1
|
Xie S, Lu Y, Ye K, Tan W, Cao S, Wang C, Kim D, Zhang X, Loukusa J, Li Y, Zhang Y, Ma L, Ehrlich SN, Marinkovic NS, Deng J, Flytzani-Stephanopoulos M, Liu F. Enhancing the Carbon Monoxide Oxidation Performance through Surface Defect Enrichment of Ceria-Based Supports for Platinum Catalyst. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12731-12741. [PMID: 38958431 PMCID: PMC11256741 DOI: 10.1021/acs.est.4c03078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
Effective synthesis and application of single-atom catalysts on supports lacking enough defects remain a significant challenge in environmental catalysis. Herein, we present a universal defect-enrichment strategy to increase the surface defects of CeO2-based supports through H2 reduction pretreatment. The Pt catalysts supported by defective CeO2-based supports, including CeO2, CeZrOx, and CeO2/Al2O3 (CA), exhibit much higher Pt dispersion and CO oxidation activity upon reduction activation compared to their counterpart catalysts without defect enrichment. Specifically, Pt is present as embedded single atoms on the CA support with enriched surface defects (CA-HD) based on which the highly active catalyst showing embedded Pt clusters (PtC) with the bottom layer of Pt atoms substituting the Ce cations in the CeO2 surface lattice can be obtained through reduction activation. Embedded PtC can better facilitate CO adsorption and promote O2 activation at PtC-CeO2 interfaces, thereby contributing to the superior low-temperature CO oxidation activity of the Pt/CA-HD catalyst after activation.
Collapse
Affiliation(s)
- Shaohua Xie
- Department
of Civil, Environmental, and Construction Engineering, Catalysis Cluster
for Renewable Energy and Chemical Transformations (REACT), NanoScience
Technology Center (NSTC), University of
Central Florida, Orlando, Florida 32816, United States
| | - Yue Lu
- Beijing
Key Laboratory of Microstructure and Properties of Solids, Faculty
of Materials and Manufacturing, Beijing
University of Technology, Beijing 100124, People’s
Republic of China
| | - Kailong Ye
- Department
of Civil, Environmental, and Construction Engineering, Catalysis Cluster
for Renewable Energy and Chemical Transformations (REACT), NanoScience
Technology Center (NSTC), University of
Central Florida, Orlando, Florida 32816, United States
| | - Wei Tan
- Department
of Civil, Environmental, and Construction Engineering, Catalysis Cluster
for Renewable Energy and Chemical Transformations (REACT), NanoScience
Technology Center (NSTC), University of
Central Florida, Orlando, Florida 32816, United States
- State
Key Laboratory of Pollution Control and Resource Reuse, School of
the Environment, Jiangsu Key Laboratory of Vehicle Emissions Control,
School of Chemistry and Chemical Engineering, Center of Modern Analysis, Nanjing University, Nanjing, Jiangsu 210023, People’s Republic
of China
| | - Sufeng Cao
- Department
of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
- Aramco Boston
Research Center, Cambridge, Massachusetts 02139, United States
| | - Chunying Wang
- Center
for Excellence in Regional Atmospheric Environment, Institute of Urban
Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, People’s
Republic of China
| | - Daekun Kim
- Department
of Civil, Environmental, and Construction Engineering, Catalysis Cluster
for Renewable Energy and Chemical Transformations (REACT), NanoScience
Technology Center (NSTC), University of
Central Florida, Orlando, Florida 32816, United States
| | - Xing Zhang
- Department
of Civil, Environmental, and Construction Engineering, Catalysis Cluster
for Renewable Energy and Chemical Transformations (REACT), NanoScience
Technology Center (NSTC), University of
Central Florida, Orlando, Florida 32816, United States
| | - Jeremia Loukusa
- Department
of Civil, Environmental, and Construction Engineering, Catalysis Cluster
for Renewable Energy and Chemical Transformations (REACT), NanoScience
Technology Center (NSTC), University of
Central Florida, Orlando, Florida 32816, United States
| | - Yaobin Li
- Center
for Excellence in Regional Atmospheric Environment, Institute of Urban
Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, People’s
Republic of China
| | - Yan Zhang
- Center
for Excellence in Regional Atmospheric Environment, Institute of Urban
Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, People’s
Republic of China
| | - Lu Ma
- National
Synchrotron Light Source II (NSLS-II), Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - Steven N. Ehrlich
- National
Synchrotron Light Source II (NSLS-II), Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - Nebojsa S. Marinkovic
- Department
of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Jiguang Deng
- Beijing
Key Laboratory for Green Catalysis and Separation, Key Laboratory
of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced
Functional Materials, Ministry of Education of China, Faculty of Environment
and Life, Beijing University of Technology, Beijing 100124, People’s Republic of China
| | | | - Fudong Liu
- Department
of Chemical and Environmental Engineering, University of California, Riverside, Riverside, California 92521, United States
- Department
of Civil, Environmental, and Construction Engineering, Catalysis Cluster
for Renewable Energy and Chemical Transformations (REACT), NanoScience
Technology Center (NSTC), University of
Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
2
|
Li Z, Liu Z, Gao G, Zhao W, Jiang Y, Tang X, Dai S, Qu Z, Yan N, Ma L. Enhanced Catalytic Oxidation Reactivity over Atomically Dispersed Pt/CeO 2 Catalysts by CO Activation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12201-12211. [PMID: 38934498 DOI: 10.1021/acs.est.4c02022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The elevation of the low-temperature oxidation activity for Pt/CeO2 catalysts is challenging to meet the increasingly stringent requirements for effectively eliminating carbon monoxide (CO) from automobile exhaust. Although reducing activation is a facile strategy for boosting reactivity, past research has mainly concentrated on applying H2 as the reductant, ignoring the reduction capabilities of CO itself, a prevalent component of automobile exhaust. Herein, atomically dispersed Pt/CeO2 was fabricated and activated by CO, which could lower the 90% conversion temperature (T90) by 256 °C and achieve a 20-fold higher CO consumption rate at 200 °C. The activated Pt/CeO2 catalysts showed exceptional catalytic oxidation activity and robust hydrothermal stability under the simulated working conditions for gasoline or diesel exhausts. Characterization results illustrated that the CO activation triggered the formation of a large portion of Pt0 terrace sites, acting as inherent active sites for CO oxidation. Besides, CO activation weakened the Pt-O-Ce bond strength to generate a surface oxygen vacancy (Vo). It served as the oxygen reservoir to store the dissociated oxygen and convert it into active dioxygen intermediates. Conversely, H2 activation failed to stimulate Vo, but triggered a deactivating transformation of the Pt nanocluster into inactive PtxOy in the presence of oxygen. The present work offers coherent insight into the upsurging effect of CO activation on Pt/CeO2, aiming to set up a valuable avenue in elevating the efficiency of eliminating CO, C3H6, and NH3 from automobile exhaust.
Collapse
Affiliation(s)
- Zihao Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhisong Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guanqun Gao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Weina Zhao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yongjun Jiang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuan Tang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zan Qu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Naiqiang Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Ma
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Yang P, Luo C, Tan W, Liu Q, Zhang S, Hong S, Gao F, Dong L. Insights into the Construction of Robust Pt Clusters with Satisfactory Stability on CeO 2 for the Catalytic Oxidation of CO. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21782-21789. [PMID: 38635211 DOI: 10.1021/acsami.4c00342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Improving the efficiency of platinum group metals (Pt, Pd, Rh, etc.) in catalytic oxidation reactions remains an urgent topic. The conflict between the low-temperature activity and high-temperature stability of noble metals can hardly reach a consensus. For instance, Pt cluster catalysts supported on CeO2 with high low-temperature activity will suffer from deactivation due to the redispersion under high-temperature lean-burn reaction conditions. Herein, two Pt1/CeO2 prepared by the incipient wetness impregnation method using different Pt precursors possessed varied Pt-O and Pt-O-Ce coordination numbers (CNs). They showed various priorities in CO oxidation versus NH3 selective catalytic oxidation, materials with higher CNPt-O-Ce selectively catalyzing NH3 oxidation to N2 more superior, conversely materials with lower CNPt-O-Ce performing better in CO oxidation. After activation by H2 reduction, both formed massive Pt clusters on the CeO2 surface but showed drastically distinct stability in lean-burn CO oxidation reactions. By summarizing the experimental results of high-angle annular dark-field scanning transmission electron microscopy, X-ray absorption spectroscopy, Raman spectroscopy, in situ diffuse reflectance infrared Fourier transform spectroscopy, etc., it is beyond doubt that the difference in the initial states of Pt1 due to distinct precursors indeed determine the redispersion behavior of the reduced Pt clusters on CeO2. Materials with lower CNPt-O-Ce and higher CNPt-O are more likely to form robust Pt clusters, as they are not conducive to Pt anchoring, thus restricting the reversible structural evolution occurring under lean-burn CO oxidation and reductive conditions. This approach serves as a guide for the convenient and efficient construction and exploration of robust Pt cluster catalysts.
Collapse
Affiliation(s)
- Peng Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing 210023, China
| | - Chaoyi Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing 210023, China
| | - Wei Tan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing 210023, China
| | - Qinglong Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing 210023, China
| | - Shaoxiong Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing 210023, China
| | - Song Hong
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fei Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing 210023, China
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Lin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing 210023, China
| |
Collapse
|
4
|
Feng C, Wang Y, Chen C, Fu X, Pan Y, Xin H, Wang Z, Lu Y, Li X, Zhang R, Liu Y. Fabrication of highly dispersed Pd-Mn 3O 4 catalyst for efficient catalytic propane total oxidation. J Colloid Interface Sci 2023; 650:1415-1423. [PMID: 37460387 DOI: 10.1016/j.jcis.2023.07.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 08/17/2023]
Abstract
Adjusting the interaction between dual active components for enhancing volatile organic compounds (VOCs) degradation is an effective but still challenging means of air pollution control. Herein, a limited pyrolysis oxidation strategy was adopted to prepare Pd-Mn3O4 spinel catalysts with uniform morphology and active component dispersion. Among these, 1.08Pd-Mn3O4 presented the highest catalytic efficiency with a T90 value of 240 °C, which was 94 °C lower than that of Mn3O4. Characterization and density functional theory (DFT) calculation results revealed that the strong metal-support interaction (SMSI) effect between Pd and Mn3O4 promoted the redistribution of surface charges, thus strengthening the oxidation-reduction ability of the active sites. Moreover, the SMSI effect led to a better migration of surface oxygen species, and boosted the generation of active surface oxygen species. Simultaneously, the Pd catalyst further reduced the energy barrier in the initial stage of the dehydrogenation of propane. Overall, this study provided a novel design strategy for dual active components catalysts with SMSI effect and extended the application of these catalysts in the important field of VOCs elimination.
Collapse
Affiliation(s)
- Chao Feng
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China; Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
| | - Yunxia Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Chong Chen
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Xueqing Fu
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Yuan Pan
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China.
| | - Hongchuan Xin
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Zhong Wang
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Yukun Lu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Xuebing Li
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Runduo Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yunqi Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China.
| |
Collapse
|
5
|
Groppo E, Rojas-Buzo S, Bordiga S. The Role of In Situ/ Operando IR Spectroscopy in Unraveling Adsorbate-Induced Structural Changes in Heterogeneous Catalysis. Chem Rev 2023; 123:12135-12169. [PMID: 37882638 PMCID: PMC10636737 DOI: 10.1021/acs.chemrev.3c00372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Indexed: 10/27/2023]
Abstract
Heterogeneous catalysts undergo thermal- and/or adsorbate-induced dynamic changes under reaction conditions, which consequently modify their catalytic behavior. Hence, it is increasingly crucial to characterize the properties of a catalyst under reaction conditions through the so-called "operando" approach. Operando IR spectroscopy is probably one of the most ubiquitous and versatile characterization methods in the field of heterogeneous catalysis, but its potential in identifying adsorbate- and thermal-induced phenomena is often overlooked in favor of other less accessible methods, such as XAS spectroscopy and high-resolution microscopy. Without detracting from these techniques, and while aware of the enormous value of a multitechnique approach, the purpose of this Review is to show that IR spectroscopy alone can provide relevant information in this field. This is done by discussing a few selected case studies from our own research experience, which belong to the categories of both "single-site"- and nanoparticle-based catalysts.
Collapse
Affiliation(s)
- Elena Groppo
- Department of Chemistry,
NIS Centre and INSTM, University of Torino, via Giuria 7, 10125 Turin, Italy
| | - Sergio Rojas-Buzo
- Department of Chemistry,
NIS Centre and INSTM, University of Torino, via Giuria 7, 10125 Turin, Italy
| | - Silvia Bordiga
- Department of Chemistry,
NIS Centre and INSTM, University of Torino, via Giuria 7, 10125 Turin, Italy
| |
Collapse
|
6
|
Tan W, Cai Y, Yu H, Xie S, Wang M, Ye K, Ma L, Ehrlich SN, Gao F, Dong L, Liu F. Tuning the Interaction between Platinum Single Atoms and Ceria by Zirconia Doping for Efficient Catalytic Ammonia Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15747-15758. [PMID: 37788364 DOI: 10.1021/acs.est.3c06067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Aiming at the development of an efficient NH3 oxidation catalyst to eliminate the harmful NH3 slip from the stationary flue gas denitrification system and diesel exhaust aftertreatment system, a facile ZrO2 doping strategy was proposed to construct Pt1/CexZr1-xO2 catalysts with a tunable Pt-CeO2 interaction strength and Pt-O-Ce coordination environment. According to the results of systematic characterizations, Pt species supported on CexZr1-xO2 were mainly in the form of single atoms when x ≥ 0.7, and the strength of the Pt-CeO2 interaction and the coordination number of Pt-O-Ce bond (CNPt-O-Ce) on Pt1/CexZr1-xO2 showed a volcanic change as a function of the ZrO2 doping amount. It was proposed that the balance between the reasonable concentration of oxygen defects and limited surface Zr-Ox species well accounted for the strongest Pt-CeO2 interaction and the highest CNPt-O-Ce on Pt/Ce0.9Zr0.1O2. It was observed that the Pt/Ce0.9Zr0.1O2 catalyst exhibited much higher NH3 oxidation activity than other Pt/CexZr1-xO2 catalysts. The mechanism study revealed that the Pt1 species with the stronger Pt-CeO2 interaction and higher CNPt-O-Ce within Pt/Ce0.9Zr0.1O2 could better activate NH3 adsorbed on Lewis acid sites to react with O2 thus resulting in superior NH3 oxidation activity. This work provides a new approach for designing highly efficient Pt/CeO2 based catalysts for low-temperature NH3 oxidation.
Collapse
Affiliation(s)
- Wei Tan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States
| | - Yandi Cai
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Haowei Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shaohua Xie
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States
| | - Meiyu Wang
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Kailong Ye
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States
| | - Lu Ma
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Steven N Ehrlich
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Fei Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Lin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Fudong Liu
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
7
|
Liu H, Wu S, Sun C, Huang Z, Xu H, Shen W. Fabricating Uniform TiO 2-CeO 2 Solid Solution Supported Pd Catalysts by an In Situ Capture Strategy for Low-Temperature CO Oxidation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10795-10802. [PMID: 36795527 DOI: 10.1021/acsami.2c23248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Support properties regulation has been a feasible method for the improvement of noble metal catalytic performance. For Pd-based catalysts, TiO2-CeO2 material has been widely used as an important support. However, due to the considerable discrepancy in the solubility product constant between titanium and cerium hydroxides, it is still challenging to synthesize a uniform TiO2-CeO2 solid solution in the catalysts. Herein, an in situ capture strategy was constructed to fabricate a uniform TiO2-CeO2 solid solution as supports for an enhanced Pd-based catalyst. The obtained Pd/TiO2-CeO2-iC catalyst possessed enriched reactive oxygen species and optimized CO adsorption capability, manifesting a superior CO oxidation activity (T100 = 70 °C) and stability (over 170 h). We believe this work provides a viable strategy for precise characteristic modulation of composite oxide supports during the fabrication of advanced noble metal-based catalysts.
Collapse
Affiliation(s)
- Huimin Liu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China
| | - Shipeng Wu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China
| | - Chao Sun
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China
| | - Zhen Huang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China
| | - Hualong Xu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China
| | - Wei Shen
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China
| |
Collapse
|
8
|
Feng Y, Ma P, Wang Z, Shi Y, Wang Z, Peng Y, Jing L, Liu Y, Yu X, Wang X, Zhang X, Deng J, Dai H. Synergistic Effect of Reactive Oxygen Species in Photothermocatalytic Removal of VOCs from Cooking Oil Fumes over Pt/CeO 2/TiO 2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17341-17351. [PMID: 36413583 DOI: 10.1021/acs.est.2c07146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The volatile organic compounds (VOCs) from cooking oil fumes are very complex and do harm to humans and the environment. Herein, we develop the high-efficiency and energy-saving synergistic photothermocatalytic oxidation approach to eliminate the mixture of heptane and hexanal, the representative VOCs with high concentrations in cooking oil fumes. The Pt/CeO2/TiO2 catalyst with nanosized Pt particles was prepared by the simple hydrothermal and impregnation methods, and the physicochemical properties of the catalyst were measured using numerous techniques. The Pt/CeO2/TiO2 catalyst eliminated the VOC mixture at low light intensity (100 mW cm-2) and low temperature (200 °C). In addition, it showed 25 h of catalytic stability and water resistance (water concentration up to 20 vol %) at 140 or 190 °C. It is concluded that O2 picked up the electrons from Pt to generate the •O2- species, which were transformed to the O22- and O- species after the rise in temperature. In the presence of water, the •OH species induced by light irradiation on the catalyst surface and the •OOH species formed via the thermal reaction were both supplementary oxygen species for VOC oxidation. The synergistic interaction of photo- and thermocatalysis was generated by the reactive oxygen species.
Collapse
Affiliation(s)
- Ying Feng
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| | - Peijie Ma
- Beijing Key Lab of Microstructure and Properties of Advanced Materials, Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing100124, China
| | - Zhiwei Wang
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| | - Yijie Shi
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| | - Zhihua Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Yue Peng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
| | - Lin Jing
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| | - Yuxi Liu
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| | - Xiaohui Yu
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| | - Xun Wang
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| | - Xiaofan Zhang
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| | - Jiguang Deng
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| | - Hongxing Dai
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Department of Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| |
Collapse
|
9
|
Xie S, Liu L, Lu Y, Wang C, Cao S, Diao W, Deng J, Tan W, Ma L, Ehrlich SN, Li Y, Zhang Y, Ye K, Xin H, Flytzani-Stephanopoulos M, Liu F. Pt Atomic Single-Layer Catalyst Embedded in Defect-Enriched Ceria for Efficient CO Oxidation. J Am Chem Soc 2022; 144:21255-21266. [DOI: 10.1021/jacs.2c08902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Shaohua Xie
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States
| | - Liping Liu
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Yue Lu
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Chunying Wang
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Sufeng Cao
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Weijian Diao
- Department of Chemical and Biological Engineering, Villanova University, Villanova, Pennsylvania 19085, United States
| | - Jiguang Deng
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| | - Wei Tan
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment; Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China
| | - Lu Ma
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Steven N. Ehrlich
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Yaobin Li
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yan Zhang
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Kailong Ye
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States
| | - Hongliang Xin
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | | | - Fudong Liu
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
10
|
Lashina EA, Slavinskaya EM, Stonkus OA, Stadnichenko AI, Romanenko AV, Boronin AI. The role of ionic and cluster active centers of Pt/CeO2 catalysts in CO oxidation. Experimental study and mathematical modeling. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
De Marco ML, Baaziz W, Sharna S, Devred F, Poleunis C, Chevillot-Biraud A, Nowak S, Haddad R, Odziomek M, Boissière C, Debecker DP, Ersen O, Peron J, Faustini M. High-Entropy-Alloy Nanocrystal Based Macro- and Mesoporous Materials. ACS NANO 2022; 16:15837-15849. [PMID: 36066922 DOI: 10.1021/acsnano.2c05465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
High-entropy-alloy (HEA) nanoparticles are attractive for several applications in catalysis and energy. Great efforts are currently devoted to establish composition-property relationships to improve catalytic activity or selectivity. Equally importantly, developing practical fabrication methods for shaping HEA-based materials into complex architectures is a key requirement for their utilization in catalysis. However, shaping nano-HEAs into hierarchical structures avoiding demixing or collapse remains a great challenge. Herein, we overcome this issue by introducing a simple soft-chemistry route to fabricate ordered macro- and mesoporous materials based on HEA nanoparticles, with high surface area, thermal stability, and catalytic activity toward CO oxidation. The process is based on spray-drying from an aqueous solution containing five different noble metal precursors and polymer latex beads. Upon annealing, the polymer plays a double role: templating and reducing agent enabling formation of HEA nanoparticle-based porous networks at only 350 °C. The formation mechanism and the stability of the macro- and mesoporous materials were investigated by a set of in situ characterization techniques; notably, in situ transmission electron microscopy unveiled that the porous structure is stable up to 800 °C. Importantly, this process is green, scalable, and versatile and could be potentially extended to other classes of HEA materials.
Collapse
Affiliation(s)
- Maria Letizia De Marco
- Laboratoire Chimie de la Matiere Condensée de Paris (LCMCP), Sorbonne Université-CNRS, 4, Place Jussieu, 75005 Paris, France
| | - Walid Baaziz
- Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg-CNRS, 23, Rue du Loess, 67200 Strasbourg, France
| | - Sharmin Sharna
- Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg-CNRS, 23, Rue du Loess, 67200 Strasbourg, France
| | - François Devred
- Institute of Condensed Matter ad Nanosciences (IMCN), Université Catholique de Louvain (UCLouvain), 1, Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium
| | - Claude Poleunis
- Institute of Condensed Matter ad Nanosciences (IMCN), Université Catholique de Louvain (UCLouvain), 1, Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium
| | | | - Sophie Nowak
- Université Paris Cité, CNRS, ITODYS, F-75013 Paris, France
| | - Ryma Haddad
- Laboratoire Chimie de la Matiere Condensée de Paris (LCMCP), Sorbonne Université-CNRS, 4, Place Jussieu, 75005 Paris, France
| | - Mateusz Odziomek
- Laboratoire Chimie de la Matiere Condensée de Paris (LCMCP), Sorbonne Université-CNRS, 4, Place Jussieu, 75005 Paris, France
| | - Cédric Boissière
- Laboratoire Chimie de la Matiere Condensée de Paris (LCMCP), Sorbonne Université-CNRS, 4, Place Jussieu, 75005 Paris, France
| | - Damien P Debecker
- Institute of Condensed Matter ad Nanosciences (IMCN), Université Catholique de Louvain (UCLouvain), 1, Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium
| | - Ovidiu Ersen
- Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg-CNRS, 23, Rue du Loess, 67200 Strasbourg, France
| | - Jennifer Peron
- Université Paris Cité, CNRS, ITODYS, F-75013 Paris, France
| | - Marco Faustini
- Laboratoire Chimie de la Matiere Condensée de Paris (LCMCP), Sorbonne Université-CNRS, 4, Place Jussieu, 75005 Paris, France
| |
Collapse
|
12
|
Tan W, Xie S, Wang X, Xu J, Yan Y, Ma K, Cai Y, Ye K, Gao F, Dong L, Liu F. Determination of Intrinsic Active Sites on CuO–CeO 2–Al 2O 3 Catalysts for CO Oxidation and NO Reduction by CO: Differences and Connections. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wei Tan
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida32816, United States
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Shaohua Xie
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida32816, United States
| | - Xin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Juntian Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Yong Yan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore637459, Singapore
| | - Kaili Ma
- Analysis and Testing Center, Southeast University, Nanjing211189, China
| | - Yandi Cai
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Kailong Ye
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida32816, United States
| | - Fei Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Lin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Fudong Liu
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida32816, United States
| |
Collapse
|
13
|
Xie S, Zhang X, Xu P, Hatcher B, Liu Y, Ma L, Ehrlich SN, Hong S, Liu F. Effect of surface acidity modulation on Pt/Al2O3 single atom catalyst for carbon monoxide oxidation and methanol decomposition. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.03.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Guo Y, Ma L, Li Z, Liu Z, Chang H, Zhao X, Yan N. Specific reactivity of 4d and 5d transition metals supported over CeO 2 for ammonia oxidation. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01380k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pt/CeO2 catalysts were most active in selective catalytic oxidation of ammonia, where Pt triggered the activation of surface lattice oxygen, and the dehydrogenation of ammonia assisted by surface lattice oxygen was the rate-determining step.
Collapse
Affiliation(s)
- Yitong Guo
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Ma
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zihao Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhisong Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huazhen Chang
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Xiaoran Zhao
- Shanghai Key Laboratory of Advanced High-temperature Materials and Precision Forming, State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Naiqiang Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|