1
|
Han X, Li D, Zhu Y, Schneider-Futschik EK. Recommended Tool Compounds for Modifying the Cystic Fibrosis Transmembrane Conductance Regulator Channel Variants. ACS Pharmacol Transl Sci 2024; 7:933-950. [PMID: 38633590 PMCID: PMC11019735 DOI: 10.1021/acsptsci.3c00362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 04/19/2024]
Abstract
Cystic fibrosis (CF) is a genetic disorder arising from variations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, leading to multiple organ system defects. CFTR tool compounds are molecules that can modify the activity of the CFTR channel. Especially, patients that are currently not able to benefit from approved CFTR modulators, such as patients with rare CFTR variants, benefit from further research in discovering novel tools to modulate CFTR. This Review explores the development and classification of CFTR tool compounds, including CFTR blockers (CFTRinh-172, GlyH-101), potentiators (VRT-532, Genistein), correctors (VRT-325, Corr-4a), and other approved and unapproved modulators, with detailed descriptions and discussions for each compound. The challenges and future directions in targeting rare variants and optimizing drug delivery, and the potential synergistic effects in combination therapies are outlined. CFTR modulation holds promise not only for CF treatment but also for generating CF models that contribute to CF research and potentially treating other diseases such as secretory diarrhea. Therefore, continued research on CFTR tool compounds is critical.
Collapse
Affiliation(s)
- XiaoXuan Han
- Department of Biochemistry & Pharmacology,
School of Biomedical Sciences, Faculty of Medicine, Dentistry and
Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Danni Li
- Department of Biochemistry & Pharmacology,
School of Biomedical Sciences, Faculty of Medicine, Dentistry and
Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Yimin Zhu
- Department of Biochemistry & Pharmacology,
School of Biomedical Sciences, Faculty of Medicine, Dentistry and
Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Elena K. Schneider-Futschik
- Department of Biochemistry & Pharmacology,
School of Biomedical Sciences, Faculty of Medicine, Dentistry and
Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
2
|
Bellacchio E. Exploring the Mechanism of Activation of CFTR by Curcuminoids: An Ensemble Docking Study. Int J Mol Sci 2023; 25:552. [PMID: 38203723 PMCID: PMC10778693 DOI: 10.3390/ijms25010552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Curcumin, a major constituent of turmeric (Curcuma longa L.), has beneficial effects against several diseases. In cystic fibrosis (CF), this compound improves patients' symptoms by recovering the activity of a number of mutants of the cystic fibrosis transmembrane conductance regulator (CFTR). Despite holding promise in the treatment of CF, the curcumin binding site in CFTR and the molecular mechanism of activation of this channel are still unknown. The results of this study, based on docking and molecular dynamics (MD) simulations, allow us to propose that curcumin binds the closed ATP-free CFTR near the nucleotide-binding domain 1 (NBD1)/ICl1/ICl4 interface. The bound ligand, once approached by the nucleotide-binding domain 2 (NBD2) during transient channel opening, lays at a multiple interdomain cross point. Thereafter, curcumin can bridge NBD1 and NBD2, and also ICL1/ICL4 and ICL2/ICL3, finally tightening the same interdomain interactions that normally uphold the open conformation in the wild-type ATP-bound CFTR. The proposed binding site is compatible with biochemical observations made in previous CFTR-curcumin interaction studies. These findings provide a framework for the design of novel drugs that activate CFTR mutants characterized by defects in ATP binding and/or NBD dimerization or even lacking NBD2.
Collapse
Affiliation(s)
- Emanuele Bellacchio
- Genetica Molecolare e Genomica Funzionale, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| |
Collapse
|
3
|
Fossa P, Uggeri M, Orro A, Urbinati C, Rondina A, Milanesi M, Pedemonte N, Pesce E, Padoan R, Ford RC, Meng X, Rusnati M, D’Ursi P. Virtual Drug Repositioning as a Tool to Identify Natural Small Molecules That Synergize with Lumacaftor in F508del-CFTR Binding and Rescuing. Int J Mol Sci 2022; 23:ijms232012274. [PMID: 36293130 PMCID: PMC9602983 DOI: 10.3390/ijms232012274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Cystic fibrosis is a hereditary disease mainly caused by the deletion of the Phe 508 (F508del) of the cystic fibrosis transmembrane conductance regulator (CFTR) protein that is thus withheld in the endoplasmic reticulum and rapidly degraded by the ubiquitin/proteasome system. Cystic fibrosis remains a potentially fatal disease, but it has become treatable as a chronic condition due to some CFTR-rescuing drugs that, when used in combination, increase in their therapeutic effect due to a synergic action. Also, dietary supplementation of natural compounds in combination with approved drugs could represent a promising strategy to further alleviate cystic fibrosis symptoms. On these bases, we screened by in silico drug repositioning 846 small synthetic or natural compounds from the AIFA database to evaluate their capacity to interact with the highly druggable lumacaftor binding site of F508del-CFTR. Among the identified hits, nicotinamide (NAM) was predicted to accommodate into the lumacaftor binding region of F508del-CFTR without competing against the drug but rather stabilizing its binding. The effective capacity of NAM to bind F508del-CFTR in a lumacaftor-uncompetitive manner was then validated experimentally by surface plasmon resonance analysis. Finally, the capacity of NAM to synergize with lumacaftor increasing its CFTR-rescuing activity was demonstrated in cell-based assays. This study suggests the possible identification of natural small molecules devoid of side effects and endowed with the capacity to synergize with drugs currently employed for the treatment of cystic fibrosis, which hopefully will increase the therapeutic efficacy with lower doses.
Collapse
Affiliation(s)
- Paola Fossa
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, 16132 Genoa, Italy
| | - Matteo Uggeri
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, 16132 Genoa, Italy
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), 20054 Segrate, Italy
| | - Alessandro Orro
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), 20054 Segrate, Italy
| | - Chiara Urbinati
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Alessandro Rondina
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), 20054 Segrate, Italy
| | - Maria Milanesi
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | | | - Emanuela Pesce
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Rita Padoan
- Department of Pediatrics, Regional Support Centre for Cystic Fibrosis, Children’s Hospital—ASST Spedali Civili, University of Brescia, 25123 Brescia, Italy
| | - Robert C. Ford
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Xin Meng
- Cellular Degradation Systems Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Marco Rusnati
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Correspondence: (M.R.); (P.D.)
| | - Pasqualina D’Ursi
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), 20054 Segrate, Italy
- Correspondence: (M.R.); (P.D.)
| |
Collapse
|
4
|
Ensinck MM, Carlon MS. One Size Does Not Fit All: The Past, Present and Future of Cystic Fibrosis Causal Therapies. Cells 2022; 11:cells11121868. [PMID: 35740997 PMCID: PMC9220995 DOI: 10.3390/cells11121868] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 02/04/2023] Open
Abstract
Cystic fibrosis (CF) is the most common monogenic disorder, caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. Over the last 30 years, tremendous progress has been made in understanding the molecular basis of CF and the development of treatments that target the underlying defects in CF. Currently, a highly effective CFTR modulator treatment (Kalydeco™/Trikafta™) is available for 90% of people with CF. In this review, we will give an extensive overview of past and ongoing efforts in the development of therapies targeting the molecular defects in CF. We will discuss strategies targeting the CFTR protein (i.e., CFTR modulators such as correctors and potentiators), its cellular environment (i.e., proteostasis modulation, stabilization at the plasma membrane), the CFTR mRNA (i.e., amplifiers, nonsense mediated mRNA decay suppressors, translational readthrough inducing drugs) or the CFTR gene (gene therapies). Finally, we will focus on how these efforts can be applied to the 15% of people with CF for whom no causal therapy is available yet.
Collapse
Affiliation(s)
- Marjolein M. Ensinck
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Flanders, Belgium;
| | - Marianne S. Carlon
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Flanders, Belgium;
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Flanders, Belgium
- Correspondence:
| |
Collapse
|
5
|
Amaral MD. Precision medicine for rare diseases: The times they are A-Changin'. Curr Opin Pharmacol 2022; 63:102201. [DOI: 10.1016/j.coph.2022.102201] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 12/30/2022]
|
6
|
Yeh HI, Hwang TC. In vitro assessment of triple combination therapy for the most common disease-associated mutation in cystic fibrosis. Eur Respir J 2022; 59:59/2/2102380. [PMID: 35210304 DOI: 10.1183/13993003.02380-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Han-I Yeh
- Dept of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tzyh-Chang Hwang
- Dept of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan .,Dept of Medical Pharmacology and Physiology, University of Missouri-Columbia, Columbia, MO, USA.,Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO, USA
| |
Collapse
|
7
|
Garbiec E, Cielecka-Piontek J, Kowalówka M, Hołubiec M, Zalewski P. Genistein-Opportunities Related to an Interesting Molecule of Natural Origin. Molecules 2022; 27:815. [PMID: 35164079 PMCID: PMC8840253 DOI: 10.3390/molecules27030815] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/19/2022] Open
Abstract
Nowadays, increasingly more attention is being paid to a holistic approach to health, in which diet contributes to disease prevention. There is growing interest in functional food that not only provides basic nutrition but has also been demonstrated to be an opportunity for the prevention of disorders. A promising functional food is soybean, which is the richest source of the isoflavone, genistein. Genistein may be useful in the prevention and treatment of such disorders as psoriasis, cataracts, cystic fibrosis, non-alcoholic fatty liver disease and type 2 diabetes. However, achievable concentrations of genistein in humans are low, and the use of soybean as a functional food is not devoid of concerns, which are related to genistein's potential side effects resulting from its estrogenic and goitrogenic effects.
Collapse
Affiliation(s)
- Ewa Garbiec
- Department of Pharmacognosy, Faculty of Pharmacy, Poznan University of Medical Sciences, 4 Święcickiego St., 60-780 Poznan, Poland; (E.G.); (P.Z.)
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Faculty of Pharmacy, Poznan University of Medical Sciences, 4 Święcickiego St., 60-780 Poznan, Poland; (E.G.); (P.Z.)
| | - Magdalena Kowalówka
- Department of Bromatology, Faculty of Pharmacy, Poznan University of Medical Sciences, 42 Marcelińska St., 60-354 Poznan, Poland;
| | - Magdalena Hołubiec
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna 27/33 St., 60-572 Poznan, Poland;
| | - Przemysław Zalewski
- Department of Pharmacognosy, Faculty of Pharmacy, Poznan University of Medical Sciences, 4 Święcickiego St., 60-780 Poznan, Poland; (E.G.); (P.Z.)
| |
Collapse
|
8
|
Wong SL, Awatade NT, Astore MA, Allan KM, Carnell MJ, Slapetova I, Chen PC, Capraro A, Fawcett LK, Whan RM, Griffith R, Ooi CY, Kuyucak S, Jaffe A, Waters SA. Molecular dynamics and functional characterization of I37R-CFTR lasso mutation provide insights into channel gating activity. iScience 2022; 25:103710. [PMID: 35072004 PMCID: PMC8761696 DOI: 10.1016/j.isci.2021.103710] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/27/2021] [Accepted: 12/28/2021] [Indexed: 12/30/2022] Open
Abstract
Characterization of I37R, a mutation located in the lasso motif of the CFTR chloride channel, was conducted by theratyping several CFTR modulators from both potentiator and corrector classes. Intestinal current measurements in rectal biopsies, forskolin-induced swelling (FIS) in intestinal organoids, and short circuit current measurements in organoid-derived monolayers from an individual with I37R/F508del CFTR genotype demonstrated that the I37R-CFTR results in a residual function defect amenable to treatment with potentiators and type III, but not type I, correctors. Molecular dynamics of I37R using an extended model of the phosphorylated, ATP-bound human CFTR identified an altered lasso motif conformation which results in an unfavorable strengthening of the interactions between the lasso motif, the regulatory (R) domain, and the transmembrane domain 2 (TMD2). Structural and functional characterization of the I37R-CFTR mutation increases understanding of CFTR channel regulation and provides a potential pathway to expand drug access to CF patients with ultra-rare genotypes.
Collapse
Affiliation(s)
- Sharon L. Wong
- School of Women's and Children's Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), UNSW Sydney, Sydney, Australia
| | - Nikhil T. Awatade
- School of Women's and Children's Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), UNSW Sydney, Sydney, Australia
| | - Miro A. Astore
- School of Physics, University of Sydney, Sydney, Australia
| | - Katelin M. Allan
- School of Women's and Children's Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), UNSW Sydney, Sydney, Australia
| | - Michael J. Carnell
- Katharina Gaus Light Microscopy Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, Australia
| | - Iveta Slapetova
- Katharina Gaus Light Microscopy Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, Australia
| | - Po-chia Chen
- School of Physics, University of Sydney, Sydney, Australia
| | - Alexander Capraro
- School of Women's and Children's Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), UNSW Sydney, Sydney, Australia
| | - Laura K. Fawcett
- School of Women's and Children's Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), UNSW Sydney, Sydney, Australia
- Department of Respiratory Medicine, Sydney Children's Hospital, Randwick, Australia
| | - Renee M. Whan
- Katharina Gaus Light Microscopy Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, Australia
| | | | - Chee Y. Ooi
- School of Women's and Children's Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), UNSW Sydney, Sydney, Australia
- Department of Gastroenterology, Sydney Children's Hospital, Randwick, Australia
| | - Serdar Kuyucak
- School of Physics, University of Sydney, Sydney, Australia
| | - Adam Jaffe
- School of Women's and Children's Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), UNSW Sydney, Sydney, Australia
- Department of Respiratory Medicine, Sydney Children's Hospital, Randwick, Australia
| | - Shafagh A. Waters
- School of Women's and Children's Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
- Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), UNSW Sydney, Sydney, Australia
- Department of Respiratory Medicine, Sydney Children's Hospital, Randwick, Australia
| |
Collapse
|
9
|
Pinto MC, Silva IAL, Figueira MF, Amaral MD, Lopes-Pacheco M. Pharmacological Modulation of Ion Channels for the Treatment of Cystic Fibrosis. J Exp Pharmacol 2021; 13:693-723. [PMID: 34326672 PMCID: PMC8316759 DOI: 10.2147/jep.s255377] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Cystic fibrosis (CF) is a life-shortening monogenic disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein, an anion channel that transports chloride and bicarbonate across epithelia. Despite clinical progress in delaying disease progression with symptomatic therapies, these individuals still develop various chronic complications in lungs and other organs, which significantly restricts their life expectancy and quality of life. The development of high-throughput assays to screen drug-like compound libraries have enabled the discovery of highly effective CFTR modulator therapies. These novel therapies target the primary defect underlying CF and are now approved for clinical use for individuals with specific CF genotypes. However, the clinically approved modulators only partially reverse CFTR dysfunction and there is still a considerable number of individuals with CF carrying rare CFTR mutations who remain without any effective CFTR modulator therapy. Accordingly, additional efforts have been pursued to identify novel and more potent CFTR modulators that may benefit a larger CF population. The use of ex vivo individual-derived specimens has also become a powerful tool to evaluate novel drugs and predict their effectiveness in a personalized medicine approach. In addition to CFTR modulators, pro-drugs aiming at modulating alternative ion channels/transporters are under development to compensate for the lack of CFTR function. These therapies may restore normal mucociliary clearance through a mutation-agnostic approach (ie, independent of CFTR mutation) and include inhibitors of the epithelial sodium channel (ENaC), modulators of the calcium-activated channel transmembrane 16A (TMEM16, or anoctamin 1) or of the solute carrier family 26A member 9 (SLC26A9), and anionophores. The present review focuses on recent progress and challenges for the development of ion channel/transporter-modulating drugs for the treatment of CF.
Collapse
Affiliation(s)
- Madalena C Pinto
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Iris A L Silva
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Miriam F Figueira
- Marsico Lung Institute/Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Margarida D Amaral
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| |
Collapse
|
10
|
Becq F, Mirval S, Carrez T, Lévêque M, Billet A, Coraux C, Sage E, Cantereau A. The rescue of F508del-CFTR by elexacaftor/tezacaftor/ivacaftor (Trikafta) in human airway epithelial cells is underestimated due to the presence of ivacaftor. Eur Respir J 2021; 59:13993003.00671-2021. [PMID: 34266939 DOI: 10.1183/13993003.00671-2021] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/25/2021] [Indexed: 11/05/2022]
Abstract
Trikafta, currently the leading therapeutic in Cystic Fibrosis (CF), has demonstrated a real clinical benefit. This treatment is the triple combination therapy of two folding correctors elexacaftor/tezacaftor (VX445/VX661) plus the gating potentiator ivacaftor (VX770). In this study, our aim was to compare the properties of F508del-CFTR in cells treated with either lumacaftor (VX809), tezacaftor, elexacaftor, elexacaftor/tezacaftor with or without ivacaftor. We studied F508del-CFTR function, maturation and membrane localisation by Ussing chamber and whole-cell patch clamp recordings, Western blot and immunolocalization experiments. With human primary airway epithelial cells and the cell lines CFBE and BHK expressing F508del, we found that, whereas the combination elexacaftor/tezacaftor/ivacaftor was efficient in rescuing F508del-CFTR abnormal maturation, apical membrane location and function, the presence of ivacaftor limits these effects. The basal F508del-CFTR short-circuit current was significantly increased by elexacaftor/tezacaftor/ivacaftor and elexacaftor/tezacaftor compared to other correctors and non-treated cells, an effect dependent on ivacaftor and cAMP. These results suggest that the level of the basal F508del-CFTR current might be a marker for correction efficacy in CF cells. When cells were treated with ivacaftor combined to any correctors, the F508del-CFTR current was unresponsive to the subsequently acute addition of ivacaftor unlike the CFTR potentiators genistein and Cact-A1 which increased elexacaftor/tezacaftor/ivacaftor and elexacaftor/tezacaftor-corrected F508del-CFTR currents. These findings show that ivacaftor reduces the correction efficacy of Trikafta. Thus, combining elexacaftor/tezacaftor with a different potentiator might improve the therapeutic efficacy for treating CF patients.
Collapse
Affiliation(s)
- Frédéric Becq
- Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers, France
| | - Sandra Mirval
- Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers, France
| | - Thomas Carrez
- Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers, France.,ManRos therapeutics, Presqu'île de Perharidy, Roscoff, France
| | - Manuella Lévêque
- Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers, France
| | - Arnaud Billet
- Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers, France
| | - Christelle Coraux
- INSERM UMR-S 1250, Université de Reims-Champagne Ardenne, Reims, France
| | - Edouard Sage
- INRAE UMR 0892, Université Versailles-Saint-Quentin-en-Yvelines, Versailles, France.,Service de chirurgie thoracique et transplantation pulmonaire, Hôpital Foch, Suresnes, France
| | - Anne Cantereau
- Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers, France
| |
Collapse
|
11
|
Talebi S, Safarian M, Jaafari MR, Sayedi SJ, Abbasi Z, Ranjbar G, Kianifar HR. The effects of nano-curcumin as a nutritional strategy on clinical and inflammatory factors in children with cystic fibrosis: the study protocol for a randomized controlled trial. Trials 2021; 22:292. [PMID: 33879218 PMCID: PMC8056493 DOI: 10.1186/s13063-021-05224-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cystic fibrosis (CF) is a genetic disorder, which is caused by the CFTR protein defects. Along with CFTR dysfunction, inflammation plays a key role in the disease outcomes. Inflammation may develop due to the internal dysfunction of the CFTR protein or external factors. Curcumin affects the CFTR protein function primarily as a corrector and potentiator and secondary as an anti-inflammatory and antimicrobial agent. The present study aims to assess the impact of nano-curcumin on clinical and inflammatory markers in children with CF. METHODS This prospective, double blind control trial will be conducted at the Akbar Children's Hospital in Mashhad, Iran. Children with CF will be enrolled based on the eligibility criteria. Placebo and curcumin with the maximum dose of 80 mg considering the body surface of the patients will be administrated for 3 months. The primary outcome is to evaluate inflammation based on serum interleukin-6, interleukin-10, and hs-CRP, stool calprotectin, and neutrophil count of nasopharyngeal swab. The secondary outcome involved clinical assessment via spirometry, anthropometrics, and quality of life. They will be assessed before and after 3 months. DISCUSSION Due to the multifarious effects of curcumin on CF disease, it could be proposed as a nutritional strategy in the treatment of cystic fibrosis. TRIAL REGISTRATION Iranian Registry of Clinical Trials IRCT20200705048018N1 . Registered on July 10, 2020.
Collapse
Affiliation(s)
- Saeedeh Talebi
- Department of Nutrition, Faculty of medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahammad Safarian
- Department of Nutrition, Faculty of medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmood Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Javad Sayedi
- Department of Pediatrics, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Abbasi
- Akbar clinical research and development unit, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Golnaz Ranjbar
- Department of Nutrition, Faculty of Medicine, Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Kianifar
- Department of Pediatrics, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
Lopes-Pacheco M, Pedemonte N, Veit G. Discovery of CFTR modulators for the treatment of cystic fibrosis. Expert Opin Drug Discov 2021; 16:897-913. [PMID: 33823716 DOI: 10.1080/17460441.2021.1912732] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Cystic fibrosis (CF) is a life-threatening inherited disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein, an anion channel expressed at the apical membrane of secretory epithelia. CF leads to multiorgan dysfunction with progressive deterioration of lung function being the major cause of untimely death. Conventional CF therapies target only symptoms and consequences downstream of the primary genetic defect and the current life expectancy and quality of life of these individuals are still very limited. AREA COVERED CFTR modulator drugs are novel-specialized therapies that enhance or even restore functional expression of CFTR mutants and have been approved for clinical use for individuals with specific CF genotypes. This review summarizes classical approaches used for the pre-clinical development of CFTR correctors and potentiators as well as emerging strategies aiming to accelerate modulator development and expand theratyping efforts. EXPERT OPINION Highly effective CFTR modulator drugs are expected to deeply modify the disease course for the majority of individuals with CF. A multitude of experimental approaches have been established to accelerate the development of novel modulators. CF patient-derived specimens are valuable cell models to predict therapeutic effectiveness of existing (and novel) modulators in a precision medicine approach.
Collapse
Affiliation(s)
| | | | - Guido Veit
- Department of Physiology, McGill University, Montréal, Canada
| |
Collapse
|
13
|
Synergistic effects of curcumin and its analogs with other bioactive compounds: A comprehensive review. Eur J Med Chem 2020; 210:113072. [PMID: 33310285 DOI: 10.1016/j.ejmech.2020.113072] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 02/06/2023]
Abstract
Curcumin, as a natural compound, extracted from plant Curcuma longa, is abundant in the Indian subcontinent and Southeast Asia, and have been used in a diverse array of pharmacological activities. Although curcumin has some limitations like low stability and low bioavailability, it has been proved that this compound induced apoptosis signaling and is also known to block cell proliferation signaling pathway. Recently, extensive research has been carried out to study the application of curcumin as a health improving agent, and devise new methods to overcome to the curcumin limitations and incorporate this functional ingredient into foods. Combinational chemotherapy is one of the basic strategies is using for 60 years for the treatment of various health problems like cancer, malaria, inflammation, diabetes and etc. Molecular hybridization is another strategy to make multi-pharmacophore or conjugated drugs with more synergistic effect than the parent compounds. The aim of this review is to provide an overview of the pharmacological activity of curcumin and its analogs in combination with other bioactive compounds and cover more recent reports of anti-cancer, anti-malarial, and anti-inflammatory activities of these analogs.
Collapse
|
14
|
Burghard MM, Berkers GG, Ghijsen SS, Hollander-Kraaijeveld FF, de Winter-de Groot KK, van der Ent CK, Heijerman HH, Takken TT, Hulzebos HE. Long-term effects of ivacaftor on nonpulmonary outcomes in individuals with cystic fibrosis, heterozygous for a S1251N mutation. Pediatr Pulmonol 2020; 55:1400-1405. [PMID: 32233113 PMCID: PMC7317816 DOI: 10.1002/ppul.24745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/17/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVES To describe the long-term effects of ivacaftor (Kalydeco®) in individuals with cystic fibrosis (CF) on body mass index (BMI), body composition (BC), pulmonary function (PF), resting energy expenditure (REE), and exercise capacity (EC) after ≥12 months of treatment. WORKING HYPOTHESIS BMI, lean and fat mass, PF, and EC will increase and REE will decrease after treatment. STUDY DESIGN Observational study. METHODOLOGY Seven individuals with CF (mean age 15.4 ± 5.8 years) heterozygous for S1251N mutation, starting with ivacaftor, were included. Paired t tests were performed to assess the effects of ivacaftor. Height and weight were used to calculate BMI and BMI Z-scores. Dual-energy X-ray absorptiometry was used to assess BC. Spirometry and body plethysmography were used to assess PF. Indirect calorimetry was used to measure REE and cardiopulmonary exercise testing (CPET) was used to measure oxygen uptake (VO2peak ), peak work rate (Wpeak ), and other CPET variables. RESULTS After a median of 15 (interquartile range: 13-16) months of treatment, BMI increased significantly (P = .03), but not BMI Z-score (P = .23) or BC. Significant improvements were found for several PF variables, especially measures of hyperinflation (P = .02). Absolute VO2peak (P = .01), VO2peak related to body weight (P = .00), and oxygen cost of work (P = .01) decreased. Absolute Wpeak (P = .59) and Wpeak related to body weight (P = .31) remained stable. CONCLUSIONS The results showed that long-term treatment of ivacaftor is associated with improvement of BMI and PF, but not of BC and REE. Oxygen uptake reduced after treatment, which may be due to a decrease in work of breathing.
Collapse
Affiliation(s)
- M Marcella Burghard
- Department of Pediatrics, Child Development and Exercise Center, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Pediatric Pulmonology and Division of Heart and Lung, Cystic Fibrosis Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| | - G Gitte Berkers
- Department of Pediatric Pulmonology and Division of Heart and Lung, Cystic Fibrosis Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - S Sophie Ghijsen
- Department of Pediatrics, Child Development and Exercise Center, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Fm Francis Hollander-Kraaijeveld
- Department of Pediatric Pulmonology and Division of Heart and Lung, Cystic Fibrosis Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands.,Division of Internal Medicine and Dermatology, Department of Dietetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Km Karin de Winter-de Groot
- Department of Pediatric Pulmonology and Division of Heart and Lung, Cystic Fibrosis Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ck Kors van der Ent
- Department of Pediatric Pulmonology and Division of Heart and Lung, Cystic Fibrosis Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hgm Harry Heijerman
- Department of Pediatric Pulmonology and Division of Heart and Lung, Cystic Fibrosis Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands.,Division of Heart and Lung, Department of Pulmonology, Cystic Fibrosis Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| | - T Tim Takken
- Department of Pediatrics, Child Development and Exercise Center, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hj Erik Hulzebos
- Department of Pediatrics, Child Development and Exercise Center, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Pediatric Pulmonology and Division of Heart and Lung, Cystic Fibrosis Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
15
|
Berkers G, van der Meer R, van Mourik P, Vonk AM, Kruisselbrink E, Suen SW, Heijerman HG, Majoor CJ, Koppelman GH, Roukema J, Janssens HM, de Rijke YB, Kemper EM, Beekman JM, van der Ent CK, de Jonge HR. Clinical effects of the three CFTR potentiator treatments curcumin, genistein and ivacaftor in patients with the CFTR-S1251N gating mutation. J Cyst Fibros 2020; 19:955-961. [PMID: 32499204 DOI: 10.1016/j.jcf.2020.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND The natural food supplements curcumin and genistein, and the drug ivacaftor were found effective as CFTR potentiators in the organoids of individuals carrying a S1251N gating mutation, possibly in a synergistic fashion. Based on these in vitro findings, we evaluated the clinical efficacy of a treatment with curcumin, genistein and ivacaftor, in different combinations. METHODS In three multi-center trials people with CF carrying the S1251N mutation were treated for 8 weeks with curcumin+genistein, ivacaftor and ivacaftor+genistein. We evaluated change in lung function, sweat chloride concentration, CFQ-r, BMI and fecal elastase to determine the clinical effect. We evaluated the pharmacokinetic properties of the compounds by evaluating the concentration in plasma collected after treatment and the effect of the same plasma on the intestinal organoids. RESULTS A clear clinical effect of treatment with ivacaftor was observed, evidenced by a significant improvement in clinical parameters. In contrast we observed no clear clinical effect of curcumin and/or genistein, except for a small but significant reduction in sweat chloride and airway resistance. Plasma concentrations of the food supplements were low, as was the response of the organoids to this plasma. CONCLUSIONS We observed a clear clinical effect of treatment with ivacaftor, which is in line with the high responsiveness of the intestinal organoids to this drug. No clear clinical effect was observed of the treatment with curcumin and/or genistein, the low plasma concentration of these compounds emphasizes that pharmacokinetic properties of a compound have to be considered when in vitro experiments are performed.
Collapse
Affiliation(s)
- Gitte Berkers
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Renske van der Meer
- Department of Pulmonology, Haga Teaching Hospital, The Hague, the Netherlands
| | - Peter van Mourik
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Annelotte M Vonk
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Evelien Kruisselbrink
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Sylvia Wf Suen
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Harry Gm Heijerman
- Department of Pulmonology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Christof J Majoor
- Department of Respiratory Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Gerard H Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergology and GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Groningen, the Netherlands
| | - Jolt Roukema
- Department of Pediatric Pulmonology, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Hettie M Janssens
- Department of Pediatrics, division of Respiratory Medicine and Allergology, Erasmus Medical Center/Sophia Children's Hospital, University Hospital Rotterdam, the Netherlands
| | - Yolanda B de Rijke
- Department of Clinical Chemistry, Erasmus Medical Center, University Hospital Rotterdam, the Netherlands
| | - E Marleen Kemper
- Department of Pharmacy, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Jeffrey M Beekman
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Cornelis K van der Ent
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| | - Hugo R de Jonge
- Department of Gastroenterology and Hepatology, Erasmus Medical Center, University Hospital Rotterdam, the Netherlands
| |
Collapse
|
16
|
Strub MD, McCray, Jr. PB. Transcriptomic and Proteostasis Networks of CFTR and the Development of Small Molecule Modulators for the Treatment of Cystic Fibrosis Lung Disease. Genes (Basel) 2020; 11:genes11050546. [PMID: 32414011 PMCID: PMC7288469 DOI: 10.3390/genes11050546] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/18/2022] Open
Abstract
Cystic fibrosis (CF) is a lethal autosomal recessive disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. The diversity of mutations and the multiple ways by which the protein is affected present challenges for therapeutic development. The observation that the Phe508del-CFTR mutant protein is temperature sensitive provided proof of principle that mutant CFTR could escape proteosomal degradation and retain partial function. Several specific protein interactors and quality control checkpoints encountered by CFTR during its proteostasis have been investigated for therapeutic purposes, but remain incompletely understood. Furthermore, pharmacological manipulation of many CFTR interactors has not been thoroughly investigated for the rescue of Phe508del-CFTR. However, high-throughput screening technologies helped identify several small molecule modulators that rescue CFTR from proteosomal degradation and restore partial function to the protein. Here, we discuss the current state of CFTR transcriptomic and biogenesis research and small molecule therapy development. We also review recent progress in CFTR proteostasis modulators and discuss how such treatments could complement current FDA-approved small molecules.
Collapse
Affiliation(s)
- Matthew D. Strub
- Interdisciplinary Graduate Program in Genetics, The University of Iowa, Iowa City, IA 52242, USA;
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA 52242, USA
| | - Paul B. McCray, Jr.
- Interdisciplinary Graduate Program in Genetics, The University of Iowa, Iowa City, IA 52242, USA;
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA 52242, USA
- Correspondence: ; Tel.: +1-(319)-335-6844
| |
Collapse
|
17
|
Rectal Organoids Enable Personalized Treatment of Cystic Fibrosis. Cell Rep 2020; 26:1701-1708.e3. [PMID: 30759382 DOI: 10.1016/j.celrep.2019.01.068] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/08/2018] [Accepted: 01/17/2019] [Indexed: 12/16/2022] Open
Abstract
In vitro drug tests using patient-derived stem cell cultures offer opportunities to individually select efficacious treatments. Here, we provide a study that demonstrates that in vitro drug responses in rectal organoids from individual patients with cystic fibrosis (CF) correlate with changes in two in vivo therapeutic endpoints. We measured individual in vitro efficaciousness using a functional assay in rectum-derived organoids based on forskolin-induced swelling and studied the correlation with in vivo effects. The in vitro organoid responses correlated with both change in pulmonary response and change in sweat chloride concentration. Receiver operating characteristic curves indicated good-to-excellent accuracy of the organoid-based test for defining clinical responses. This study indicates that an in vitro assay using stem cell cultures can prospectively select efficacious treatments for patients and suggests that biobanked stem cell resources can be used to tailor individual treatments in a cost-effective and patient-friendly manner.
Collapse
|
18
|
Mutation-specific dual potentiators maximize rescue of CFTR gating mutants. J Cyst Fibros 2019; 19:236-244. [PMID: 31678009 DOI: 10.1016/j.jcf.2019.10.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND The potentiator ivacaftor (VX-770) has been approved for therapy of 38 cystic fibrosis (CF) mutations (∼10% of the patient population) associated with a gating defect of the CF transmembrane conductance regulator (CFTR). Despite the success of VX-770 treatment of patients carrying at least one allele of the most common gating mutation G551D-CFTR, some lung function decline and P. aeruginosa colonization persist. This study aims at identifying potentiator combinations that can considerably enhance the limited channel activity of a panel of CFTR gating mutants over monotherapy. METHODS The functional response of 13 CFTR mutants to single potentiators or systematic potentiator combinations was determined in the human bronchial epithelial cell line CFBE41o- and a subset of them was confirmed in primary human nasal epithelia (HNE). RESULTS In six out of thirteen CFTR missense mutants the fractional plasma membrane (PM) activity, a surrogate measure of CFTR channel gating, reached only ∼10-50% of WT channel activity upon VX-770 treatment, indicating incomplete gating correction. Combinatorial potentiator profiling and cluster analysis of mutant responses to 24 diverse investigational potentiators identified several compound pairs that improved the gating activity of R352Q-, S549R-, S549N-, G551D-, and G1244E-CFTR to ∼70-120% of the WT. Similarly, the potentiator combinations were able to confer WT-like function to G551D-CFTR in patient-derived human nasal epithelia. CONCLUSION This study suggests that half of CF patients with missense mutations approved for VX-770 administration, could benefit from the development of dual potentiator therapy.
Collapse
|
19
|
van Mourik P, Beekman JM, van der Ent CK. Intestinal organoids to model cystic fibrosis. Eur Respir J 2019; 54:13993003.02379-2018. [PMID: 31023844 DOI: 10.1183/13993003.02379-2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 04/07/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Peter van Mourik
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jeffrey M Beekman
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Cornelis K van der Ent
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
20
|
Dzobo K, Rowe A, Senthebane DA, AlMazyadi MAM, Patten V, Parker MI. Three-Dimensional Organoids in Cancer Research: The Search for the Holy Grail of Preclinical Cancer Modeling. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 22:733-748. [PMID: 30571609 DOI: 10.1089/omi.2018.0172] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Most solid tumors become therapy resistant and will relapse, with no durable treatment option available. One major impediment to our understanding of cancer biology and finding innovative approaches to cancer treatment stems from the lack of better preclinical tumor models that address and explain tumor heterogeneity and person-to-person differences in therapeutic and toxic responses. Past cancer research has been driven by inadequate in vitro assays utilizing two-dimensional monolayers of cancer cells and animal models. Additionally, animal models do not truly mimic the original human tumor, are time consuming, and usually costly. New preclinical models are needed for innovation in cancer translational research. Hence, it is time to welcome the three-dimensional (3D) organoids: self-organizing cells grown in 3D culture systems mimicking the parent tissues from which the primary cells originate. The 3D organoids offer deeper insights into the crucial cellular processes in tissue and organ formation and pathological processes. Generation of near-perfect physiological microenvironments allow 3D organoids to couple with gene editing tools, such as the clustered regularly interspersed short palindromic repeat (CRISPR)/CRISPR-associated 9 and the transcription activator-like effector nucleases to model human diseases, offering distinct advantages over current models. We explain in this expert review that through recapitulating patients' normal and tumor tissues, organoid technology can markedly advance personalized medicine and help reveal once hidden aspects of cancers. The use of defined tissue- or organ-specific matrices, among other factors, will likely allow organoid technology to realize its potential in innovating many fields of life sciences.
Collapse
Affiliation(s)
- Kevin Dzobo
- 1 International Center for Genetic Engineering and Biotechnology (ICGEB) , Cape Town Component, Cape Town, South Africa .,2 Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town , Cape Town, South Africa
| | - Arielle Rowe
- 1 International Center for Genetic Engineering and Biotechnology (ICGEB) , Cape Town Component, Cape Town, South Africa
| | - Dimakatso A Senthebane
- 1 International Center for Genetic Engineering and Biotechnology (ICGEB) , Cape Town Component, Cape Town, South Africa .,2 Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town , Cape Town, South Africa
| | - Mousa A M AlMazyadi
- 3 Al-Ahsa College of Medicine, King Faisal University , Al-Ahsa, Kingdom of Saudi Arabia
| | - Victoria Patten
- 2 Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town , Cape Town, South Africa
| | - M Iqbal Parker
- 2 Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town , Cape Town, South Africa
| |
Collapse
|
21
|
Tubuloids derived from human adult kidney and urine for personalized disease modeling. Nat Biotechnol 2019; 37:303-313. [PMID: 30833775 DOI: 10.1038/s41587-019-0048-8] [Citation(s) in RCA: 255] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 01/23/2019] [Indexed: 01/10/2023]
Abstract
Adult stem cell-derived organoids are three-dimensional epithelial structures that recapitulate fundamental aspects of their organ of origin. We describe conditions for the long-term growth of primary kidney tubular epithelial organoids, or 'tubuloids'. The cultures are established from human and mouse kidney tissue and can be expanded for at least 20 passages (>6 months) while retaining a normal number of chromosomes. In addition, cultures can be established from human urine. Human tubuloids represent proximal as well as distal nephron segments, as evidenced by gene expression, immunofluorescence and tubular functional analyses. We apply tubuloids to model infectious, malignant and hereditary kidney diseases in a personalized fashion. BK virus infection of tubuloids recapitulates in vivo phenomena. Tubuloids are established from Wilms tumors. Kidney tubuloids derived from the urine of a subject with cystic fibrosis allow ex vivo assessment of treatment efficacy. Finally, tubuloids cultured on microfluidic organ-on-a-chip plates adopt a tubular conformation and display active (trans-)epithelial transport function.
Collapse
|
22
|
Conese M, Beccia E, Carbone A, Castellani S, Di Gioia S, Corti F, Angiolillo A, Colombo C. The role of stem cells in cystic fibrosis disease modeling and drug discovery. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1549480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Massimo Conese
- Laboratory of Experimental and Regenerative Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Elisa Beccia
- Laboratory of Experimental and Regenerative Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Annalucia Carbone
- Division of Internal Medicine and Chronobiology Unit, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo (FG), Italy
| | - Stefano Castellani
- Laboratory of Experimental and Regenerative Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Sante Di Gioia
- Laboratory of Experimental and Regenerative Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Fabiola Corti
- Department of Pathophysiology and Transplantation, Cystic Fibrosis Center, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Antonella Angiolillo
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Carla Colombo
- Department of Pathophysiology and Transplantation, Cystic Fibrosis Center, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| |
Collapse
|
23
|
Lord R, Fairbourn N, Mylavarapu C, Dbeis A, Bowman T, Chandrashekar A, Banayat T, Hodges CA, Al-Nakkash L. Consuming Genistein Improves Survival Rates in the Absence of Laxative in ΔF508-CF Female Mice. Nutrients 2018; 10:E1418. [PMID: 30282922 PMCID: PMC6213472 DOI: 10.3390/nu10101418] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/11/2018] [Accepted: 09/26/2018] [Indexed: 11/16/2022] Open
Abstract
Genistein is a naturally occurring isoflavone found in soy. Genistein has been shown to increase the open probability of the most common cystic fibrosis (CF) disease-associated mutation, ∆F508-CFTR. Mice homozygous for the ∆F508 mutation are characterized with severe intestinal disease and require constant laxative treatment for survival. This pathology mimics the intestinal obstruction (meconium ileus) seen in some cystic fibrosis patients. This study tested whether dietary supplementation with genistein would reduce the dependence of the ∆F508 CF mouse model on laxatives for survival, thereby improving mortality rates. At weaning (21 days), homozygous ∆F508 mice were maintained on one of three diet regimens for a period of up to 65 days: normal diet, normal diet plus colyte, or genistein diet. Survival rates for males were as follows: standard diet (38%, n = 21), standard diet plus colyte (83%, n = 42) and genistein diet (60%, n = 15). Survival rates for females were as follows: standard diet (47%, n = 19), standard diet plus colyte (71%, n = 38), and genistein diet (87%, n = 15). Average weight of male mice fed genistein diet increased by ~2.5 g more (p = 0.006) compared to those with colyte treatment. Genistein diet did not change final body weight of females. Expression of intestinal SGLT-1 increased 2-fold (p = 0.0005) with genistein diet in females (no change in males, p = 0.722). Expression of GLUT2 and GLUT5 was comparable between all diet groups. Genistein diet reduced the number of goblet cells per micrometer of crypt depth in female (p = 0.0483), yet was without effect in males (p = 0.7267). The results from this study demonstrate that supplementation of diet with genistein for ~45 days increases the survival rate of female ∆F508-CF mice (precluding the requirement for laxatives), and genistein only improves weight gain in males.
Collapse
Affiliation(s)
- Ryan Lord
- Department of Physiology, AZCOM, Midwestern University, 19555 N. 59th Avenue, Glendale, AZ 85308, USA.
| | - Nathan Fairbourn
- Department of Physiology, AZCOM, Midwestern University, 19555 N. 59th Avenue, Glendale, AZ 85308, USA.
| | - Charisma Mylavarapu
- Department of Physiology, AZCOM, Midwestern University, 19555 N. 59th Avenue, Glendale, AZ 85308, USA.
| | - Ammer Dbeis
- Department of Physiology, AZCOM, Midwestern University, 19555 N. 59th Avenue, Glendale, AZ 85308, USA.
| | - Taylor Bowman
- Department of Physiology, AZCOM, Midwestern University, 19555 N. 59th Avenue, Glendale, AZ 85308, USA.
| | - Archana Chandrashekar
- Department of Physiology, AZCOM, Midwestern University, 19555 N. 59th Avenue, Glendale, AZ 85308, USA.
| | - Tatum Banayat
- Department of Physiology, AZCOM, Midwestern University, 19555 N. 59th Avenue, Glendale, AZ 85308, USA.
| | - Craig A Hodges
- Department of Genetics & Genome Sciences & Department of Pediatrics, Case Western Reserve University, 10900 Euclid Avenue, 830 BRB, Cleveland, OH 44106, USA.
| | - Layla Al-Nakkash
- Department of Physiology, AZCOM, Midwestern University, 19555 N. 59th Avenue, Glendale, AZ 85308, USA.
| |
Collapse
|
24
|
Matos AM, Gomes-Duarte A, Faria M, Barros P, Jordan P, Amaral MD, Matos P. Prolonged co-treatment with HGF sustains epithelial integrity and improves pharmacological rescue of Phe508del-CFTR. Sci Rep 2018; 8:13026. [PMID: 30158635 PMCID: PMC6115363 DOI: 10.1038/s41598-018-31514-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/20/2018] [Indexed: 02/06/2023] Open
Abstract
Cystic fibrosis (CF), the most common inherited disease in Caucasians, is caused by mutations in the CFTR chloride channel, the most frequent of which is Phe508del. Phe508del causes not only intracellular retention and premature degradation of the mutant CFTR protein, but also defective channel gating and decreased half-life when experimentally rescued to the plasma membrane (PM). Despite recent successes in the functional rescue of several CFTR mutations with small-molecule drugs, the folding-corrector/gating-potentiator drug combinations approved for Phe508del-CFTR homozygous patients have shown only modest benefit. Several factors have been shown to contribute to this outcome, including an unexpected intensification of corrector-rescued Phe508del-CFTR PM instability after persistent co-treatment with potentiator drugs. We have previously shown that acute co-treatment with hepatocyte growth factor (HGF) can significantly enhance the chemical correction of Phe508del-CFTR. HGF coaxes the anchoring of rescued channels to the actin cytoskeleton via induction of RAC1 GTPase signalling. Here, we demonstrate that a prolonged, 15-day HGF treatment also significantly improves the functional rescue of Phe508del-CFTR by the VX-809 corrector/VX-770 potentiator combination, in polarized bronchial epithelial monolayers. Importantly, we found that HGF treatment also prevented VX-770-mediated destabilization of rescued Phe508del-CFTR and enabled further potentiation of the rescued channels. Most strikingly, prolonged HGF treatment prevented previously unrecognized epithelial dedifferentiation effects of sustained exposure to VX-809. This was observed in epithelium-like monolayers from both lung and intestinal origin, representing the two systems most affected by adverse symptoms in patients treated with VX-809 or the VX-809/VX-770 combination. Taken together, our findings strongly suggest that co-administration of HGF with corrector/potentiator drugs could be beneficial for CF patients.
Collapse
Affiliation(s)
- Ana M Matos
- Department of Human Genetics, National Health Institute 'Dr. Ricardo Jorge', Av. Padre Cruz, 1649-016, Lisboa, Portugal.,University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande - C8, 1749-016, Lisboa, Portugal
| | - Andreia Gomes-Duarte
- Department of Human Genetics, National Health Institute 'Dr. Ricardo Jorge', Av. Padre Cruz, 1649-016, Lisboa, Portugal.,University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande - C8, 1749-016, Lisboa, Portugal
| | - Márcia Faria
- Department of Human Genetics, National Health Institute 'Dr. Ricardo Jorge', Av. Padre Cruz, 1649-016, Lisboa, Portugal.,University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande - C8, 1749-016, Lisboa, Portugal.,Serviço de Endocrinologia, Diabetes e Metabolismo, do CHLN - Hospital Santa Maria, Lisboa, Portugal
| | - Patrícia Barros
- Department of Human Genetics, National Health Institute 'Dr. Ricardo Jorge', Av. Padre Cruz, 1649-016, Lisboa, Portugal.,University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande - C8, 1749-016, Lisboa, Portugal
| | - Peter Jordan
- Department of Human Genetics, National Health Institute 'Dr. Ricardo Jorge', Av. Padre Cruz, 1649-016, Lisboa, Portugal.,University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande - C8, 1749-016, Lisboa, Portugal
| | - Margarida D Amaral
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande - C8, 1749-016, Lisboa, Portugal
| | - Paulo Matos
- Department of Human Genetics, National Health Institute 'Dr. Ricardo Jorge', Av. Padre Cruz, 1649-016, Lisboa, Portugal. .,University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande - C8, 1749-016, Lisboa, Portugal.
| |
Collapse
|
25
|
Phuan PW, Son JH, Tan JA, Li C, Musante I, Zlock L, Nielson DW, Finkbeiner WE, Kurth MJ, Galietta LJ, Haggie PM, Verkman AS. Combination potentiator ('co-potentiator') therapy for CF caused by CFTR mutants, including N1303K, that are poorly responsive to single potentiators. J Cyst Fibros 2018; 17:595-606. [PMID: 29903467 DOI: 10.1016/j.jcf.2018.05.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/11/2018] [Accepted: 05/15/2018] [Indexed: 10/14/2022]
Abstract
BACKGROUND Current modulator therapies for some cystic fibrosis-causing CFTR mutants, including N1303K, have limited efficacy. We provide evidence here to support combination potentiator (co-potentiator) therapy for mutant CFTRs that are poorly responsive to single potentiators. METHODS Functional synergy screens done on N1303K and W1282X CFTR, in which small molecules were tested with VX-770, identified arylsulfonamide-pyrrolopyridine, phenoxy-benzimidazole and flavone co-potentiators. RESULTS A previously identified arylsulfonamide-pyrrolopyridine co-potentiator (ASP-11) added with VX-770 increased N1303K-CFTR current 7-fold more than VX-770 alone. ASP-11 increased by ~65% of the current of G551D-CFTR compared to VX-770, was additive with VX-770 on F508del-CFTR, and activated wild-type CFTR in the absence of a cAMP agonist. ASP-11 efficacy with VX-770 was demonstrated in primary CF human airway cell cultures having N1303K, W1282X and G551D CFTR mutations. Structure-activity studies on 11 synthesized ASP-11 analogs produced compounds with EC50 down to 0.5 μM. CONCLUSIONS These studies support combination potentiator therapy for CF caused by some CFTR mutations that are not effectively treated by single potentiators.
Collapse
Affiliation(s)
- Puay-Wah Phuan
- Department of Medicine, University of California, San Francisco, CA 94143-0521, USA; Department of Physiology, University of California, San Francisco, CA 94143-0521, USA.
| | - Jung-Ho Son
- Department of Chemistry, University of California, Davis, CA 95616-5270, USA
| | - Joseph-Anthony Tan
- Department of Medicine, University of California, San Francisco, CA 94143-0521, USA; Department of Physiology, University of California, San Francisco, CA 94143-0521, USA
| | - Clarabella Li
- Department of Chemistry, University of California, Davis, CA 95616-5270, USA
| | - Ilaria Musante
- Telethon Institute for Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Lorna Zlock
- Department of Pathology University of California, San Francisco, CA 94143-0521, USA
| | - Dennis W Nielson
- Department of Pediatrics, University of California, San Francisco, CA 94143-0521, USA
| | - Walter E Finkbeiner
- Department of Pathology University of California, San Francisco, CA 94143-0521, USA
| | - Mark J Kurth
- Department of Chemistry, University of California, Davis, CA 95616-5270, USA
| | - Luis J Galietta
- Telethon Institute for Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Peter M Haggie
- Department of Medicine, University of California, San Francisco, CA 94143-0521, USA; Department of Physiology, University of California, San Francisco, CA 94143-0521, USA
| | - Alan S Verkman
- Department of Medicine, University of California, San Francisco, CA 94143-0521, USA; Department of Physiology, University of California, San Francisco, CA 94143-0521, USA
| |
Collapse
|
26
|
Faber SC, McCullough SD. Through the Looking Glass: In Vitro Models for Inhalation Toxicology and Interindividual Variability in the Airway. ACTA ACUST UNITED AC 2018; 4:115-128. [PMID: 31380467 DOI: 10.1089/aivt.2018.0002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
With 7 million deaths reported annually from air pollution alone, it is evident that adverse effects of inhaled toxicant exposures remain a major public health concern in the 21st century. Assessment and characterization of the impacts of air pollutants on human health stems from epidemiological and clinical studies, which have linked both outdoor and indoor air contaminant exposure to adverse pulmonary and cardiovascular health outcomes. Studies in animal models support epidemiological findings and have been critical in identifying systemic effects of environmental chemicals on cognitive abilities, liver disease, and metabolic dysfunction following inhalation exposure. Likewise, traditional monoculture systems have aided in identifying biomarkers of susceptibility to inhaled toxicants and served as a screening platform for safety assessment of pulmonary toxicants. Despite their contributions, in vivo and classic in vitro models have not been able to accurately represent the heterogeneity of the human population and account for interindividual variability in response to inhaled toxicants and susceptibility to the adverse health effects. Development of new technologies that can investigate genetic predisposition, are cost and time efficient, and are ethically sound, will enhance elucidation of mechanisms of inhalation toxicity, and aid in the development of novel pharmaceuticals and/or safety evaluation. This review will describe the classic and novel cell-based inhalation toxicity models and how these emerging technologies can be incorporated into regulatory or nonregulatory testing to address interindividual variability and improve overall human health.
Collapse
Affiliation(s)
- Samantha C Faber
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Shaun D McCullough
- National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, North Carolina
| |
Collapse
|
27
|
Boers SN, de Winter-de Groot KM, Noordhoek J, Gulmans V, van der Ent CK, van Delden JJM, Bredenoord AL. Mini-guts in a dish: Perspectives of adult Cystic Fibrosis (CF) patients and parents of young CF patients on organoid technology. J Cyst Fibros 2018. [PMID: 29523474 DOI: 10.1016/j.jcf.2018.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Organoid technology enables the cultivation of human tissues in a dish. Its precision medicine potential could revolutionize the Cystic Fibrosis (CF) field. We provide a first thematic exploration of the patient perspective on organoid technology to set the further research agenda, which is necessary for responsible development of this ethically challenging technology. METHODS 23 semi-structured qualitative interviews with 14 Dutch adult CF patients and 12 parents of young CF patients to examine their experiences, opinions, and attitudes regarding organoid technology. RESULTS Four themes emerged: (1) Respondents express a close as well as a distant relationship to organoids; (2) the open-endedness of organoid technology sparks hopes and concerns, (3) commercial use evokes cautiousness. (4) Respondents mention the importance of sound consent procedures, long-term patient engagement, responsible stewardship, and stringent conditions for commercial use. CONCLUSIONS The precision medicine potential of organoid technology can only be realized if the patient perspective is taken adequately into account.
Collapse
Affiliation(s)
- Sarah N Boers
- Julius Center for Health Sciences and Primary Care, Department of Medical Humanities, University Medical Center Utrecht, Internal post Str. 6.131, P.O. Box 85500, 3508 GA Utrecht, The Netherlands.
| | - Karin M de Winter-de Groot
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Internal post KH.01.419.0, P.O. Box 85090, 3508 AB Utrecht, The Netherlands.
| | - Jacquelien Noordhoek
- Dutch Cystic Fibrosis Foundation (NCFS), Dr. A. Schweitzerweg 3A, 3744 MG Baarn, The Netherlands.
| | - Vincent Gulmans
- Dutch Cystic Fibrosis Foundation (NCFS), Dr. A. Schweitzerweg 3A, 3744 MG Baarn, The Netherlands.
| | - Cornelis K van der Ent
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Internal post KH.01.419.0, P.O. Box 85090, 3508 AB Utrecht, The Netherlands.
| | - Johannes J M van Delden
- Julius Center for Health Sciences and Primary Care, Department of Medical Humanities, University Medical Center Utrecht, Internal post Str. 6.131, P.O. Box 85500, 3508 GA Utrecht, The Netherlands.
| | - Annelien L Bredenoord
- Julius Center for Health Sciences and Primary Care, Department of Medical Humanities, University Medical Center Utrecht, Internal post Str. 6.131, P.O. Box 85500, 3508 GA Utrecht, The Netherlands.
| |
Collapse
|
28
|
Zak SM, Clancy JP, Brewington JJ. CFTR functional assays in drug development. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1393413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Sara M. Zak
- Department of Pediatrics, Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, USA
| | - John P. Clancy
- Department of Pediatrics, Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, USA
| | - John J. Brewington
- Department of Pediatrics, Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, USA
| |
Collapse
|
29
|
Boj SF, Vonk AM, Statia M, Su J, Vries RRG, Beekman JM, Clevers H. Forskolin-induced Swelling in Intestinal Organoids: An In Vitro Assay for Assessing Drug Response in Cystic Fibrosis Patients. J Vis Exp 2017. [PMID: 28287550 DOI: 10.3791/55159] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Recently-developed cystic fibrosis transmembrane conductance regulator (CFTR)-modulating drugs correct surface expression and/or function of the mutant CFTR channel in subjects with cystic fibrosis (CF). Identification of subjects that may benefit from these drugs is challenging because of the extensive heterogeneity of CFTR mutations, as well as other unknown factors that contribute to individual drug efficacy. Here, we describe a simple and relatively rapid assay for measuring individual CFTR function and response to CFTR modulators in vitro. Three dimensional (3D) epithelial organoids are grown from rectal biopsies in standard organoid medium. Once established, the organoids can be bio-banked for future analysis. For the assay, 30-80 organoids are seeded in 96-well plates in basement membrane matrix and are then exposed to drugs. One day later, the organoids are stained with calcein green, and forskolin-induced swelling is monitored by confocal live cell microscopy at 37 °C. Forskolin-induced swelling is fully CFTR-dependent and is sufficiently sensitive and precise to allow for discrimination between the drug responses of individuals with different and even identical CFTR mutations. In vitro swell responses correlate with the clinical response to therapy. This assay provides a cost-effective approach for the identification of drug-responsive individuals, independent of their CFTR mutations. It may also be instrumental in the development of future CFTR modulators.
Collapse
Affiliation(s)
| | - Annelotte M Vonk
- Department of Pediatric Pulmonology, Regenerative Medicine Centre Utrecht, Wilhelmina Children's Hospital, University Medical Centre Utrecht
| | | | - Jinyi Su
- Foundation Hubrecht Organoid Technology
| | | | - Jeffrey M Beekman
- Department of Pediatric Pulmonology, Regenerative Medicine Centre Utrecht, Wilhelmina Children's Hospital, University Medical Centre Utrecht;
| | - Hans Clevers
- Foundation Hubrecht Organoid Technology; Hubrecht Institute for Developmental Biology and Stem Cell Research, University Medical Centre Utrecht;
| |
Collapse
|
30
|
Castellani C, Assael BM. Cystic fibrosis: a clinical view. Cell Mol Life Sci 2017; 74:129-140. [PMID: 27709245 PMCID: PMC11107741 DOI: 10.1007/s00018-016-2393-9] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 02/07/2023]
Abstract
Cystic fibrosis (CF), a monogenic disease caused by mutations in the CFTR gene on chromosome 7, is complex and greatly variable in clinical expression. Airways, pancreas, male genital system, intestine, liver, bone, and kidney are involved. The lack of CFTR or its impaired function causes fat malabsorption and chronic pulmonary infections leading to bronchiectasis and progressive lung damage. Previously considered lethal in infancy and childhood, CF has now attained median survivals of 50 years of age, mainly thanks to the early diagnosis through neonatal screening, recognition of mild forms, and an aggressive therapeutic attitude. Classical treatment includes pancreatic enzyme replacement, respiratory physiotherapy, mucolitics, and aggressive antibiotic therapy. A significant proportion of patients with severe symptoms still requires lung or, less frequently, liver transplantation. The great number of mutations and their diverse effects on the CFTR protein account only partially for CF clinical variability, and modifier genes have a role in modulating the clinical expression of the disease. Despite the increasing understanding of CFTR functioning, several aspects of CF need still to be clarified, e.g., the worse outcome in females, the risk of malignancies, the pathophysiology, and best treatment of comorbidities, such as CF-related diabetes or CF-related bone disorder. Research is focusing on new drugs restoring CFTR function, some already available and with good clinical impact, others showing promising preliminary results that need to be confirmed in phase III clinical trials.
Collapse
Affiliation(s)
- Carlo Castellani
- Verona Cystic Fibrosis Centre, Piazzale Stefani 1, 37126, Verona, Italy.
| | - Baroukh M Assael
- Adult Cystic Fibrosis Center, Via Francesco Sforza, 20100, Milano, Italy
| |
Collapse
|
31
|
Hollins AJ, Parry L. Long-Term Culture of Intestinal Cell Progenitors: An Overview of Their Development, Application, and Associated Technologies. CURRENT PATHOBIOLOGY REPORTS 2016; 4:209-219. [PMID: 27882268 PMCID: PMC5101250 DOI: 10.1007/s40139-016-0119-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE OF REVIEW Long-term culture of adult progenitor cells in 3D is a recently emerging technology that inhabits the space between 2D cell lines and organ slice culture. RECENT FINDINGS Adaptations to defined media components in the wake of advances in ES and iPS cell culture has led to the identification of conditions that maintained intestinal cell progenitors in culture. These conditions retain cellular heterogeneity of the normal or tumour tissue, and the cultures have been shown to be genetically stable, such that substantial biobanks are being created from patient derived material. This coupled with advances in analytical tools has generated a field, characterized by the term "organoid culture", that has huge potential for advancing drug discovery, regenerative medicine, and furthering the understanding of fundamental intestinal biology. SUMMARY In this review, we describe the approaches available for the long-term culture of intestinal cells from normal and diseased tissue, the current challenges, and how the technology is likely to develop further.
Collapse
Affiliation(s)
| | - Lee Parry
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, CF24 4HQ UK
| |
Collapse
|
32
|
Beekman JM. Individualized medicine using intestinal responses to CFTR potentiators and correctors. Pediatr Pulmonol 2016; 51:S23-S34. [PMID: 27662101 DOI: 10.1002/ppul.23553] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/22/2016] [Accepted: 07/25/2016] [Indexed: 12/14/2022]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) modulators that target the mutant CFTR protein are being introduced for treatment of cystic fibrosis. Stratification of subjects based on their CFTR genotype has been proven essential to demonstrate clinical efficacy of these novel treatments. Despite this stratification, considerable heterogeneity between subjects receiving CFTR modulators is still observed which remains largely uncharacterized. The CFTR genotype, and additional genetic and environmental factors that impact either tissue-specific CFTR protein characteristics or the pharmacokinetic properties of treatments will likely determine the individual response to therapy. The development of intestinal biomarkers for CFTR modulators may help to better quantitate individual responses to treatment, with potential to optimize treatments for subjects with limited responses, and the selection of responsive subjects that currently do not receive treatments. Here, recent advances concerning the use of intestinal biomarkers for CFTR modulator treatments are reviewed, with a focus on biomarkers of CFTR function in ex vivo rectal biopsies and in vitro cultured primary intestinal organoids. Their potential value is considered in the context of the current unmet needs for better treatments for the majority of subjects with CF, and individual biomarkers that enable the prediction of long term therapeutic responses to CFTR modulators. Pediatr Pulmonol. 2016;51:S23-S34. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jeffrey M Beekman
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, Regenerative Medical Center, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
33
|
Lopes-Pacheco M. CFTR Modulators: Shedding Light on Precision Medicine for Cystic Fibrosis. Front Pharmacol 2016; 7:275. [PMID: 27656143 PMCID: PMC5011145 DOI: 10.3389/fphar.2016.00275] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/11/2016] [Indexed: 12/15/2022] Open
Abstract
Cystic fibrosis (CF) is the most common life-threatening monogenic disease afflicting Caucasian people. It affects the respiratory, gastrointestinal, glandular and reproductive systems. The major cause of morbidity and mortality in CF is the respiratory disorder caused by a vicious cycle of obstruction of the airways, inflammation and infection that leads to epithelial damage, tissue remodeling and end-stage lung disease. Over the past decades, life expectancy of CF patients has increased due to early diagnosis and improved treatments; however, these patients still present limited quality of life. Many attempts have been made to rescue CF transmembrane conductance regulator (CFTR) expression, function and stability, thereby overcoming the molecular basis of CF. Gene and protein variances caused by CFTR mutants lead to different CF phenotypes, which then require different treatments to quell the patients' debilitating symptoms. In order to seek better approaches to treat CF patients and maximize therapeutic effects, CFTR mutants have been stratified into six groups (although several of these mutations present pleiotropic defects). The research with CFTR modulators (read-through agents, correctors, potentiators, stabilizers and amplifiers) has achieved remarkable progress, and these drugs are translating into pharmaceuticals and personalized treatments for CF patients. This review summarizes the main molecular and clinical features of CF, emphasizes the latest clinical trials using CFTR modulators, sheds light on the molecular mechanisms underlying these new and emerging treatments, and discusses the major breakthroughs and challenges to treating all CF patients.
Collapse
Affiliation(s)
- Miquéias Lopes-Pacheco
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|