1
|
Takahashi Y, Seko Y, Yamaguchi K, Takeuchi K, Yano K, Kataoka S, Moriguchi M, Itoh Y. Gamma-glutamyl transferase predicts pemafibrate treatment response in non-alcoholic fatty liver disease. J Gastroenterol Hepatol 2023; 38:1743-1749. [PMID: 37221601 DOI: 10.1111/jgh.16222] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIM Pemafibrate, a selective peroxisome proliferator activated receptor α modulator, has been shown to improve liver function among nonalcoholic fatty liver disease (NAFLD) patients with dyslipidemia. The aim of this retrospective study is to identify predictors of pemafibrate efficacy in NAFLD patients. METHODS A total of 75 NAFLD patients with dyslipidemia who received pemafibrate twice per day for 48 weeks were enrolled in this study. We used the FibroScan-aspartate aminotransferase (FAST) score as a benchmark for treatment efficacy. RESULTS Median FAST score significantly decreased from 0.96 at baseline to 0.93 at week 48 (P < 0.001). Significant improvements in levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), gamma-glutamyl transferase (GGT), and triglycerides were also noted. The serum level of GGT at baseline was correlated with change in FAST score (r = -0.22, P = 0.049). Changes in AST, ALT, and GGT were positively correlated with change in FAST score (r = 0.71, r = 0.61, and r = 0.38). Multivariate analyses identified age and GGT level at baseline as significantly associated with improvement of FAST score by pemafibrate therapy (odds ratio 1.11, 1.02, respectively). Patients over 50 years of age and with a GGT of 90 IU/L or higher showed significantly greater improvement in the FAST score than other groups. CONCLUSIONS Pemafibrate improves the FAST score of NAFLD patients with complicating dyslipidemia, especially in older patients with high GGT level. GGT is useful as an indicator of optimal treatment choice for NAFLD patients with dyslipidemia.
Collapse
Affiliation(s)
- Yusuke Takahashi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuya Seko
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kanji Yamaguchi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kento Takeuchi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kota Yano
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Seita Kataoka
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Michihisa Moriguchi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshito Itoh
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
2
|
Yu L, Liu Y, Wang S, Zhang Q, Zhao J, Zhang H, Narbad A, Tian F, Zhai Q, Chen W. Cholestasis: exploring the triangular relationship of gut microbiota-bile acid-cholestasis and the potential probiotic strategies. Gut Microbes 2023; 15:2181930. [PMID: 36864554 PMCID: PMC9988349 DOI: 10.1080/19490976.2023.2181930] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/09/2023] [Indexed: 03/04/2023] Open
Abstract
Cholestasis is a condition characterized by the abnormal production or excretion of bile, and it can be induced by a variety of causes, the factors of which are extremely complex. Although great progress has been made in understanding cholestasis pathogenesis, the specific mechanisms remain unclear. Therefore, it is important to understand and distinguish cholestasis from different etiologies, which will also provide indispensable theoretical support for the development of corresponding therapeutic drugs. At present, the treatment of cholestasis mainly involves several bile acids (BAs) and their derivatives, most of which are in the clinical stage of development. Multiple lines of evidence indicate that ecological disorders of the gut microbiota are strongly related to the occurrence of cholestasis, in which BAs also play a pivotal role. Recent studies indicate that probiotics seem to have certain effects on cholestasis, but further confirmation from clinical trials is required. This paper reviews the etiology of and therapeutic strategies for cholestasis; summarizes the similarities and differences in inducement, symptoms, and mechanisms of related diseases; and provides information about the latest pharmacological therapies currently available and those under research for cholestasis. We also reviewed the highly intertwined relationship between gut microbiota-BA-cholestasis, revealing the potential role and possible mechanism of probiotics in the treatment of cholestasis.
Collapse
Affiliation(s)
- Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
| | - Yaru Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shunhe Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qingsong Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Arjan Narbad
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
- Gut Health and Microbiome Institute Strategic Programme, Quadram Institute Bioscience, Norwich, UK
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
3
|
Buchanan-Peart KA, Levy C. Novel Therapies in Primary Biliary Cholangitis: What Is in the Pipeline? Clin Liver Dis 2022; 26:747-764. [PMID: 36270727 DOI: 10.1016/j.cld.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Primary biliary cholangitis is a chronic autoimmune disease characterized by inflammation and the progressive destruction of small intrahepatic bile ducts. Current first-line treatment includes ursodeoxycholic acid; however, a significant number of patients have an inadequate response to therapy. These patients are at risk of liver failure requiring liver transplantation and experience a poor quality of life due to refractory symptoms. This manuscript aims to shed light on the current and prospective treatment options that may slow disease progression and improve these patients' symptoms.
Collapse
Affiliation(s)
- Keri-Ann Buchanan-Peart
- Division of Digestive Health and Liver Diseases, University of Miami Miller School of Medicine, 1500 Northwest 12th Avenue, Suite 1101-E, Miami, FL 33136, USA; Department of Internal Medicine, Jackson Memorial Hospital, 1611 NW 12th Avenue, Miami, FL 33136, USA
| | - Cynthia Levy
- Division of Digestive Health and Liver Diseases, Schiff Center for Liver Diseases, University of Miami Miller School of Medicine, 1500 Northwest 12th Avenue, Suite 1101-E, Miami, FL 33136, USA.
| |
Collapse
|
4
|
Ye X, Zhang T, Han H. PPARα: A potential therapeutic target of cholestasis. Front Pharmacol 2022; 13:916866. [PMID: 35924060 PMCID: PMC9342652 DOI: 10.3389/fphar.2022.916866] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/29/2022] [Indexed: 12/12/2022] Open
Abstract
The accumulation of bile acids in the liver leads to the development of cholestasis and hepatocyte injury. Nuclear receptors control the synthesis and transport of bile acids in the liver. Among them, the farnesoid X receptor (FXR) is the most common receptor studied in treating cholestasis. The activation of this receptor can reduce the amount of bile acid synthesis and decrease the bile acid content in the liver, alleviating cholestasis. Ursodeoxycholic acid (UDCA) and obeticholic acid (OCA) have a FXR excitatory effect, but the unresponsiveness of some patients and the side effect of pruritus seriously affect the results of UDCA or OCA treatment. The activator of peroxisome proliferator-activated receptor alpha (PPARα) has emerged as a new target for controlling the synthesis and transport of bile acids during cholestasis. Moreover, the anti-inflammatory effect of PPARα can effectively reduce cholestatic liver injury, thereby improving patients’ physiological status. Here, we will focus on the function of PPARα and its involvement in the regulation of bile acid transport and metabolism. In addition, the anti-inflammatory effects of PPARα will be discussed in some detail. Finally, we will discuss the application of PPARα agonists for cholestatic liver disorders.
Collapse
Affiliation(s)
- Xiaoyin Ye
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tong Zhang
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Tong Zhang, ; Han Han,
| | - Han Han
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Tong Zhang, ; Han Han,
| |
Collapse
|
5
|
Warnes TW, Roberts SA, Smith A, Cope VM, Vales P, Haboubi NY, McMahon RF. Portal hypertension in primary biliary cholangitis: prevalence, natural history and histological correlates. Eur J Gastroenterol Hepatol 2021; 33:1595-1602. [PMID: 33323761 DOI: 10.1097/meg.0000000000002033] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The histopathological mechanisms underlying portal hypertension in primary biliary cholangitis (PBC) are poorly understood, as is its natural history. We have therefore determined the prevalence, severity and progression of portal hypertension in PBC and investigated whether its presence is related to specific histological lesions. METHODS Hepatic venous pressure gradient (HVPG) was measured in 86 patients, with 186 assessments over up to 7 years of follow-up and the results correlated with a semiquantitative grading of 8 histological features and nodular regenerative hyperplasia (NRH). RESULTS Portal hypertension (HVPG >5 mmHg) was present in 88% of all assessments (86% at baseline), and in 45% of patients at baseline was >12 mmHg (high-risk portal hypertension). The rise in portal pressure occurs early in the disease, since 45% of patients with normal serum bilirubin had a raised HVPG, as did 72% of patients with early (Ludwig stages 1 and 2) disease. After baseline, there was a small increase in HVPG over the next 5 years in most patients. In patients with precirrhotic PBC, 82% had portal hypertension and in 34% this was >12 mmHg. Portal pressure correlated significantly with a semiquantitative grading of cholestasis, interface hepatitis and portal tract and sinusoidal fibrosis. NRH was present in only 20% of wedge biopsies. CONCLUSIONS Portal hypertension commences in the early stages of PBC, long preceding both rises in serum bilirubin and the development of cirrhosis. Around 34% of precirrhotic PBC patients have 'high-risk' portal hypertension, which is associated with lesions in the portal tracts and sinusoids rather than with NRH.
Collapse
Affiliation(s)
- Thomas W Warnes
- Liver Unit, Department of Gastroenterology, Manchester Royal Infirmary
| | - Stephen A Roberts
- Centre of Biostatistics, School of Health Sciences, Manchester Academic Health Science Centre, University of Manchester
| | - Alexander Smith
- Liver Unit, Department of Gastroenterology, Manchester Royal Infirmary
| | | | - Patricia Vales
- Department of Medical Physics, Manchester Royal Infirmary
| | | | - Raymond F McMahon
- Department of Histopathology, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
6
|
Hu C, Li Y, Liu Y, Lai Y, Ding L. A Sensitive HPLC-MS/MS Method for Determination of Obeticholic Acid in Human Plasma: Application to a Pharmacokinetic Study in Healthy Volunteers. J Chromatogr Sci 2021; 60:545-550. [PMID: 34313291 DOI: 10.1093/chromsci/bmab098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Indexed: 11/14/2022]
Abstract
A rapid and sensitive LC-MS/MS method was developed and fully validated for the determination of obeticholic acid in human plasma. Glimepiride was used as internal standard. For this method, liquid-liquid extraction was performed to extract analyte from the plasma samples. Chromatographic separation was performed on a C18 (2.1 × 50 mm, 2.7 μm, Agilent) column with isocratic elution using water containing 0.1% formic acid and acetonitrile containing 0.1% formic acid at a flow rate of 0.4 mL/min. The mass detection was performed in negative mode. The precursor-product ion pairs for MRM were m/z 465.3 → 419.3 for obeticholic acid and m/z 489.3 → 224.8 for the IS. The method exhibited great linearity over the concentration range of 0.150-100 ng/mL for obeticholic acid. The sensitivity, linearity, accuracy, precision, recovery, matrix effect and stability of this method were all within the acceptable limits. The method was successfully validated and applied to the pharmacokinetic studies in healthy Chinese volunteers after a single oral dose administration of obeticholic acid tablets of 10 mg, and the pharmacokinetic characteristics of obeticholic acid in human were reported for the first time.
Collapse
Affiliation(s)
- Can Hu
- College of Pharmacy and Chemistry, Dali University, Dali 671000, China
- Nanjing Clinical Tech Laboratories Inc., Nanjing 211000, China
| | - Ya Li
- Nanjing Clinical Tech Laboratories Inc., Nanjing 211000, China
| | - Yujie Liu
- Nanjing Chia Tai Tianqing Pharmaceutical Co., Ltd, Nanjing 210009, China
| | - Yong Lai
- College of Pharmacy and Chemistry, Dali University, Dali 671000, China
| | - Li Ding
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
- Nanjing Clinical Tech Laboratories Inc., Nanjing 211000, China
| |
Collapse
|
7
|
Yokoda RT, Rodriguez EA. Review: Pathogenesis of cholestatic liver diseases. World J Hepatol 2020; 12:423-435. [PMID: 32952871 PMCID: PMC7475774 DOI: 10.4254/wjh.v12.i8.423] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/07/2020] [Accepted: 08/01/2020] [Indexed: 02/06/2023] Open
Abstract
Cholestatic liver diseases (CLD) begin to develop after an impairment of bile flow start to affect the biliary tree. Cholangiocytes actively participate in the liver response to injury and repair and the intensity of this reaction is a determinant factor for the development of CLD. Progressive cholangiopathies may ultimately lead to end-stage liver disease requiring at the end orthotopic liver transplantation. This narrative review will discuss cholangiocyte biology and pathogenesis mechanisms involved in four intrahepatic CLD: Primary biliary cholangitis, primary sclerosing cholangitis, cystic fibrosis involving the liver, and polycystic liver disease.
Collapse
Affiliation(s)
- Raquel T Yokoda
- Department of Anatomic and Clinical Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10467, United States
| | - Eduardo A Rodriguez
- Department of Gastroenterology, Hepatology and Nutrition, University of Utah, Salt Lake City, UT 84132, United States
| |
Collapse
|
8
|
Gómez Aldana AJ, Tapias M, Lúquez Mindiola AJ. Colestasis en el adulto: enfoque diagnóstico y terapéutico. Revisión de tema. REVISTA COLOMBIANA DE GASTROENTEROLOGÍA 2020; 35:76-86. [DOI: 10.22516/25007440.375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
La colestasis es uno de los motivos de consulta más frecuentes en hepatología. Se genera por una alteración en la síntesis, la secreción o el flujo de la bilis, a través del tracto biliar. Esta se define por una elevación de enzimas como la fosfatasa alcalina (Alkaline Phosphatase, ALP) y la gamma-glutamil transferasa, y en estadios tardíos con la hiperbilirrubinemia, al igual que con otras manifestaciones clínicas, tales como el prurito y la ictericia. El enfoque diagnóstico implica establecer el origen de dicha elevación, determinando si es intrahepática o extrahepática. Si es intrahepática, se debe esclarecer si proviene de los hepatocitos o de la vía biliar de pequeño y de gran calibre. El tratamiento dependerá de la etiología, por lo cual es importante un diagnóstico preciso. En esta revisión se presenta la fisiopatología y un enfoque diagnóstico y terapéutico.
Collapse
|
9
|
Marchesi E, Chinaglia N, Capobianco ML, Marchetti P, Huang TE, Weng HC, Guh JH, Hsu LC, Perrone D, Navacchia ML. Dihydroartemisinin-Bile Acid Hybridization as an Effective Approach to Enhance Dihydroartemisinin Anticancer Activity. ChemMedChem 2020; 14:779-787. [PMID: 30724466 DOI: 10.1002/cmdc.201800756] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/02/2019] [Indexed: 12/29/2022]
Abstract
A series of hybrid compounds based on natural products-bile acids and dihydroartemisinin-were prepared by different synthetic methodologies and investigated for their in vitro biological activity against HL-60 leukemia and HepG2 hepatocellular carcinoma cell lines. Most of these hybrids presented significantly improved antiproliferative activities with respect to dihydroartemisinin and the parent bile acid. The two most potent hybrids of the series exhibited a 10.5- and 15.4-fold increase in cytotoxic activity respect to dihydroartemisinin alone in HL-60 and HepG2 cells, respectively. Strong evidence that an ursodeoxycholic acid hybrid induced apoptosis was obtained by flow cytometric analysis and western blot analysis.
Collapse
Affiliation(s)
- Elena Marchesi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Nicola Chinaglia
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Massimo L Capobianco
- Institute of Organic Synthesis and Photoreactivity, National Research Council, Via P. Gobetti 101, 40129, Bologna, Italy
| | - Paolo Marchetti
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Tzu-En Huang
- School of Pharmacy, National Taiwan University, No. 33 Linsen South Road, Taipei, 10050, Taiwan
| | - Hao-Cheng Weng
- School of Pharmacy, National Taiwan University, No. 33 Linsen South Road, Taipei, 10050, Taiwan
| | - Jih-Hwa Guh
- School of Pharmacy, National Taiwan University, No. 33 Linsen South Road, Taipei, 10050, Taiwan
| | - Lih-Ching Hsu
- School of Pharmacy, National Taiwan University, No. 33 Linsen South Road, Taipei, 10050, Taiwan
| | - Daniela Perrone
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Maria Luisa Navacchia
- Institute of Organic Synthesis and Photoreactivity, National Research Council, Via P. Gobetti 101, 40129, Bologna, Italy
| |
Collapse
|
10
|
Glaser F, John C, Engel B, Höh B, Weidemann S, Dieckhoff J, Stein S, Becker N, Casar C, Schuran FA, Wieschendorf B, Preti M, Jessen F, Franke A, Carambia A, Lohse AW, Ittrich H, Herkel J, Heeren J, Schramm C, Schwinge D. Liver infiltrating T cells regulate bile acid metabolism in experimental cholangitis. J Hepatol 2019; 71:783-792. [PMID: 31207266 DOI: 10.1016/j.jhep.2019.05.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS T cells are central mediators of liver inflammation and represent potential treatment targets in cholestatic liver disease. Whereas emerging evidence shows that bile acids (BAs) affect T cell function, the role of T cells for the regulation of BA metabolism is unknown. In order to understand this interplay, we investigated the influence of T cells on BA metabolism in a novel mouse model of cholangitis. METHODS Mdr2-/- mice were crossed with transgenic K14-OVAp mice, which express an MHC class I restricted ovalbumin peptide on biliary epithelial cells (Mdr2-/-xK14-OVAp). T cell-mediated cholangitis was induced by the adoptive transfer of antigen-specific CD8+ T cells. BA levels were quantified using a targeted liquid chromatography-mass spectrometry-based approach. RESULTS T cell-induced cholangitis resulted in reduced levels of unconjugated BAs in the liver and significantly increased serum and hepatic levels of conjugated BAs. Genes responsible for BA synthesis and uptake were downregulated and expression of the bile salt export pump was increased. The transferred antigen-specific CD8+ T cells alone were able to induce these changes, as demonstrated using Mdr2-/-xK14-OVAp recipient mice on the Rag1-/- background. Mechanistically, we showed by depletion experiments that alterations in BA metabolism were partly mediated by the proinflammatory cytokines TNF and IFN-γ in an FXR-dependent manner, a process that in vitro required cell contact between T cells and hepatocytes. CONCLUSION Whereas it is known that BA metabolism is dysregulated in sepsis and related conditions, we have shown that T cells are able to control the synthesis and metabolism of BAs, a process which depends on TNF and IFN-γ. Understanding the effect of lymphocytes on BA metabolism will help in the design of combined treatment strategies for cholestatic liver diseases. LAY SUMMARY Dysregulation of bile acid metabolism and T cells can contribute to the development of cholangiopathies. Before targeting T cells for the treatment of cholangiopathies, it should be determined whether they exert protective effects on bile acid metabolism. Herein, we demonstrate that T cell-induced cholangitis resulted in decreased levels of harmful unconjugated bile acids. T cells were able to directly control synthesis and metabolism of bile acids, a process which was dependent on the proinflammatory cytokines TNF and IFN-γ. Understanding the effect of lymphocytes on bile acid metabolism will help in the design of combined treatment strategies for cholestatic liver diseases.
Collapse
Affiliation(s)
- Fabian Glaser
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Clara John
- Department of Biochemistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bastian Engel
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Benedikt Höh
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Dieckhoff
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephanie Stein
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nathalie Becker
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Casar
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fenja Amrei Schuran
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Wieschendorf
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Max Preti
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friederike Jessen
- Department of Biochemistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | - Antonella Carambia
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ansgar W Lohse
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Harald Ittrich
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Herkel
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joerg Heeren
- Department of Biochemistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Schramm
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Martin Zeitz Centre for Rare Diseases, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany.
| | - Dorothee Schwinge
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
11
|
Abstract
Cholestatic liver diseases encompass a broad spectrum of pathologies, with the core injury occurring at the level of cholangiocytes and progressing to hepatic fibrosis and liver dysfunction. Primary biliary cholangitis and primary sclerosing cholangitis are the most significant progressive cholangiopathies in adults. Although rare, they commonly evolve to liver failure and need for liver transplantation. Despite recent advances in the basic knowledge of these cholangiopathies, the pathogenesis is still elusive. Targeted treatments to prevent disease progression and to preclude malignancy are not yet available. This review will address the general clinical features of both diseases, analyze their commonalities and differences, and provide a state-of-the art overview of the currently available therapeutics.
Collapse
|
12
|
Li Y, Li B, You Z, Zhang J, Wei Y, Li Y, Chen Y, Huang B, Wang Q, Miao Q, Peng Y, Fang J, Gershwin ME, Tang R, Greenberg SA, Ma X. Cytotoxic KLRG1 expressing lymphocytes invade portal tracts in primary biliary cholangitis. J Autoimmun 2019; 103:102293. [DOI: 10.1016/j.jaut.2019.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 12/20/2022]
|
13
|
|
14
|
Towards the identification of alkaline phosphatase binding ligands in Li-Dan-Hua-Shi pills: A Box-Behnken design optimized affinity selection approach tandem with UHPLC-Q-TOF/MS analysis. J Pharm Biomed Anal 2018; 154:486-491. [DOI: 10.1016/j.jpba.2018.03.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 03/05/2018] [Accepted: 03/18/2018] [Indexed: 12/16/2022]
|
15
|
Asuri S, McIntosh S, Taylor V, Rokeby A, Kelly J, Shumansky K, Field LL, Yoshida EM, Arbour L. Primary Biliary Cholangitis in British Columbia First Nations: Clinical features and discovery of novel genetic susceptibility loci. Liver Int 2018; 38:940-948. [PMID: 29297981 DOI: 10.1111/liv.13686] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 12/21/2017] [Indexed: 02/13/2023]
Abstract
BACKGROUND & AIMS Primary Biliary Cholangitis (PBC) is a chronic autoimmune liver disease characterized by destruction of intrahepatic bile ducts, portal inflammation and cirrhosis. Although rare in most populations, it is prevalent and often familial in British Columbia First Nations. We hypothesized that major genetic factors increased the risk in First Nations. METHODS In all, 44 individuals with Primary Biliary Cholangitis and 61 unaffected relatives from 32 First Nations families participated. Family history and co-morbidities were documented. Medical records were reviewed and available biopsies were re-reviewed by our team pathologist. Genotyping was performed on DNA from 36 affected persons and 27 unaffected relatives using the Affymetrix Human Mapping 500K Array Set. MERLIN software was used to carry out multipoint parametric and nonparametric linkage analysis. Candidate genes were identified and entered into InnateDB and KEGG software to identify potential pathways affecting pathogenesis. RESULTS In all, 34% of families were multiplex. Fifty per cent of cases and 33% of unaffected relatives reported other autoimmune disease. Three genomic regions (9q21, 17p13 and 19p13) produced LOD scores of 2.3 or greater suggestive of linkage, but no single linkage peak reached statistical significance. Candidate genes identified in the three regions suggested involvement of IL17, NFκB, IL6, JAK-STAT, IFNγ and TGFβ immune signalling pathways. Specifically, four genes-ACT1, PIN1, DNMT1 and NTN1-emerged as having roles in these pathways that may influence Primary Biliary Cholangitis pathogenesis. CONCLUSIONS Our whole genome linkage study results reflect the multifactorial nature of Primary Biliary Cholangitis, support previous studies suggesting signalling pathway involvement and identify new candidate genes for consideration.
Collapse
Affiliation(s)
- Sirisha Asuri
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Sarah McIntosh
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Valerie Taylor
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Andrew Rokeby
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - James Kelly
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Karey Shumansky
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Lanora Leigh Field
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Eric M Yoshida
- Division of Gastroenterology, University of British Columbia, Vancouver, BC, Canada
| | - Laura Arbour
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.,Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
16
|
Floreani A, Mangini C. Primary biliary cholangitis: Old and novel therapy. Eur J Intern Med 2018; 47:1-5. [PMID: 28669591 DOI: 10.1016/j.ejim.2017.06.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 06/16/2017] [Accepted: 06/19/2017] [Indexed: 02/06/2023]
Abstract
Primary biliary cholangitis (PBC), formerly called primary biliary cirrhosis, is a chronic cholestatic liver disease that progresses slowly to end-stage liver disease. The first Food and Drug Administration (FDA)-approved treatment for PBC was ursodeoxycholic acid (UDCA). This treatment slows the progress of the disease, but approximatively 30-40% of patients fail to respond to UDCA. A number of options are under investigation as second line treatment. Obeticholic acid (OCA), a Farnesoid X Receptor agonist, has been approved in May 2017 by FDA for patients non responders or intolerant to UDCA. The results of a randomized, double blind, phase 3 study of OCA (mg or 10mg) compared to placebo, showed that approximatively 50% of patients reached a significant reduction in serum alkaline phosphatase, a marker predictive of disease progression, liver transplantation or death. Other emerging therapies include: agents targeting fibrosis, inflammation, or immunological response. Indeed, after 30years of UDCA therapy as unique choice for PBC patients, a number of targets, derived from a deeper knowledge of the pathophysiology of the disease, has been discovered and they offer different and new therapeutic approaches that are now under evaluation.
Collapse
Affiliation(s)
- Annarosa Floreani
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Italy.
| | - Chiara Mangini
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Italy
| |
Collapse
|
17
|
Deng CW, Wang L, Fei YY, Hu CJ, Yang YJ, Peng LY, Zeng XF, Zhang FC, Li YZ. Exploring pathogenesis of primary biliary cholangitis by proteomics: A pilot study. World J Gastroenterol 2017; 23:8489-8499. [PMID: 29358857 PMCID: PMC5752709 DOI: 10.3748/wjg.v23.i48.8489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/21/2017] [Accepted: 11/28/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To explore the pathogenesis of primary biliary cholangitis (PBC) by identifying candidate autoantibodies in serum samples by proteomics and bioinformatics. METHODS Nine antimitochondrial antibody (AMA)-positive PBC patients and nine age- and sex-matched AMA-negative PBC patients were recruited. Antigen enrichment technology was applied to capture autoantigens of human intrahepatic biliary epithelial cells (HiBECs) that are recognized by autoantibodies from the sera of PBC patients. Candidate autoantigens were identified by label-free mass spectrometry. Bioinformatics analysis with MaxQuant software (version 1.5.2.8), DAVID platform, and Cytoscape v.3.0 allowed illustration of pathways potentially involved in the pathogenesis of PBC. RESULTS In total, 1081 candidate autoantigen proteins were identified from the PBC patient pool. Among them, 371 were determined to be significantly differentially expressed between AMA-positive and -negative PBC patients (P < 0.05). Fisher's exact test was performed for enrichment analysis of Gene Ontology protein annotations (biological processes, cellular components, and molecular functions) and the Kyoto Encyclopedia of Genes and Genomes pathways. Significantly different protein categories were revealed between AMA-positive and -negative PBC patients. As expected, autoantigens related to mitochondria were highly enriched in AMA-positive PBC patients. However, lower levels of AMA were also detected in AMA-negative PBC patients. In addition, autoantigens of AMA-negative PBC patients were mainly involved in B-cell activation, recognition of phagocytosis, and complement activation. CONCLUSION AMA-negative PBC individuals may not exist, but rather, those patients exhibit pathogenesis pathways different from those of AMA-positive PBC. Comprehensive research is needed to confirm these observations.
Collapse
Affiliation(s)
- Chui-Wen Deng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing 100730, China
| | - Li Wang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing 100730, China
| | - Yun-Yun Fei
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing 100730, China
| | - Chao-Jun Hu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing 100730, China
| | - Yun-Jiao Yang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing 100730, China
| | - Lin-Yi Peng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing 100730, China
| | - Xiao-Feng Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing 100730, China
| | - Feng-Chun Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing 100730, China
| | - Yong-Zhe Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing 100730, China
| |
Collapse
|
18
|
Li X, Liu R, Zhang L, Jiang Z. The emerging role of AMP-activated protein kinase in cholestatic liver diseases. Pharmacol Res 2017; 125:105-113. [PMID: 28889972 DOI: 10.1016/j.phrs.2017.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/15/2017] [Accepted: 09/05/2017] [Indexed: 11/26/2022]
Abstract
AMP-activated protein kinase (AMPK), recognized as an energy sensor with three heterotrimeric subunits (α, β and γ), not only maintains basal intracellular adenosine triphosphate levels but also regulates energy-intensive pathological responses, such as neurodegenerative and metabolic diseases, through multiple signaling pathways. Recent studies open a new direction for AMPK research and demonstrate that AMPK is a critical player in the pathogenesis of cholestatic liver injury and plays paradoxical roles in the regulation of different pathological processes, including the disruption of bile acid homeostasis and the regulation of hepatic polarity, inflammation and fibrosis. In the present review, we summarize recent findings that implicate AMPK-mediated signaling pathways in the pathogenesis of cholestatic liver injury. These findings provide novel insight regarding the potential use of AMPK as a therapeutic target for the treatment of cholestatic liver injury.
Collapse
Affiliation(s)
- Xiaojiaoyang Li
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China; Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Runping Liu
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Luyong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China; Center for Drug Screening and Pharmacodynamics Evaluation, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhenzhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, Jiangsu, China.
| |
Collapse
|
19
|
Kim EK, Cho JH, Kim E, Kim YJ. Ursodeoxycholic acid inhibits the proliferation of colon cancer cells by regulating oxidative stress and cancer stem-like cell growth. PLoS One 2017; 12:e0181183. [PMID: 28708871 PMCID: PMC5510851 DOI: 10.1371/journal.pone.0181183] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/27/2017] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION The regulation of reactive oxygen species (ROS) exists as a therapeutic target for cancer treatments. Previous studies have shown that ursodeoxycholic acid (UDCA) suppresses the proliferation of colon cancer cells. The aim of this study was to evaluate the effect of UDCA upon the proliferation of colon cancer cells as a direct result of the regulation of ROS. METHOD Colon cancer cell lines (HT29 and HCT116) were treated with UDCA. The total number of cells and the number of dead cells were determined using cell counters. A fluorescein isothiocyanate-bromodeoxyuridine flow kit was used to analyze cell cycle variations. Upon exposure to UDCA, the protein levels of p27, p21, CDK2, CDK4 and CDK6 were determined using western blotting, and qRT-PCR was used to determine levels of mRNA. We preformed dichlorofluorescindiacetate (DCF-DA) staining to detect alteration of intracellular ROS using fluorescence activated cell sorting (FACS). Colon cancer stem-like cell lines were generated by tumorsphere culture and treated with UDCA for seven days. The total number of tumorspheres was determined using microscopy. RESULTS We found that UDCA reduced the total number of colon cancer cells, but did not increase the number of dead cells. UDCA inhibited the G1/S and G2/M transition phases in colon cancer cells. UDCA induced expression of cell cycle inhibitors such as p27 and p21. However, it was determined that UDCA suppressed levels of CDK2, CDK4, and CDK6. UDCA regulated intracellular ROS generation in colon cancer cells, and induced activation of Erk1/2. Finally, UDCA inhibited formation of colon cancer stem-like cells. CONCLUSION Our results indicate that UDCA suppresses proliferation through regulation of oxidative stress in colon cancer cells, as well as colon cancer stem-like cells.
Collapse
Affiliation(s)
- Eun-Kyung Kim
- Division of Gastroenterology, Department of Internal medicine, Gachon University Gil Medical Center, Incheon, the Republic of Korea
- Gachon Medical Research Institute, Gachon University Gil Medical Center, Incheon, the Republic of Korea
| | - Jae Hee Cho
- Division of Gastroenterology, Department of Internal medicine, Gachon University Gil Medical Center, Incheon, the Republic of Korea
| | - EuiJoo Kim
- Division of Gastroenterology, Department of Internal medicine, Gachon University Gil Medical Center, Incheon, the Republic of Korea
| | - Yoon Jae Kim
- Division of Gastroenterology, Department of Internal medicine, Gachon University Gil Medical Center, Incheon, the Republic of Korea
- * E-mail:
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Jaundice, the physical finding associated with hyperbilirubinemia, results when the liver is unable to properly metabolize or excrete bilirubin. The purpose of this review is to examine some of the most common causes of jaundice in adults, provide insight into the diagnostic evaluation of jaundice, and review information on the outcomes of patients with jaundice. RECENT FINDINGS An elevated level of bilirubin almost always indicates the presence of an underlying disease state. The best approach to evaluating a patient with jaundice is to start with a careful history and physical examination, followed by imaging assessment of the biliary tree and liver. There are algorithm models that incorporate bilirubin levels in their predictor models for outcomes in patients with chronic liver disease (i.e., the model for end-stage liver disease). However, there are few studies that have examined the outcomes of patients with jaundice. SUMMARY Evaluation of patients with jaundice starts with a careful history and physical examination, followed by directed imaging of the biliary tree and liver. Although jaundice is generally believed to be a serious medical condition, there is little literature that addresses outcomes in patients with jaundice.
Collapse
|