China
| | - Fuad Abduro Bushira
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- University of Science and Technology of China, No. 96 Jinzhai Road, Hefei 230026, Anhui, P. R. China
| | - Shiyu Xia
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- University of Science and Technology of China, No. 96 Jinzhai Road, Hefei 230026, Anhui, P. R. China
| | - Fangshuo Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- University of Science and Technology of China, No. 96 Jinzhai Road, Hefei 230026, Anhui, P. R. China
| | - Yiran Guan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- University of Science and Technology of China, No. 96 Jinzhai Road, Hefei 230026, Anhui, P. R. China
| | - Wei Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- University of Science and Technology of China, No. 96 Jinzhai Road, Hefei 230026, Anhui, P. R. China
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, Guangxi, P. R. China
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- University of Science and Technology of China, No. 96 Jinzhai Road, Hefei 230026, Anhui, P. R. China
| |
Collapse
|
3
|
Recent Developments of Light-Harvesting Excitation, Macroscope Transfer and Multi-Stage Utilization of Photogenerated Electrons in Rotating Disk Photocatalytic Reactor. Processes (Basel) 2023. [DOI: 10.3390/pr11030838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
The rotating disk photocatalytic reactor is a kind of photocatalytic wastewater treatment technique with a high application potential, but the light energy utilization rate and photo quantum efficiency still need to be improved. Taking photogenerated electrons as the starting point, the following contents are reviewed in this work: (1) Light-harvesting excitation of photogenerated electrons. Based on the rotating disk thin solution film photocatalytic reactor, the photoanodes with light capture structures are reviewed from the macro perspective, and the research progress of light capture structure catalysts based on BiOCl is also reviewed from the micro perspective. (2) Macroscope transfer of photogenerated electrons. The research progress of photo fuel cell based on rotating disk reactors is reviewed. The system can effectively convert the chemical energy in organic pollutants into electrical energy through the macroscopic transfer of photogenerated electrons. (3) Multi-level utilization of photogenerated electrons. The photogenerated electrons transferred to the cathode can also generate H2O2 with oxygen or H2 with H+, and the reduction products can also be further utilized to deeply mineralize organic pollutants or reduce the nitrate in water. This short review will provide theoretical guidance for the further application of photocatalytic techniques in wastewater treatment.
Collapse
|
4
|
Bian X, Shi F, Li J, Liang J, Bao C, Zhang H, Jia J, Li K. Highly selective electrocatalytic reduction of nitrate to nitrogen in a chloride ion-free system by promoting kinetic mass transfer of intermediate products in a novel Pd-Cu adsorption confined cathode. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116405. [PMID: 36352730 DOI: 10.1016/j.jenvman.2022.116405] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
The mass transfer on the catalyst surface has a great influence on the selectivity of electrocatalytic nitrate reduction to nitrogen. In this study, a Pd-Cu adsorption confined nickel foam cathode is designed in the absence of both proton exchange membranes and chloride ions. The repulsion of the cathode enables intermediate products such as nitrite to accumulate in the confined region, resulting in an increase in the possibility of a second-order reaction to form nitrogen. The system can obtain more than 92% continuous N2 selectivity when it is used to treat 200 mg L-1 NO3--N under a current density of 8 mA cm-2, which is not only higher than those of semiconfined and nonconfined systems but also significantly better than the results obtained by Pd-Cu directly modified cathodes prepared by electrodeposition or impregnation. It is found that a high initial nitrate concentration and low current density are more beneficial for the accumulation of intermediates on Pd-Cu catalysts, thus improving the formation of nitrogen. A mechanism study reveals that the intermediates can completely occupy the active sites on the surface of Pd, avoiding the generation of active hydrogen, and therefore inhibiting the first-order reaction to produce ammonia. Moreover, the reducibility of Pd-Cu can also be gradually improved under the function of the cathode so that the system exhibits good stability. This study demonstrates an environmentally friendly and promising method for total nitrogen removal from industrial wastewater with high conductivity.
Collapse
Affiliation(s)
- Xingchen Bian
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai, 200240, PR China
| | - Feng Shi
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai, 200240, PR China
| | - Jingdong Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai, 200240, PR China
| | - Jianxing Liang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai, 200240, PR China
| | - Chenyu Bao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai, 200240, PR China
| | - Hongbo Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Jinping Jia
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai, 200240, PR China; Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Kan Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai, 200240, PR China; Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| |
Collapse
|
5
|
Yang S, Wang X, Song Z, Liu C, Li Z, Wang J, Song L. Efficient electrocatalytic nitrate reduction in neutral medium by Cu/CoP/NF composite cathode coupled with Ir-Ru/Ti anode. CHEMOSPHERE 2022; 307:136132. [PMID: 36002064 DOI: 10.1016/j.chemosphere.2022.136132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
In this work, a three-dimensional self-supporting copper/cobalt phosphide/nickel foam (Co/CoP/NF) composite was fabricated and employed as the cathode for electrochemical nitrate removal from surface water with the assistance of a commercial Ir-Ru/Ti anode. The experimental results demonstrate that the introduction of Cu nanoparticles on CoP nanosheets is favorable for the electrocatalytic nitrate reduction. The influences of operating parameters (pH value, current density and initial nitrate concentration) on the nitrate reduction were assessed with the presence of Cl-. At the optimized conditions, the removal of nitrate exhibits an efficiency ca. 100% via the coupling electrochemical reduction and oxidation processes. Moreover, the nitrogen selectivity is found to be as high as 98.8% within 210 min, accompanied with a promising test endurance (>94.0% for total nitrogen (TN) and NO3- removal efficiencies after an electrochemical run of 24.5 h). Importantly, as for the treated actual surface water, the concentration of TN is smaller than 1.5 mg L-1, in accordance with the limit of Ⅳ-level standard of the surface water environmental quality in China (GB 3838-2002). The efficient removal of nitrate can be attributed to the synergistic effect of Cu and CoP microparticles to enhance the reduction activity, as well as the subsequent chloride oxidation for the major intermediate of ammonium.
Collapse
Affiliation(s)
- Shuqin Yang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Xiuli Wang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Zimo Song
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Cuicui Liu
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Zeya Li
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Jingyi Wang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Laizhou Song
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China.
| |
Collapse
|
6
|
Jiang G, Ouyang J, Li X, Liu Z, lu: X, Jiang Y, Zhao Y, Dong F. 稳定化缺电子Cuδ+活性点位电催化还原水体硝氮研究. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Zhang Q, Sun X, Dang Y, Zhu JJ, Zhao Y, Xu X, Zhou Y. A novel electrochemically enhanced homogeneous PMS-heterogeneous CoFe 2O 4 synergistic catalysis for the efficient removal of levofloxacin. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127651. [PMID: 34772555 DOI: 10.1016/j.jhazmat.2021.127651] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/06/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
A novel electrochemically enhanced homogeneous-heterogeneous catalytic system was constructed by placing the prepared heterogeneous catalyst (CoFe2O4/NF) in parallel between the anode and the cathode for peroxymonosulfate (PMS) activation to remove levofloxacin (LVF) in this work. Over 90% of LVF could be effectively removed by the constructed system after 40 min's degradation. And the electrical energy consumption was only 2.51 kWh/m3, which was lower than 54.5% of the traditional electrochemical advanced oxidation process. Besides, the system broadened the response range of pH and overcame the inhibitory effect of alkaline conditions on degradation. These activities were mainly due to the high generation ability of free radical (SO4·-, ·OH and O2·-) and non-radical (1O2). And the SO4·- was found to be the main radical for LVF degradation. The high SO4·- generation ability was demonstrated to be resulted from the dual effects of synergy of CoFe2O4/PMS and enhancement of electrochemistry in EC/CoFe2O4/PMS system. In detail, electrochemistry could effectively promote the continuous circulation of Co2+/Co3+ and Fe2+/Fe3+ redox cycles on the surface of CoFe2O4 to enhance the activation of PMS, thereby generating SO4·-. This work can provide a promising and cost-effective approach to construct highly efficient organic pollutant degradation system.
Collapse
Affiliation(s)
- Qianyu Zhang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Xiaoqin Sun
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Yuan Dang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Jun-Jie Zhu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China.
| | - Yuan Zhao
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Xiaoxiang Xu
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Yuanzhen Zhou
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China.
| |
Collapse
|
8
|
Yin Z, Liu J, Jiang L, Chu J, Yang T, Kong A. Semi-enclosed Cu nanoparticles with porous nitrogen-doped carbon shells for efficient and tolerant nitrate electroreduction in neutral condition. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139585] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Parvulescu VI, Epron F, Garcia H, Granger P. Recent Progress and Prospects in Catalytic Water Treatment. Chem Rev 2021; 122:2981-3121. [PMID: 34874709 DOI: 10.1021/acs.chemrev.1c00527] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Presently, conventional technologies in water treatment are not efficient enough to completely mineralize refractory water contaminants. In this context, the implementation of catalytic processes could be an alternative. Despite the advantages provided in terms of kinetics of transformation, selectivity, and energy saving, numerous attempts have not yet led to implementation at an industrial scale. This review examines investigations at different scales for which controversies and limitations must be solved to bridge the gap between fundamentals and practical developments. Particular attention has been paid to the development of solar-driven catalytic technologies and some other emerging processes, such as microwave assisted catalysis, plasma-catalytic processes, or biocatalytic remediation, taking into account their specific advantages and the drawbacks. Challenges for which a better understanding related to the complexity of the systems and the coexistence of various solid-liquid-gas interfaces have been identified.
Collapse
Affiliation(s)
- Vasile I Parvulescu
- Department of Organic Chemistry, Biochemistry and Catalysis, University of Bucharest, B-dul Regina Elisabeta 4-12, Bucharest 030016, Romania
| | - Florence Epron
- Université de Poitiers, CNRS UMR 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 4 rue Michel Brunet, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Hermenegildo Garcia
- Instituto Universitario de Tecnología Química, Universitat Politecnica de Valencia-Consejo Superior de Investigaciones Científicas, Universitat Politencia de Valencia, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Pascal Granger
- CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Univ. Lille, F-59000 Lille, France
| |
Collapse
|
10
|
Yuan J, Xing Z, Tang Y, Liu C. Tuning the Oxidation State of Cu Electrodes for Selective Electrosynthesis of Ammonia from Nitrate. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52469-52478. [PMID: 34723479 DOI: 10.1021/acsami.1c10946] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Electrochemical reduction of nitrate (NO3-) to ammonia (NH3) provides a promising route for recycling nitrate from wastewater to balance the nitrogen cycle and sustainable production of ammonia. Among various catalytic materials for NO3- electroreduction, Cu shows a favorable selectivity to NH3. However, Cu can be easily oxidized, while the effect of the Cu oxidation state on NO3- reduction remains to be elucidated. Here, we report that oxidic Cu formed on a Cu electrode can enhance its activity and selectivity for NO3- reduction to NH3. We first used a polished Cu foil as a model catalyst for NO3- reduction and found that a brief exposure of the Cu electrode to air could increase its yield rate and Faradaic efficiency for NH3 production. The improved catalytic performance was attributed to the formed Cu+ sites that can reduce the energy barrier for NO3- reduction to NH3 and suppress the competing HER reaction. Based on this finding, an oxide-derived Cu (OD-Cu) electrode was prepared by annealing a Cu foil in O2 gas followed by electroreduction, which exhibited superior performance for NO3- reduction to NH3, with a Faradaic efficiency of 92% and a yield rate of 1.1 mmol h-1 cm-2 for NH3 production at -0.15 V versus reversible hydrogen electrode. Moreover, an OD-Cu foam electrode was similarly developed to demonstrate NO3- recycling from a low-concentration NO3- solution, which showed a nearly 100% conversion of NO3- to NH3 using a circulating flow cell.
Collapse
Affiliation(s)
- Jili Yuan
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Zhuo Xing
- School of Material Science and Engineering, University of Jinan, Jinan 250022, China
| | - Yanhong Tang
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Chengbin Liu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
11
|
Song N, Chen Z, Shi J, Shi D, Gu L. Performance and mechanism of chelating resin (TP-207) supported Pd/Cu bimetallic nanoparticles in selective reduction of nitrate by using ZVI (zero valent iron) as reductant. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
She W, Wang J, Li X, Li J, Mao G, Li W, Li G. Highly chemoselective synthesis of imine over Co/Zn bimetallic MOFs derived Co3ZnC-ZnO embed in carbon nanosheet catalyst. J Catal 2021. [DOI: 10.1016/j.jcat.2021.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
13
|
Xu Y, Ren K, Ren T, Wang M, Liu M, Wang Z, Li X, Wang L, Wang H. Cooperativity of Cu and Pd active sites in CuPd aerogels enhances nitrate electroreduction to ammonia. Chem Commun (Camb) 2021; 57:7525-7528. [PMID: 34236059 DOI: 10.1039/d1cc02105b] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
By rationally choosing Pd as an active metal and Cu as a promoting metal, we developed Cu-rich CuPd bimetallic aerogels as a self-supported electrocatalyst for nitrate electroreduction. The spongy aerogel structure provides abundant catalytically active sites, while the synergistic benefit of the CuPd binary composition increases their reactivity, helping to achieve efficient nitrate-to-ammonia conversion.
Collapse
Affiliation(s)
- You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China.
| | - Kaili Ren
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China.
| | - Tianlun Ren
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China.
| | - Mingzhen Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China.
| | - Mengying Liu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China.
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China.
| | - Xiaonian Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China.
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China.
| | - Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China.
| |
Collapse
|