1
|
Bihler H, Sivachenko A, Millen L, Bhatt P, Patel AT, Chin J, Bailey V, Musisi I, LaPan A, Allaire NE, Conte J, Simon NR, Magaret AS, Raraigh KS, Cutting GR, Skach WR, Bridges RJ, Thomas PJ, Mense M. In vitro modulator responsiveness of 655 CFTR variants found in people with cystic fibrosis. J Cyst Fibros 2024; 23:664-675. [PMID: 38388235 DOI: 10.1016/j.jcf.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/04/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND In 2017, the US Food and Drug Administration initiated expansion of drug labels for the treatment of cystic fibrosis (CF) to include CF transmembrane conductance regulator (CFTR) gene variants based on in vitro functional studies. This study aims to identify CFTR variants that result in increased chloride (Cl-) transport function by the CFTR protein after treatment with the CFTR modulator combination elexacaftor/tezacaftor/ivacaftor (ELX/TEZ/IVA). These data may benefit people with CF (pwCF) who are not currently eligible for modulator therapies. METHODS Plasmid DNA encoding 655 CFTR variants and wild-type (WT) CFTR were transfected into Fisher Rat Thyroid cells that do not natively express CFTR. After 24 h of incubation with control or TEZ and ELX, and acute addition of IVA, CFTR function was assessed using the transepithelial current clamp conductance assay. Each variant's forskolin/cAMP-induced baseline Cl- transport activity, responsiveness to IVA alone, and responsiveness to the TEZ/ELX/IVA combination were measured in three different laboratories. Western blots were conducted to evaluate CFTR protein maturation and complement the functional data. RESULTS AND CONCLUSIONS 253 variants not currently approved for CFTR modulator therapy showed low baseline activity (<10 % of normal CFTR Cl- transport activity). For 152 of these variants, treatment with ELX/TEZ/IVA improved the Cl- transport activity by ≥10 % of normal CFTR function, which is suggestive of clinical benefit. ELX/TEZ/IVA increased CFTR function by ≥10 percentage points for an additional 140 unapproved variants with ≥10 % but <50 % of normal CFTR function at baseline. These findings significantly expand the number of rare CFTR variants for which ELX/TEZ/IVA treatment should result in clinical benefit.
Collapse
Affiliation(s)
- Hermann Bihler
- CFFT Lab, Cystic Fibrosis Foundation, Lexington, MA 02421, USA
| | | | - Linda Millen
- University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Priyanka Bhatt
- CFFT Lab, Cystic Fibrosis Foundation, Lexington, MA 02421, USA
| | | | - Justin Chin
- CFFT Lab, Cystic Fibrosis Foundation, Lexington, MA 02421, USA
| | - Violaine Bailey
- CFFT Lab, Cystic Fibrosis Foundation, Lexington, MA 02421, USA
| | - Isaac Musisi
- CFFT Lab, Cystic Fibrosis Foundation, Lexington, MA 02421, USA
| | - André LaPan
- CFFT Lab, Cystic Fibrosis Foundation, Lexington, MA 02421, USA
| | | | - Joshua Conte
- CFFT Lab, Cystic Fibrosis Foundation, Lexington, MA 02421, USA
| | - Noah R Simon
- University of Washington, Seattle, WA 98195-9300, USA
| | | | - Karen S Raraigh
- Johns Hopkins University School of Medicine, Baltimore, MD 21205-2196, USA
| | - Garry R Cutting
- Johns Hopkins University School of Medicine, Baltimore, MD 21205-2196, USA
| | | | - Robert J Bridges
- Rosalind Franklin University Medical School, Chicago, IL 60064, USA
| | - Philip J Thomas
- University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Martin Mense
- CFFT Lab, Cystic Fibrosis Foundation, Lexington, MA 02421, USA.
| |
Collapse
|
2
|
Aluma BEB, Reiter J, Efrati O, Bezalel Y, Keler S, Ashkenazi M, Dagan A, Buchnik Y, Sadras I, Cohen-Cymberknoh M. Clinical efficacy of CFTR modulator therapy in people with cystic fibrosis carrying the I1234V mutation. J Cyst Fibros 2024; 23:685-689. [PMID: 38443268 DOI: 10.1016/j.jcf.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/21/2024] [Accepted: 02/14/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND The cystic fibrosis transmembrane conductance regulator (CFTR) mutation I1234V (I1234V, p.Ile1234Val, c.3700A>G), is a missense-mutation that creates a cryptic splice site, with the formation of a protein lacking 6 amino acids, that is misfolded and misprocessed. The in vitro effects of CFTR modulator (CFTRm) therapies on human bronchial cell models and intestinal organoids carrying this mutation are conflicting. The aim of this study was therefore to explore the clinical efficacy of CFTRm in people with cystic fibrosis (pwCF) carrying this mutation. METHODS This was a retrospective descriptive study of the clinical records of homozygous and compound heterozygous (none F508del) pwCF, for the I1234V mutation, that received CFTRm. Parameters explored were body mass index (BMI), forced expiratory volume in one second percent predicted (FEV1%), lung clearance index (LCI) and quantitative sweat chloride measurements. RESULTS Mean age was 38.6 ± 14 years (range 21-60). Two subjects were homozygous and five compound heterozygous, with minimal function mutations. Four were pancreatic insufficient and three pancreatic sufficient. The two homozygous subjects received Tezacaftor/Ivacaftor, the remaining Elexacaftor/Tezacaftor/Ivacaftor (ETI); treatment ranged from 6 to 12 months. Mean BMI score increased from 21.7 ± 1.3 to 23.6 ± 2.1 kg/m2 (p = 0.04); FEV1(%pred) increased by 20.14±10.2while mean change in FEV1 in the year prior to CFTRm initiation was -0.14±1.18 (p = 0.0001). Additionally, LCI 2.5% decreased from 18.7 to 14.5 (p = 0.07); sweat chloride decreased from 116±10 to 90±17 mEq/L (p = 0.017) and chronic pseudomonas airway infection was eradicated in one subject. CONCLUSIONS This study supports a clinical benefit for CFTRm therapy in pwCF carrying the I1234V mutation.
Collapse
Affiliation(s)
- Bat El Bar Aluma
- Pediatric Pulmonary Unit and Cystic fibrosis Center, Lily and Edmond Safra Children's Hospital, Sheba Medical Center, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Joel Reiter
- Pediatric Pulmonary Unit and Cystic fibrosis Center, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Ori Efrati
- Pediatric Pulmonary Unit and Cystic fibrosis Center, Lily and Edmond Safra Children's Hospital, Sheba Medical Center, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Bezalel
- Pediatric Pulmonary Unit and Cystic fibrosis Center, Lily and Edmond Safra Children's Hospital, Sheba Medical Center, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shlomit Keler
- Pediatric Pulmonary Unit and Cystic fibrosis Center, Lily and Edmond Safra Children's Hospital, Sheba Medical Center, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Moshe Ashkenazi
- Pediatric Pulmonary Unit and Cystic fibrosis Center, Lily and Edmond Safra Children's Hospital, Sheba Medical Center, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Adi Dagan
- Pediatric Pulmonary Unit and Cystic fibrosis Center, Lily and Edmond Safra Children's Hospital, Sheba Medical Center, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Buchnik
- Pediatric Pulmonary Unit and Cystic fibrosis Center, Lily and Edmond Safra Children's Hospital, Sheba Medical Center, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ido Sadras
- Pediatric Pulmonary Unit and Cystic fibrosis Center, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Malena Cohen-Cymberknoh
- Pediatric Pulmonary Unit and Cystic fibrosis Center, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Israel
| |
Collapse
|
3
|
Ding X, Singh P, Schimenti K, Tran TN, Fragoza R, Hardy J, Orwig KE, Olszewska M, Kurpisz MK, Yatsenko AN, Conrad DF, Yu H, Schimenti JC. In vivo versus in silico assessment of potentially pathogenic missense variants in human reproductive genes. Proc Natl Acad Sci U S A 2023; 120:e2219925120. [PMID: 37459509 PMCID: PMC10372637 DOI: 10.1073/pnas.2219925120] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/25/2023] [Indexed: 07/20/2023] Open
Abstract
Infertility is a heterogeneous condition, with genetic causes thought to underlie a substantial fraction of cases. Genome sequencing is becoming increasingly important for genetic diagnosis of diseases including idiopathic infertility; however, most rare or minor alleles identified in patients are variants of uncertain significance (VUS). Interpreting the functional impacts of VUS is challenging but profoundly important for clinical management and genetic counseling. To determine the consequences of these variants in key fertility genes, we functionally evaluated 11 missense variants in the genes ANKRD31, BRDT, DMC1, EXO1, FKBP6, MCM9, M1AP, MEI1, MSH4 and SEPT12 by generating genome-edited mouse models. Nine variants were classified as deleterious by most functional prediction algorithms, and two disrupted a protein-protein interaction (PPI) in the yeast two hybrid (Y2H) assay. Though these genes are essential for normal meiosis or spermiogenesis in mice, only one variant, observed in the MCM9 gene of a male infertility patient, compromised fertility or gametogenesis in the mouse models. To explore the disconnect between predictions and outcomes, we compared pathogenicity calls of missense variants made by ten widely used algorithms to 1) those annotated in ClinVar and 2) those evaluated in mice. All the algorithms performed poorly in terms of predicting the effects of human missense variants modeled in mice. These studies emphasize caution in the genetic diagnoses of infertile patients based primarily on pathogenicity prediction algorithms and emphasize the need for alternative and efficient in vitro or in vivo functional validation models for more effective and accurate VUS description to either pathogenic or benign categories.
Collapse
Affiliation(s)
- Xinbao Ding
- College of Veterinary Medicine, Department of Biomedical Sciences, Cornell University, Ithaca, NY14853
| | - Priti Singh
- College of Veterinary Medicine, Department of Biomedical Sciences, Cornell University, Ithaca, NY14853
| | - Kerry Schimenti
- College of Veterinary Medicine, Department of Biomedical Sciences, Cornell University, Ithaca, NY14853
| | - Tina N. Tran
- College of Veterinary Medicine, Department of Biomedical Sciences, Cornell University, Ithaca, NY14853
| | - Robert Fragoza
- Department of Computational Biology, Cornell University, Ithaca, NY14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY14853
| | - Jimmaline Hardy
- School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA15213
| | - Kyle E. Orwig
- School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA15213
| | - Marta Olszewska
- Institute of Human Genetics, Polish Academy of Sciences, Poznan60-479, Poland
| | - Maciej K. Kurpisz
- Institute of Human Genetics, Polish Academy of Sciences, Poznan60-479, Poland
| | - Alexander N. Yatsenko
- School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA15213
| | - Donald F. Conrad
- Oregon Health & Science University, Division of Genetics, Oregon National Primate Research Center, Beaverton, OR97006
| | - Haiyuan Yu
- Department of Computational Biology, Cornell University, Ithaca, NY14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY14853
| | - John C. Schimenti
- College of Veterinary Medicine, Department of Biomedical Sciences, Cornell University, Ithaca, NY14853
| |
Collapse
|
4
|
Santos L, Nascimento R, Duarte A, Railean V, Amaral MD, Harrison PT, Gama-Carvalho M, Farinha CM. Mutation-class dependent signatures outweigh disease-associated processes in cystic fibrosis cells. Cell Biosci 2023; 13:26. [PMID: 36759923 PMCID: PMC9912517 DOI: 10.1186/s13578-023-00975-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/28/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND The phenotypic heterogeneity observed in Cystic Fibrosis (CF) patients suggests the involvement of other genes, besides CFTR. Here, we combined transcriptome and proteome analysis to understand the global gene expression patterns associated with five prototypical CFTR mutations. RESULTS Evaluation of differentially expressed genes and proteins unveiled common and mutation-specific changes revealing functional signatures that are much more associated with the specific molecular defects associated with each mutation than to the CFTR loss-of-function phenotype. The combination of both datasets revealed that mutation-specific detected translated-transcripts (Dtt) have a high level of consistency. CONCLUSIONS This is the first combined transcriptomic and proteomic study focusing on prototypical CFTR mutations. Analysis of Dtt provides novel insight into the pathophysiology of CF, and the mechanisms through which each mutation class causes disease and will likely contribute to the identification of new therapeutic targets and/or biomarkers for CF.
Collapse
Affiliation(s)
- Lúcia Santos
- grid.9983.b0000 0001 2181 4263BioISI – Instituto de Biossistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal ,grid.7872.a0000000123318773Department of Physiology, University College Cork, Cork, T12 K8AF Ireland
| | - Rui Nascimento
- grid.9983.b0000 0001 2181 4263BioISI – Instituto de Biossistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Aires Duarte
- grid.9983.b0000 0001 2181 4263BioISI – Instituto de Biossistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Violeta Railean
- grid.9983.b0000 0001 2181 4263BioISI – Instituto de Biossistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Margarida D. Amaral
- grid.9983.b0000 0001 2181 4263BioISI – Instituto de Biossistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Patrick T. Harrison
- grid.7872.a0000000123318773Department of Physiology, University College Cork, Cork, T12 K8AF Ireland
| | - Margarida Gama-Carvalho
- grid.9983.b0000 0001 2181 4263BioISI – Instituto de Biossistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Carlos M. Farinha
- grid.9983.b0000 0001 2181 4263BioISI – Instituto de Biossistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| |
Collapse
|
5
|
Cornelis SS, Runhart EH, Bauwens M, Corradi Z, De Baere E, Roosing S, Haer-Wigman L, Dhaenens CM, Vulto-van Silfhout AT, Cremers FP. Personalized genetic counseling for Stargardt disease: Offspring risk estimates based on variant severity. Am J Hum Genet 2022; 109:498-507. [PMID: 35120629 DOI: 10.1016/j.ajhg.2022.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/11/2022] [Indexed: 12/21/2022] Open
Abstract
Recurrence risk calculations in autosomal recessive diseases are complicated when the effect of genetic variants and their population frequencies and penetrances are unknown. An example of this is Stargardt disease (STGD1), a frequent recessive retinal disease caused by bi-allelic pathogenic variants in ABCA4. In this cross-sectional study, 1,619 ABCA4 variants from 5,579 individuals with STGD1 were collected and categorized by (1) severity based on statistical comparisons of their frequencies in STGD1-affected individuals versus the general population, (2) their observed versus expected homozygous occurrence in STGD1-affected individuals, (3) their occurrence in combination with established mild alleles in STGD1-affected individuals, and (4) previous functional and clinical studies. We used the sum allele frequencies of these severity categories to estimate recurrence risks for offspring of STGD1-affected individuals and carriers of pathogenic ABCA4 variants. The risk for offspring of an STGD1-affected individual with the "severe|severe" genotype or a "severe|mild with complete penetrance" genotype to develop STGD1 at some moment in life was estimated at 2.8%-3.1% (1 in 36-32 individuals) and 1.6%-1.8% (1 in 62-57 individuals), respectively. The risk to develop STGD1 in childhood was estimated to be 2- to 4-fold lower: 0.68%-0.79% (1 in 148-126) and 0.34%-0.39% (1 in 296-252), respectively. In conclusion, we established personalized recurrence risk calculations for STGD1-affected individuals with different combinations of variants. We thus propose an expanded genotype-based personalized counseling to appreciate the variable recurrence risks for STGD1-affected individuals. This represents a conceptual breakthrough because risk calculations for STGD1 may be exemplary for many other inherited diseases.
Collapse
|
6
|
Ramalho AS, Boon M, Proesmans M, Vermeulen F, Carlon MS, De Boeck K. Assays of CFTR Function In Vitro, Ex Vivo and In Vivo. Int J Mol Sci 2022; 23:1437. [PMID: 35163362 PMCID: PMC8836180 DOI: 10.3390/ijms23031437] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/12/2022] [Accepted: 01/21/2022] [Indexed: 12/22/2022] Open
Abstract
Cystic fibrosis, a multi-organ genetic disease, is characterized by abnormal function of the cystic fibrosis transmembrane conductance regulator (CFTR) protein, a chloride channel at the apical membrane of several epithelia. In recent years, therapeutic strategies have been developed to correct the CFTR defect. To evaluate CFTR function at baseline for diagnosis, or the efficacy of CFTR-restoring therapy, reliable tests are needed to measure CFTR function, in vitro, ex vivo and in vivo. In vitro techniques either directly or indirectly measure ion fluxes; direct measurement of ion fluxes and quenching of fluorescence in cell-based assays, change in transmembrane voltage or current in patch clamp or Ussing chamber, swelling of CFTR-containing organoids by secondary water influx upon CFTR activation. Several cell or tissue types can be used. Ex vivo and in vivo assays similarly evaluate current (intestinal current measurement) and membrane potential differences (nasal potential difference), on tissues from individual patients. In the sweat test, the most frequently used in vivo evaluation of CFTR function, chloride concentration or stimulated sweat rate can be directly measured. Here, we will describe the currently available bio-assays for quantitative evaluation of CFTR function, their indications, advantages and disadvantages, and correlation with clinical outcome measures.
Collapse
Affiliation(s)
- Anabela S. Ramalho
- CF Research Lab, Woman and Child Unit, Department of Development and Regeneration, KU Leuven (Catholic University of Leuven), B-3000 Leuven, Belgium; (M.B.); (M.P.); (F.V.); (K.D.B.)
| | - Mieke Boon
- CF Research Lab, Woman and Child Unit, Department of Development and Regeneration, KU Leuven (Catholic University of Leuven), B-3000 Leuven, Belgium; (M.B.); (M.P.); (F.V.); (K.D.B.)
- Department of Pediatrics, Pediatric Pulmonology, University Hospital of Leuven, B-3000 Leuven, Belgium
| | - Marijke Proesmans
- CF Research Lab, Woman and Child Unit, Department of Development and Regeneration, KU Leuven (Catholic University of Leuven), B-3000 Leuven, Belgium; (M.B.); (M.P.); (F.V.); (K.D.B.)
- Department of Pediatrics, Pediatric Pulmonology, University Hospital of Leuven, B-3000 Leuven, Belgium
| | - François Vermeulen
- CF Research Lab, Woman and Child Unit, Department of Development and Regeneration, KU Leuven (Catholic University of Leuven), B-3000 Leuven, Belgium; (M.B.); (M.P.); (F.V.); (K.D.B.)
- Department of Pediatrics, Pediatric Pulmonology, University Hospital of Leuven, B-3000 Leuven, Belgium
| | - Marianne S. Carlon
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven (Catholic University of Leuven), B-3000 Leuven, Belgium;
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department CHROMETA, KU Leuven (Catholic University of Leuven), B-3000 Leuven, Belgium
| | - Kris De Boeck
- CF Research Lab, Woman and Child Unit, Department of Development and Regeneration, KU Leuven (Catholic University of Leuven), B-3000 Leuven, Belgium; (M.B.); (M.P.); (F.V.); (K.D.B.)
- Department of Pediatrics, Pediatric Pulmonology, University Hospital of Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
7
|
Abstract
Pathogenic variants of the CFTR gene are responsible for a broad phenotypic spectrum characterized by malfunction of some exocrine tissues, with an autosomal recessive mode of inheritance. More than 2,000 variants, distributed throughout the CFTR gene, have been identified, with different effects on the gene and protein expression and function. Genotype-phenotype correlation studies have associated severe variants with a typical multi-organ form of cystic fibrosis, while mild variants are involved in monosymptomatic or adult-onset diseases, called CFTR-related disorders. However, the interpretation of rare variants remains challenging. This review presents an overview of the epidemiology of CFTR variants worldwide and in France and describes the functional classification. Finally, some frequent cystic fibrosis-causing and mild CFTR variants are used as example to depict the molecular pathology of the CFTR locus. Finally, we give the recommendations concerning nomenclature and classification that are useful for appropriate genetic counseling. © 2020 French Society of Pediatrics. Published by Elsevier Masson SAS. All rights reserved.
Collapse
Affiliation(s)
- C Bareil
- Laboratoire de Génétique Moléculaire, CHU de Montpellier, Montpellier, France
| | - A Bergougnoux
- Laboratoire de Génétique Moléculaire, CHU de Montpellier, Montpellier, France; EA7402 Laboratoire de Génétique de Maladies Rares, Institut Universitaire de Recherche Clinique, Université de Montpellier, Montpellier, France..
| |
Collapse
|
8
|
Bienvenu T, Nguyen-Khoa T. Current and future diagnosis of cystic fibrosis: Performance and limitations. Arch Pediatr 2020; 27 Suppl 1:eS19-eS24. [PMID: 32172931 DOI: 10.1016/s0929-693x(20)30046-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cystic fibrosis (CF) is the most frequent genetic disorder in the Caucasian population benefiting from systematic newborn screening tests. It is also the most frequent indication of prenatal and preimplantation genetic diagnosis for a single gene disorder. During the past thirty years, thanks in part to the evolution of diagnostic techniques, our knowledge on CFTR genetics and pathophysiological mechanisms involved in CF have significantly improved. With the implementation of newborn screening in France and in several countries, the diagnosis now often occurs in clinically asymptomatic infants and this has modified the criteria for CF diagnosis. Recently, guidelines for CF diagnosis have been reformulated in Europe and the US, in regard to sweat chloride usual values and disease terminology. This review describes the methods and molecular approaches that are used in routine practice or are being developed to detect CFTR protein dysfunction and to identify disease-causing CFTR variants. Ultimately, an optimal use of all these functional and genetic resources may improve patient care and therapeutic decision-making. © 2020 French Society of Pediatrics. Published by Elsevier Masson SAS. All rights reserved.
Collapse
Affiliation(s)
- T Bienvenu
- Laboratoire de Génétique et Biologie Moléculaires, Hôpital Cochin, APHP. Centre Université de Paris, Paris.
| | - T Nguyen-Khoa
- Laboratoires de Biochimie Générale & du Centre Régional du Dépistage Néonatal Ile-de-France, Hôpital Necker-Enfants Malades, APHP. Centre Université de Paris, Paris; Centre de Ressources et de Compétences de la Mucoviscidose, Hôpital Necker-Enfants Malades, AP-HP. Centre Université de Paris, Paris; Institut Necker Enfants Malades/INSERM U1151, Mucoviscidose et autres maladies épithéliales respiratoires par défaut de repliement protéique, Université Paris Descartes, Paris
| |
Collapse
|
9
|
Benabdelkamel H, Alamri H, Okla M, Masood A, Abdel Jabar M, Alanazi IO, Alfadda AA, Nizami I, Dasouki M, Abdel Rahman AM. Serum-Based Proteomics Profiling in Adult Patients with Cystic Fibrosis. Int J Mol Sci 2020; 21:ijms21197415. [PMID: 33050003 PMCID: PMC7582405 DOI: 10.3390/ijms21197415] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/16/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022] Open
Abstract
Cystic fibrosis (CF), the most common lethal autosomal recessive disorder among Caucasians, is caused by mutations in the CF transmembrane conductance regulator (CFTR) chloride channel gene. Despite significant advances in the management of CF patients, novel disease-related biomarkers and therapies must be identified. We performed serum proteomics profiling in CF patients (n = 28) and healthy subjects (n = 10) using the 2D-DIGE MALDI-TOF proteomic approach. Out of a total of 198 proteins identified, 134 showed a statistically significant difference in abundance and a 1.5-fold change (ANOVA, p < 0.05), including 80 proteins with increased abundance and 54 proteins with decreased abundance in CF patients. A multiple reaction monitoring-mass spectrometry analysis of six differentially expressed proteins identified by a proteomic approach (DIGE-MALD-MS) showed a significant increase in C3 and CP proteins and a decrease in APOA1, Complement C1, Hp, and RBP4proteins compared with healthy controls. Fifteen proteins were identified as potential biomarkers for CF diagnosis. An ingenuity pathway analysis of the differentially regulated proteins indicates that the central nodes dysregulated in CF subjects involve pro-inflammatory cytokines, ERK1/2, and P38 MAPK, which are primarily involved in catalytic activities and metabolic processes. The involved canonical pathways include those related to FXR/RXR, LXR/RXR, acute phase response, IL12, nitric oxide, and reactive oxygen species in macrophages. Our data support the current efforts toward augmenting protease inhibitors in patients with CF. Perturbations in lipid and vitamin metabolism frequently observed in CF patients may be partly due to abnormalities in their transport mechanism.
Collapse
Affiliation(s)
- Hicham Benabdelkamel
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia; (H.B.); (A.M.); (A.A.A.)
| | - Hanadi Alamri
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al Faisal University, Riyadh 11533, Saudi Arabia;
| | - Meshail Okla
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, 183T11, Riyadh 11495, Saudi Arabia;
| | - Afshan Masood
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia; (H.B.); (A.M.); (A.A.A.)
| | - Mai Abdel Jabar
- Department of Genetics, King Faisal Specialist Hospital and Research Centre (KFSHRC), Zahrawi Street, Al Maather, Riyadh 11211, Saudi Arabia;
| | - Ibrahim O. Alanazi
- The National Center for Biotechnology (NCB), Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 12354, Saudi Arabia;
| | - Assim A. Alfadda
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia; (H.B.); (A.M.); (A.A.A.)
- Department of Medicine, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia
| | - Imran Nizami
- Lung Transplant Section, Organ Transplant Center, King Faisal Specialist Hospital and Research Center, Zahrawi Street, Al Maather, Riyadh 11211, Saudi Arabia;
| | - Majed Dasouki
- Department of Genetics, King Faisal Specialist Hospital and Research Centre (KFSHRC), Zahrawi Street, Al Maather, Riyadh 11211, Saudi Arabia;
- Correspondence: (M.D.); (A.M.A.R.); Tel.: +966-114647272 (ext. 24081) (M.D.); +966-114647272 (ext. 36481) (A.M.A.R.)
| | - Anas M. Abdel Rahman
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al Faisal University, Riyadh 11533, Saudi Arabia;
- Department of Genetics, King Faisal Specialist Hospital and Research Centre (KFSHRC), Zahrawi Street, Al Maather, Riyadh 11211, Saudi Arabia;
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X7, Canada
- Correspondence: (M.D.); (A.M.A.R.); Tel.: +966-114647272 (ext. 24081) (M.D.); +966-114647272 (ext. 36481) (A.M.A.R.)
| |
Collapse
|
10
|
El Bar Aluma B, Sarouk I, Senderowitz H, Cohen-Cymberknoh M, Khazanov N, Dagan A, Bezalel Y, Ashkenazi M, Keler S, Efrati O. Phenotypic and molecular characteristics of CF patients carrying the I1234V mutation. Respir Med 2020; 170:106027. [DOI: 10.1016/j.rmed.2020.106027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/29/2020] [Accepted: 05/16/2020] [Indexed: 11/29/2022]
|
11
|
Phuan PW, Haggie PM, Tan JA, Rivera AA, Finkbeiner WE, Nielson DW, Thomas MM, Janahi IA, Verkman AS. CFTR modulator therapy for cystic fibrosis caused by the rare c.3700A>G mutation. J Cyst Fibros 2020; 20:452-459. [PMID: 32674984 DOI: 10.1016/j.jcf.2020.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/09/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The c.3700A>G mutation, a rare cystic fibrosis (CF)-causing CFTR mutation found mainly in the Middle East, produces full-length transcript encoding a missense mutation (I1234V-CFTR), and a cryptic splice site that deletes 6 amino acids in nucleotide binding domain 2 (I1234del-CFTR). METHODS FRT cell models expressing I1234V-CFTR and I1234del-CFTR were generated. We also studied an I1234del-CFTR-expressing gene-edited human bronchial (16HBE14o-) cell model, and primary cultures of nasal epithelial cells from a c.3700A>G homozygous subject. To identify improved mutation-specific CFTR modulators, high-throughput screening was done using I1234del-CFTR-expressing FRT cells. Motivated by the in vitro findings, Trikafta was tested in two c.3700A>G homozygous CF subjects. RESULTS FRT cells expressing full-length I1234V-CFTR had similar function to that of wildtype CFTR. I1234del-CFTR showed reduced activity, with modest activation seen with potentiators VX-770 and GLPG1837, correctors VX-809, VX-661 and VX-445, and low-temperature incubation. Screening identified novel arylsulfonyl-piperazine and spiropiperidine-quinazolinone correctors, which when used in combination with VX-445 increased current ~2-fold compared with the VX-661/VX-445 combination. The combination of VX-770 with arylsulfonamide-pyrrolopyridine, piperidine-pyridoindole or pyrazolo-quinoline potentiators gave 2-4-fold greater current than VX-770 alone. Combination potentiator (co-potentiator) efficacy was also seen in gene-edited I1234del-CFTR-expressing human bronchial epithelial cells. In two CF subjects homozygous for the c.3700A>G mutation, one subject had a 27 mmol/L decrease in sweat chloride and symptomatic improvement on Trikafta, and a second subject showed a small improvement in lung function. CONCLUSIONS These results support the potential benefit of CFTR modulators, including co-potentiators, for CF caused by the c.3700A>G mutation.
Collapse
Affiliation(s)
- Puay-Wah Phuan
- Department of Medicine, University of California San Francisco, CA 94143, USA
| | - Peter M Haggie
- Department of Medicine, University of California San Francisco, CA 94143, USA.
| | - Joseph A Tan
- Department of Medicine, University of California San Francisco, CA 94143, USA
| | - Amber A Rivera
- Department of Medicine, University of California San Francisco, CA 94143, USA
| | - Walter E Finkbeiner
- Department of Pathology, University of California San Francisco, CA 94143, USA
| | - Dennis W Nielson
- Department of Pediatrics, University of California San Francisco, CA 94143, USA
| | - Merlin M Thomas
- Department of Chest, Hamad General Hospital, PO Box 3050, Doha, Qatar
| | - Ibrahim A Janahi
- Pediatric Pulmonary, Pediatric Medicine, Sidra Medicine, PO Box 26999, Doha, Qatar
| | - Alan S Verkman
- Department of Medicine, University of California San Francisco, CA 94143, USA; Department of Physiology, University of California San Francisco, CA 94143, USA
| |
Collapse
|
12
|
Bienvenu T, Lopez M, Girodon E. Molecular Diagnosis and Genetic Counseling of Cystic Fibrosis and Related Disorders: New Challenges. Genes (Basel) 2020; 11:E619. [PMID: 32512765 PMCID: PMC7349214 DOI: 10.3390/genes11060619] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 11/16/2022] Open
Abstract
Identification of the cystic fibrosis transmembrane conductance regulator (CFTR) gene and its numerous variants opened the way to fantastic breakthroughs in diagnosis, research and treatment of cystic fibrosis (CF). The current and future challenges of molecular diagnosis of CF and CFTR-related disorders and of genetic counseling are here reviewed. Technological advances have enabled to make a diagnosis of CF with a sensitivity of 99% by using next generation sequencing in a single step. The detection of heretofore unidentified variants and ethnic-specific variants remains challenging, especially for newborn screening (NBS), CF carrier testing and genotype-guided therapy. Among the criteria for assessing the impact of variants, population genetics data are insufficiently taken into account and the penetrance of CF associated with CFTR variants remains poorly known. The huge diversity of diagnostic and genetic counseling indications for CFTR studies makes assessment of variant disease-liability critical. This is especially discussed in the perspective of wide genome analyses for NBS and CF carrier screening in the general population, as future challenges.
Collapse
Affiliation(s)
| | | | - Emmanuelle Girodon
- Molecular Genetics Laboratory, Cochin Hospital, APHP.Centre–Université de Paris, 75014 Paris, France; (T.B.); (M.L.)
| |
Collapse
|
13
|
Sasorith S, Baux D, Bergougnoux A, Paulet D, Lahure A, Bareil C, Taulan-Cadars M, Roux AF, Koenig M, Claustres M, Raynal C. The CYSMA web server: An example of integrative tool for in silico analysis of missense variants identified in Mendelian disorders. Hum Mutat 2019; 41:375-386. [PMID: 31674704 DOI: 10.1002/humu.23941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 10/02/2019] [Accepted: 10/30/2019] [Indexed: 12/17/2022]
Abstract
Exome sequencing used for molecular diagnosis of Mendelian disorders considerably increases the number of missense variants of unclear significance, whose pathogenicity can be assessed by a variety of prediction tools. As the performance of algorithms may vary according to the datasets, complementary specific resources are needed to improve variant interpretation. As a model, we were interested in the cystic fibrosis transmembrane conductance regulator gene (CFTR) causing cystic fibrosis, in which at least 40% of missense variants are reported. Cystic fibrosis missense analysis (CYSMA) is a new web server designed for online estimation of the pathological relevance of CFTR missense variants. CYSMA generates a set of computationally derived data, ranging from evolutionary conservation to functional observations from three-dimensional structures, provides all available allelic frequencies, clinical observations, and references for functional studies. Compared to software classically used in analysis pipelines on a dataset of 141 well-characterized missense variants, CYSMA was the most efficient tool to discriminate benign missense variants, with a specificity of 85%, and very good sensitivity of 89%. These results suggest that such integrative tools could be adapted to numbers of genes involved in Mendelian disorders to improve the interpretation of missense variants identified in the context of diagnosis.
Collapse
Affiliation(s)
- Souphatta Sasorith
- Laboratoire de Génétique Moléculaire, CHU de Montpellier, Montpellier, France.,EA 7402, Université de Montpellier, Montpellier, France
| | - David Baux
- Laboratoire de Génétique Moléculaire, CHU de Montpellier, Montpellier, France.,EA 7402, Université de Montpellier, Montpellier, France
| | - Anne Bergougnoux
- Laboratoire de Génétique Moléculaire, CHU de Montpellier, Montpellier, France.,EA 7402, Université de Montpellier, Montpellier, France
| | - Damien Paulet
- EA 7402, Université de Montpellier, Montpellier, France
| | - Alan Lahure
- EA 7402, Université de Montpellier, Montpellier, France
| | - Corinne Bareil
- Laboratoire de Génétique Moléculaire, CHU de Montpellier, Montpellier, France.,EA 7402, Université de Montpellier, Montpellier, France
| | | | - Anne-Françoise Roux
- Laboratoire de Génétique Moléculaire, CHU de Montpellier, Montpellier, France.,EA 7402, Université de Montpellier, Montpellier, France
| | - Michel Koenig
- Laboratoire de Génétique Moléculaire, CHU de Montpellier, Montpellier, France.,EA 7402, Université de Montpellier, Montpellier, France
| | | | - Caroline Raynal
- Laboratoire de Génétique Moléculaire, CHU de Montpellier, Montpellier, France.,EA 7402, Université de Montpellier, Montpellier, France
| |
Collapse
|
14
|
Amaral MD, de Boeck K. Theranostics by testing CFTR modulators in patient-derived materials: The current status and a proposal for subjects with rare CFTR mutations. J Cyst Fibros 2019; 18:685-692. [PMID: 31326274 DOI: 10.1016/j.jcf.2019.06.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/03/2019] [Accepted: 06/18/2019] [Indexed: 12/30/2022]
Abstract
The last decade has witnessed developments in the CF drug pipeline which are both exciting and unprecedented, bringing with them previously unconsidered challenges. The Task Force group came together to consider these challenges and possible strategies to address them. Over the last 18 months, we have discussed internally and gathered views from a broad range of individuals representing patient organizations, clinical and research teams, the pharmaceutical industry and regulatory agencies. In this and the accompanying article, we discuss two main areas of focus: i) optimising trial design and delivery for speed/efficiency; ii) drug development for patients with rare CFTR mutations. We propose some strategies to tackle the challenges ahead and highlight areas where further thought is needed. We see this as the start of a process rather than the end and hope herewith to engage the wider community in seeking solutions to improved treatments for all patients with CF.
Collapse
|
15
|
Novel, rare and common pathogenic variants in the CFTR gene screened by high-throughput sequencing technology and predicted by in silico tools. Sci Rep 2019; 9:6234. [PMID: 30996306 PMCID: PMC6470152 DOI: 10.1038/s41598-019-42404-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/28/2019] [Indexed: 12/13/2022] Open
Abstract
Cystic fibrosis (CF) is caused by ~300 pathogenic CFTR variants. The heterogeneity of which, challenges molecular diagnosis and precision medicine approaches in CF. Our objective was to identify CFTR variants through high-throughput sequencing (HTS) and to predict the pathogenicity of novel variants through in 8 silico tools. Two guidelines were followed to deduce the pathogenicity. A total of 169 CF patients had genomic DNA submitted to a Targeted Gene Sequencing and we identified 63 variants (three patients had three variants). The most frequent alleles were: F508del (n = 192), G542* (n = 26), N1303K (n = 11), R1162* and R334W (n = 9). The screened variants were classified as follows: 41 - pathogenic variants [classified as (I) n = 23, (II) n = 6, (III) n = 1, (IV) n = 6, (IV/V) n = 1 and (VI) n = 4]; 14 - variants of uncertain significance; and seven novel variants. To the novel variants we suggested the classification of 6b-16 exon duplication, G646* and 3557delA as Class I. There was concordance among the predictors as likely pathogenic for L935Q, cDNA.5808T>A and I1427I. Also, Y325F presented two discordant results among the predictors. HTS and in silico analysis can identify pathogenic CFTR variants and will open the door to integration of precision medicine into routine clinical practice in the near future.
Collapse
|
16
|
Awatade NT, Ramalho S, Silva IAL, Felício V, Botelho HM, de Poel E, Vonk A, Beekman JM, Farinha CM, Amaral MD. R560S: A class II CFTR mutation that is not rescued by current modulators. J Cyst Fibros 2018; 18:182-189. [PMID: 30030066 DOI: 10.1016/j.jcf.2018.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 06/22/2018] [Accepted: 07/01/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND New therapies modulating defective CFTR have started to hit the clinic and others are in trial or under development. The endeavour of drug discovery for CFTR protein rescue is however difficult one since over 2000 mutations have been reported. For most of these, especially the rare ones, the associated defects, the respective functional class and their responsiveness to available modulators are still unknown. Our aim here was to characterize the rare R560S mutation using patient-derived materials (rectal biopsies and intestinal organoids) from one CF individual homozygous for this mutation, in parallel with cellular models expressing R560S-CFTR and to assess the functional and biochemical responses to CFTR modulators. METHODS Intestinal organoids were prepared from rectal biopsies and analysed by RT-PCR (to assess CFTR mRNA), by Western blot (to assess CFTR protein) and by forskolin-induced swelling (FIS) assay. A novel cell line expressing R560S-CFTR was generated by stably transducing the CFBE parental cell line and used to assess R560S-CFTR processing and function. Both intestinal organoids and the cellular model were used to assess efficacy of CFTR modulators in rescuing this mutation. RESULTS Our results show that: R560S does not affect CFTR mRNA splicing; R560S affects CFTR protein processing, totally abrogating the production of its mature form; R560S-CFTR evidences no function as a Cl- channel; and none of the modulators tested rescued R560S-CFTR processing or function. CONCLUSION Altogether, these results indicate that R560S is a class II mutation. However, unlike F508del, it cannot be rescued by any of the CFTR modulators tested.
Collapse
Affiliation(s)
- Nikhil T Awatade
- University of Lisboa, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8 bdg, 1749-016 Lisboa, Portugal
| | - Sofia Ramalho
- University of Lisboa, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8 bdg, 1749-016 Lisboa, Portugal
| | - Iris A L Silva
- University of Lisboa, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8 bdg, 1749-016 Lisboa, Portugal
| | - Verónica Felício
- University of Lisboa, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8 bdg, 1749-016 Lisboa, Portugal
| | - Hugo M Botelho
- University of Lisboa, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8 bdg, 1749-016 Lisboa, Portugal
| | - Eyleen de Poel
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, the Netherlands
| | - Annelotte Vonk
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, the Netherlands
| | - Jeffrey M Beekman
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, the Netherlands
| | - Carlos M Farinha
- University of Lisboa, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8 bdg, 1749-016 Lisboa, Portugal
| | - Margarida D Amaral
- University of Lisboa, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8 bdg, 1749-016 Lisboa, Portugal.
| |
Collapse
|
17
|
Molinski SV, Ahmadi S, Ip W, Ouyang H, Villella A, Miller JP, Lee PS, Kulleperuma K, Du K, Di Paola M, Eckford PD, Laselva O, Huan LJ, Wellhauser L, Li E, Ray PN, Pomès R, Moraes TJ, Gonska T, Ratjen F, Bear CE. Orkambi® and amplifier co-therapy improves function from a rare CFTR mutation in gene-edited cells and patient tissue. EMBO Mol Med 2018; 9:1224-1243. [PMID: 28667089 PMCID: PMC5582412 DOI: 10.15252/emmm.201607137] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The combination therapy of lumacaftor and ivacaftor (Orkambi®) is approved for patients bearing the major cystic fibrosis (CF) mutation: ΔF508. It has been predicted that Orkambi® could treat patients with rarer mutations of similar “theratype”; however, a standardized approach confirming efficacy in these cohorts has not been reported. Here, we demonstrate that patients bearing the rare mutation: c.3700 A>G, causing protein misprocessing and altered channel function—similar to ΔF508‐CFTR, are unlikely to yield a robust Orkambi® response. While in silico and biochemical studies confirmed that this mutation could be corrected and potentiated by lumacaftor and ivacaftor, respectively, this combination led to a minor in vitro response in patient‐derived tissue. A CRISPR/Cas9‐edited bronchial epithelial cell line bearing this mutation enabled studies showing that an “amplifier” compound, effective in increasing the levels of immature CFTR protein, augmented the Orkambi® response. Importantly, this “amplifier” effect was recapitulated in patient‐derived nasal cultures—providing the first evidence for its efficacy in augmenting Orkambi® in tissues harboring a rare CF‐causing mutation. We propose that this multi‐disciplinary approach, including creation of CRISPR/Cas9‐edited cells to profile modulators together with validation using primary tissue, will facilitate therapy development for patients with rare CF mutations.
Collapse
Affiliation(s)
- Steven V Molinski
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Programme in Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Saumel Ahmadi
- Programme in Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Wan Ip
- Programme in Translational Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Hong Ouyang
- Programme in Translational Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | | | | | - Po-Shun Lee
- Proteostasis Therapeutics, Cambridge, MA, USA
| | - Kethika Kulleperuma
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Programme in Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Kai Du
- Programme in Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Michelle Di Paola
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Programme in Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Paul Dw Eckford
- Programme in Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Onofrio Laselva
- Programme in Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Ling Jun Huan
- Programme in Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Leigh Wellhauser
- Programme in Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Ellen Li
- Programme in Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Peter N Ray
- Division of Molecular Genetics, Hospital for Sick Children, Toronto, ON, Canada
| | - Régis Pomès
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Programme in Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Theo J Moraes
- Programme in Translational Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, Canada.,Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Tanja Gonska
- Programme in Translational Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, Canada.,Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Felix Ratjen
- Division of Respiratory Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Christine E Bear
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada .,Programme in Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
18
|
Vernon RM, Chong PA, Lin H, Yang Z, Zhou Q, Aleksandrov AA, Dawson JE, Riordan JR, Brouillette CG, Thibodeau PH, Forman-Kay JD. Stabilization of a nucleotide-binding domain of the cystic fibrosis transmembrane conductance regulator yields insight into disease-causing mutations. J Biol Chem 2017; 292:14147-14164. [PMID: 28655774 PMCID: PMC5572908 DOI: 10.1074/jbc.m116.772335] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 06/16/2017] [Indexed: 11/06/2022] Open
Abstract
Characterization of the second nucleotide-binding domain (NBD2) of the cystic fibrosis transmembrane conductance regulator (CFTR) has lagged behind research into the NBD1 domain, in part because NBD1 contains the F508del mutation, which is the dominant cause of cystic fibrosis. Research on NBD2 has also been hampered by the overall instability of the domain and the difficulty of producing reagents. Nonetheless, multiple disease-causing mutations reside in NBD2, and the domain is critical for CFTR function, because channel gating involves NBD1/NBD2 dimerization, and NBD2 contains the catalytically active ATPase site in CFTR. Recognizing the paucity of structural and biophysical data on NBD2, here we have defined a bioinformatics-based method for manually identifying stabilizing substitutions in NBD2, and we used an iterative process of screening single substitutions against thermal melting points to both produce minimally mutated stable constructs and individually characterize mutations. We present a range of stable constructs with minimal mutations to help inform further research on NBD2. We have used this stabilized background to study the effects of NBD2 mutations identified in cystic fibrosis (CF) patients, demonstrating that mutants such as N1303K and G1349D are characterized by lower stability, as shown previously for some NBD1 mutations, suggesting a potential role for NBD2 instability in the pathology of CF.
Collapse
Affiliation(s)
- Robert M Vernon
- From the Program in Molecular Medicine, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - P Andrew Chong
- From the Program in Molecular Medicine, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Hong Lin
- From the Program in Molecular Medicine, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Zhengrong Yang
- Center for Structural Biology and Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Qingxian Zhou
- Center for Structural Biology and Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Andrei A Aleksandrov
- Department of Biochemistry and Biophysics, Cystic Fibrosis Treatment and Research Center, University of North Carolina, Chapel Hill, North Carolina 27599, and
| | - Jennifer E Dawson
- From the Program in Molecular Medicine, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - John R Riordan
- Department of Biochemistry and Biophysics, Cystic Fibrosis Treatment and Research Center, University of North Carolina, Chapel Hill, North Carolina 27599, and
| | - Christie G Brouillette
- Center for Structural Biology and Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Patrick H Thibodeau
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219
| | - Julie D Forman-Kay
- From the Program in Molecular Medicine, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada,; Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
19
|
Claustres M, Thèze C, des Georges M, Baux D, Girodon E, Bienvenu T, Audrezet MP, Dugueperoux I, Férec C, Lalau G, Pagin A, Kitzis A, Thoreau V, Gaston V, Bieth E, Malinge MC, Reboul MP, Fergelot P, Lemonnier L, Mekki C, Fanen P, Bergougnoux A, Sasorith S, Raynal C, Bareil C. CFTR-France, a national relational patient database for sharing genetic and phenotypic data associated with rare CFTR variants. Hum Mutat 2017; 38:1297-1315. [PMID: 28603918 DOI: 10.1002/humu.23276] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/31/2017] [Accepted: 06/04/2017] [Indexed: 11/09/2022]
Abstract
Most of the 2,000 variants identified in the CFTR (cystic fibrosis transmembrane regulator) gene are rare or private. Their interpretation is hampered by the lack of available data and resources, making patient care and genetic counseling challenging. We developed a patient-based database dedicated to the annotations of rare CFTR variants in the context of their cis- and trans-allelic combinations. Based on almost 30 years of experience of CFTR testing, CFTR-France (https://cftr.iurc.montp.inserm.fr/cftr) currently compiles 16,819 variant records from 4,615 individuals with cystic fibrosis (CF) or CFTR-RD (related disorders), fetuses with ultrasound bowel anomalies, newborns awaiting clinical diagnosis, and asymptomatic compound heterozygotes. For each of the 736 different variants reported in the database, patient characteristics and genetic information (other variations in cis or in trans) have been thoroughly checked by a dedicated curator. Combining updated clinical, epidemiological, in silico, or in vitro functional data helps to the interpretation of unclassified and the reassessment of misclassified variants. This comprehensive CFTR database is now an invaluable tool for diagnostic laboratories gathering information on rare variants, especially in the context of genetic counseling, prenatal and preimplantation genetic diagnosis. CFTR-France is thus highly complementary to the international database CFTR2 focused so far on the most common CF-causing alleles.
Collapse
Affiliation(s)
- Mireille Claustres
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire et Université de Montpellier, Montpellier, France
| | - Corinne Thèze
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire et Université de Montpellier, Montpellier, France
| | - Marie des Georges
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire et Université de Montpellier, Montpellier, France
| | - David Baux
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire et Université de Montpellier, Montpellier, France
| | - Emmanuelle Girodon
- Service de Génétique et Biologie Moléculaires, Groupe Hospitalier Cochin-Broca-Hotel Dieu, Paris, France
| | - Thierry Bienvenu
- Service de Génétique et Biologie Moléculaires, Groupe Hospitalier Cochin-Broca-Hotel Dieu, Paris, France
| | - Marie-Pierre Audrezet
- Laboratoire de Génétique Moléculaire et d'Histocompatibilité, Centre Hospitalier Régional Universitaire, Brest, France
| | - Ingrid Dugueperoux
- Laboratoire de Génétique Moléculaire et d'Histocompatibilité, Centre Hospitalier Régional Universitaire, Brest, France
| | - Claude Férec
- Laboratoire de Génétique Moléculaire et d'Histocompatibilité, Centre Hospitalier Régional Universitaire, Brest, France
| | - Guy Lalau
- Centre de Biologie Pathologie Génétique, Centre Hospitalier Régional Universitaire, Lille, France
| | - Adrien Pagin
- Centre de Biologie Pathologie Génétique, Centre Hospitalier Régional Universitaire, Lille, France
| | - Alain Kitzis
- Département de Génétique, Centre Hospitalier Universitaire, Poitiers, France
| | - Vincent Thoreau
- Département de Génétique, Centre Hospitalier Universitaire, Poitiers, France
| | - Véronique Gaston
- Service de Génétique Médicale, Centre Hospitalier Universitaire, Toulouse, France
| | - Eric Bieth
- Service de Génétique Médicale, Centre Hospitalier Universitaire, Toulouse, France
| | - Marie-Claire Malinge
- Département de Biochimie Génétique, Institut de Biologie en Santé, Centre Hospitalier Universitaire, Angers, France
| | - Marie-Pierre Reboul
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Régional Universitaire, Bordeaux, France
| | - Patricia Fergelot
- Laboratoire Maladies Rares, Génétique et Métabolisme, Bordeaux, France
| | - Lydie Lemonnier
- Registre français de la mucoviscidose, Vaincre la Mucoviscidose, Paris, France
| | - Chadia Mekki
- Laboratoire de Génétique, Hôpital Henri Mondor, Créteil, France
| | - Pascale Fanen
- Laboratoire de Génétique, Hôpital Henri Mondor, Créteil, France
| | - Anne Bergougnoux
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire et Université de Montpellier, Montpellier, France
| | - Souphatta Sasorith
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire et Université de Montpellier, Montpellier, France
| | - Caroline Raynal
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire et Université de Montpellier, Montpellier, France
| | - Corinne Bareil
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire et Université de Montpellier, Montpellier, France
| |
Collapse
|
20
|
De Boeck K, Amaral MD. Classification of CFTR mutation classes - Authors' reply. THE LANCET RESPIRATORY MEDICINE 2016; 4:e39. [PMID: 27377413 DOI: 10.1016/s2213-2600(16)30189-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/15/2016] [Accepted: 06/15/2016] [Indexed: 11/17/2022]
Affiliation(s)
- Kris De Boeck
- Pediatric Pulmonology, Department of Pediatrics, University of Leuven, Leuven 3000, Belgium.
| | - Margarida D Amaral
- Faculty of Sciences, Biosystems and Integrative Sciences Institute (BioISI), University of Lisbon, Lisbon, Portugal
| |
Collapse
|
21
|
Igreja S, Clarke LA, Botelho HM, Marques L, Amaral MD. Correction of a Cystic Fibrosis Splicing Mutation by Antisense Oligonucleotides. Hum Mutat 2015; 37:209-15. [PMID: 26553470 DOI: 10.1002/humu.22931] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/29/2015] [Indexed: 11/06/2022]
Abstract
Cystic fibrosis (CF), the most common life-threatening genetic disease in Caucasians, is caused by ∼2,000 different mutations in the CF transmembrane conductance regulator (CFTR) gene. A significant fraction of these (∼13%) affect pre-mRNA splicing for which novel therapies have been somewhat neglected. We have previously described the effect of the CFTR splicing mutation c.2657+5G>A in IVS16, showing that it originates transcripts lacking exon 16 as well as wild-type transcripts. Here, we tested an RNA-based antisense oligonucleotide (AON) strategy to correct the aberrant splicing caused by this mutation. Two AONs (AON1/2) complementary to the pre-mRNA IVS16 mutant region were designed and their effect on splicing was assessed at the RNA and protein levels, on intracellular protein localization and function. To this end, we used the 2657+5G>A mutant CFTR minigene stably expressed in HEK293 Flp-In cells that express a single copy of the transgene. RNA data from AON1-treated mutant cells show that exon 16 inclusion was almost completely restored (to 95%), also resulting in increased levels of correctly localized CFTR protein at the plasma membrane (PM) and with increased function. A novel two-color CFTR splicing reporter minigene developed here allowed the quantitative monitoring of splicing by automated microscopy localization of CFTR at the PM. The AON strategy is thus a promising therapeutic approach for the specific correction of alternative splicing.
Collapse
Affiliation(s)
- Susana Igreja
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| | - Luka A Clarke
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| | - Hugo M Botelho
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| | - Luís Marques
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| | - Margarida D Amaral
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| |
Collapse
|