1
|
Soto MR, Lewis MM, Leal J, Pan Y, Mohanty RP, Veyssi A, Maier EY, Heiser BJ, Ghosh D. Discovery of peptides for ligand-mediated delivery of mRNA lipid nanoparticles to cystic fibrosis lung epithelia. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102375. [PMID: 39640013 PMCID: PMC11617931 DOI: 10.1016/j.omtn.2024.102375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 10/25/2024] [Indexed: 12/07/2024]
Abstract
For cystic fibrosis patients, a lung-targeted gene therapy would significantly alleviate pulmonary complications associated with morbidity and mortality. However, mucus in the airways and cell entry pose huge delivery barriers for local gene therapy. Here, we used phage display technology to select for and identify mucus- and cell-penetrating peptides against primary human bronchial epithelial cells from cystic fibrosis patients cultured at the air-liquid interface. At the air-liquid interface, primary human bronchial epithelial cells produce mucus and reflect cystic fibrosis disease pathology, making it a clinically relevant model. Using this model, we discovered a lead candidate peptide and incorporated it into lipid nanoparticles to deliver mRNA to primary human bronchial epithelia in vitro and mouse lungs in vivo. Compared to lipid nanoparticles without our peptide, peptide-lipid nanoparticles demonstrated up to 7.8-fold and 3.4-fold higher reporter luciferase bioactivity in vitro and in vivo, respectively. Importantly, these peptides facilitated higher specific uptake of nanoparticles into lung epithelia relative to other cell types. Since gene delivery to primary human bronchial epithelia is a significant challenge, we are encouraged by these results and anticipate that our peptide could be used to successfully deliver cystic fibrosis gene therapies in future work.
Collapse
Affiliation(s)
- Melissa R. Soto
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX 78712, USA
| | - Mae M. Lewis
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton St., Austin, TX 78712, USA
| | - Jasmim Leal
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX 78712, USA
| | - Yuting Pan
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX 78712, USA
| | - Rashmi P. Mohanty
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX 78712, USA
| | - Arian Veyssi
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton St., Austin, TX 78712, USA
| | - Esther Y. Maier
- College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX 78712, USA
| | - Brittany J. Heiser
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton St., Austin, TX 78712, USA
| | - Debadyuti Ghosh
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX 78712, USA
| |
Collapse
|
2
|
Centeio R, Cabrita I, Schreiber R, Kunzelmann K. TMEM16A/F support exocytosis but do not inhibit Notch-mediated goblet cell metaplasia of BCi-NS1.1 human airway epithelium. Front Physiol 2023; 14:1157704. [PMID: 37234411 PMCID: PMC10206426 DOI: 10.3389/fphys.2023.1157704] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Cl- channels such as the Ca2+ activated Cl- channel TMEM16A and the Cl- permeable phospholipid scramblase TMEM16F may affect the intracellular Cl- concentration ([Cl-]i), which could act as an intracellular signal. Loss of airway expression of TMEM16A induced a massive expansion of the secretory cell population like goblet and club cells, causing differentiation into a secretory airway epithelium. Knockout of the Ca2+-activated Cl- channel TMEM16A or the phospholipid scramblase TMEM16F leads to mucus accumulation in intestinal goblet cells and airway secretory cells. We show that both TMEM16A and TMEM16F support exocytosis and release of exocytic vesicles, respectively. Lack of TMEM16A/F expression therefore causes inhibition of mucus secretion and leads to goblet cell metaplasia. The human basal epithelial cell line BCi-NS1.1 forms a highly differentiated mucociliated airway epithelium when grown in PneumaCult™ media under an air liquid interface. The present data suggest that mucociliary differentiation requires activation of Notch signaling, but not the function of TMEM16A. Taken together, TMEM16A/F are important for exocytosis, mucus secretion and formation of extracellular vesicles (exosomes or ectosomes) but the present data do no not support a functional role of TMEM16A/F in Notch-mediated differentiation of BCi-NS1.1 cells towards a secretory epithelium.
Collapse
Affiliation(s)
- Raquel Centeio
- Physiological Institute, University of Regensburg, Regensburg, Germany
| | - Inês Cabrita
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Rainer Schreiber
- Physiological Institute, University of Regensburg, Regensburg, Germany
| | - Karl Kunzelmann
- Physiological Institute, University of Regensburg, Regensburg, Germany
| |
Collapse
|
3
|
Tsai M, Rayner RE, Chafin L, Farkas D, Adair J, Mishan C, Mallampalli RK, Kim SH, Cormet-Boyaka E, Londino JD. Influenza virus reduces ubiquitin E3 ligase MARCH10 expression to decrease ciliary beat frequency. Am J Physiol Lung Cell Mol Physiol 2023; 324:L666-L676. [PMID: 36852930 PMCID: PMC10151042 DOI: 10.1152/ajplung.00191.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 03/01/2023] Open
Abstract
Respiratory viruses, such as influenza, decrease airway cilia function and expression, which leads to reduced mucociliary clearance and inhibited overall immune defense. Ubiquitination is a posttranslational modification using E3 ligases, which plays a role in the assembly and disassembly of cilia. We examined the role of membrane-associated RING-CH (MARCH) family of E3 ligases during influenza infection and determined that MARCH10, specifically expressed in ciliated epithelial cells, is significantly decreased during influenza infection in mice, human lung epithelial cells, and human lung tissue. Cellular depletion of MARCH10 in differentiated human bronchial epithelial cells (HBECs) using CRISPR/Cas9 showed a decrease in ciliary beat frequency. Furthermore, MARCH10 cellular knockdown in combination with influenza infection selectively decreased immunoreactive levels of the ciliary component, dynein axonemal intermediate chain 1. Cellular overexpression of MARCH10 significantly decreased influenza hemagglutinin protein levels in the differentiated HBECs and knockdown of MARCH10 increased IL-1β cytokine expression, whereas overexpression had the reciprocal effect. These findings suggest that MARCH10 may have a protective role in airway pulmonary host defense and innate immunity during influenza infection.
Collapse
Affiliation(s)
- MuChun Tsai
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Rachael E Rayner
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, United States
| | - Lexie Chafin
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Daniela Farkas
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Jessica Adair
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Chelsea Mishan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Rama K Mallampalli
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Sun Hee Kim
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, United States
| | - Estelle Cormet-Boyaka
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, United States
| | - James D Londino
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States
| |
Collapse
|
4
|
Talukdar SN, Osan J, Ryan K, Grove B, Perley D, Kumar BD, Yang S, Dallman S, Hollingsworth L, Bailey KL, Mehedi M. RSV-induced expanded ciliated cells contribute to bronchial wall thickening. Virus Res 2023; 327:199060. [PMID: 36746339 PMCID: PMC10007709 DOI: 10.1016/j.virusres.2023.199060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/02/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023]
Abstract
Viral infection, particularly respiratory syncytial virus (RSV), causes inflammation in the bronchiolar airways (bronchial wall thickening, also known as bronchiolitis). This bronchial wall thickening is a common pathophysiological feature in RSV infection, but it causes more fatalities in infants than in children and adults. However, the molecular mechanism of RSV-induced bronchial wall thickening remains unknown, particularly in healthy adults. Using highly differentiated pseudostratified airway epithelium generated from primary human bronchial epithelial cells, we revealed RSV-infects primarily ciliated cells. The infected ciliated cells expanded substantially without compromising epithelial membrane integrity and ciliary functions and contributed to the increased height of the airway epithelium. Furthermore, we identified multiple factors, e.g., cytoskeletal (ARP2/3-complex-driven actin polymerization), immunological (IP10/CXCL10), and viral (NS2), contributing to RSV-induced uneven epithelium height increase in vitro. Thus, RSV-infected expanded cells contribute to a noncanonical inflammatory phenotype, which contributes to bronchial wall thickening in the airway, and is termed cytoskeletal inflammation.
Collapse
Affiliation(s)
- Sattya N Talukdar
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, United States
| | - Jaspreet Osan
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, United States
| | - Ken Ryan
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, United States
| | - Bryon Grove
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, United States
| | - Danielle Perley
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, United States
| | - Bony D Kumar
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, United States
| | - Shirley Yang
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, United States
| | - Sydney Dallman
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, United States
| | - Lauren Hollingsworth
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, United States
| | - Kristina L Bailey
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep and Allergy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Masfique Mehedi
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, United States.
| |
Collapse
|
5
|
Ramalho AS, Amato F, Gentzsch M. Patient-derived cell models for personalized medicine approaches in cystic fibrosis. J Cyst Fibros 2023; 22 Suppl 1:S32-S38. [PMID: 36529661 PMCID: PMC9992303 DOI: 10.1016/j.jcf.2022.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) channel that perturb anion transport across the epithelia of the airways and other organs. To treat cystic fibrosis, strategies that target mutant CFTR have been developed such as correctors that rescue folding and enhance transfer of CFTR to the apical membrane, and potentiators that increase CFTR channel activity. While there has been tremendous progress in development and approval of CFTR therapeutics for the most common (F508del) and several other CFTR mutations, around 10-20% of people with cystic fibrosis have rare mutations that are still without an effective treatment. In the current decade, there was an impressive evolution of patient-derived cell models for precision medicine. In cystic fibrosis, these models have played a crucial role in characterizing the molecular defects in CFTR mutants and identifying compounds that target these defects. Cells from nasal, bronchial, and rectal epithelia are most suitable to evaluate treatments that target CFTR. In vitro assays using cultures grown at an air-liquid interface or as organoids and spheroids allow the diagnosis of the CFTR defect and assessment of potential treatment strategies. An overview of currently established cell culture models and assays for personalized medicine approaches in cystic fibrosis will be provided in this review. These models allow theratyping of rare CFTR mutations with available modulator compounds to predict clinical efficacy. Besides evaluation of individual personalized responses to CFTR therapeutics, patient-derived culture models are valuable for testing responses to developmental treatments such as novel RNA- and DNA-based therapies.
Collapse
Affiliation(s)
- Anabela S Ramalho
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Felice Amato
- Department Of Molecular Medicine and Medical Biotechnologies and CE.IN.GE - Biotecnologie Avanzate, University of Naples Federico II, Naples, Italy
| | - Martina Gentzsch
- Marsico Lung Institute - Cystic Fibrosis Research Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
6
|
Fullen AR, Gutierrez-Ferman JL, Rayner RE, Kim SH, Chen P, Dubey P, Wozniak DJ, Peeples ME, Cormet-Boyaka E, Deora R. Architecture and matrix assembly determinants of Bordetella pertussis biofilms on primary human airway epithelium. PLoS Pathog 2023; 19:e1011193. [PMID: 36821596 PMCID: PMC9990917 DOI: 10.1371/journal.ppat.1011193] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 03/07/2023] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
Traditionally, whooping cough or pertussis caused by the obligate human pathogen Bordetella pertussis (Bp) is described as an acute disease with severe symptoms. However, many individuals who contract pertussis are either asymptomatic or show very mild symptoms and yet can serve as carriers and sources of bacterial transmission. Biofilms are an important survival mechanism for bacteria in human infections and disease. However, bacterial determinants that drive biofilm formation in humans are ill-defined. In the current study, we show that Bp infection of well-differentiated primary human bronchial epithelial cells leads to formation of bacterial aggregates, clusters, and highly structured biofilms which are colocalized with cilia. These findings mimic observations from pathological analyses of tissues from pertussis patients. Distinct arrangements (mono-, bi-, and tri-partite) of the polysaccharide Bps, extracellular DNA, and bacterial cells were visualized, suggesting complex heterogeneity in bacteria-matrix interactions. Analyses of mutant biofilms revealed positive roles in matrix production, cell cluster formation, and biofilm maturity for three critical Bp virulence factors: Bps, filamentous hemagglutinin, and adenylate cyclase toxin. Adherence assays identified Bps as a new Bp adhesin for primary human airway cells. Taken together, our results demonstrate the multi-factorial nature of the biofilm extracellular matrix and biofilm development process under conditions mimicking the human respiratory tract and highlight the importance of model systems resembling the natural host environment to investigate pathogenesis and potential therapeutic strategies.
Collapse
Affiliation(s)
- Audra R. Fullen
- The Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Jessica L. Gutierrez-Ferman
- The Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Rachael E. Rayner
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Sun Hee Kim
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Phylip Chen
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Purnima Dubey
- The Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Daniel J. Wozniak
- The Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
- Department of Microbiology, The Ohio State University, Columbus, Ohio, United States of America
| | - Mark E. Peeples
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
| | - Estelle Cormet-Boyaka
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Rajendar Deora
- The Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
- Department of Microbiology, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
7
|
Talukdar SN, Osan J, Ryan K, Grove B, Perley D, Kumar BD, Yang S, Dallman S, Hollingsworth L, Bailey KL, Mehedi M. RSV-induced Expanded Ciliated Cells Contribute to Bronchial Wall Thickening.. [DOI: 10.1101/2022.10.31.514471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractViral infection, particularly respiratory syncytial virus (RSV), causes inflammation in the bronchiolar airways (bronchial wall thickening, also known as bronchiolitis), reducing airflow through the bronchioles. This bronchial wall thickening is a common pathophysiological feature in RSV infection, but it causes more fatalities in infants than in children and adults. However, the molecular mechanism of RSV-induced bronchial wall thickening remains unknown, particularly in healthy adults. RSV infection in the airway epithelium of healthy adult bronchial cells reveals RSV-infects primarily ciliated cells. RSV infection expands the cell cytoskeleton substantially without compromising epithelial membrane integrity and ciliary functions. The RSV-induced actin cytoskeleton expansion increases ununiformly epithelial height, and cytoskeletal (actin polymerization), immunological (INF-L1, TNF-α, IP10/CXCL10), and viral (NS2) factors are probably responsible. Interestingly, RSV-infected cell cytoskeleton’s expansion resembles a noncanonical inflammatory phenotype, which contributes to bronchial wall thickening, and is termed cytoskeletal inflammation.Author SummaryRSV infects everyone. Although RSV-induced fatal pathophysiology (e.g., bronchiolitis) is more common in infants than adults, this bronchiolitis (or bronchial wall thickening) is common in the lower respiratory tract due to RSV infection in all ages. To determine the molecular mechanism of RSV-induced bronchial wall thickening, we infectedin vitroadult airway epithelium with RSV. We found that RSV-infection induced a substantial actin-cytoskeleton expansion, consequently increased the height of the epithelium. We identified actin polymerization, secretion of proinflammatory cytokines and chemokines, and viral proteins contribute to the RSV-induced cytoskeletal expansion. Our results suggest that RSV-induces a novel noncanonical epithelial host response termed cytoskeletal inflammation, which may contribute to bronchial wall thickening.
Collapse
|
8
|
Wellmerling J, Rayner RE, Chang SW, Kairis EL, Kim SH, Sharma A, Boyaka PN, Cormet-Boyaka E. Targeting the EGFR-ERK axis using the compatible solute ectoine to stabilize CFTR mutant F508del. FASEB J 2022; 36:e22270. [PMID: 35412656 PMCID: PMC9009300 DOI: 10.1096/fj.202100458rrr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 11/11/2022]
Abstract
Mutations in the CFTR gene lead to cystic fibrosis, a genetic disease associated with chronic infection and inflammation and ultimately respiratory failure. The most common CF-causing mutation is F508del and CFTR modulators (correctors and potentiators) are being developed to rescue its trafficking and activity defects. However, there are currently no modulators that stabilize the rescued membrane F508del-CFTR which is endocytosed and quickly degraded resulting in a shorter half-life than wild-type (WT). We previously reported that the extracellular signal-regulated kinase (ERK) MAPK pathway is involved in CFTR degradation upon cigarette smoke exposure. Interestingly, we found that ERK phosphorylation was increased in CF human bronchial epithelial (HBE) cells (CF-HBE41o- and primary CF-HBE) compared to non-CF controls, and this was likely due to signaling by the epidermal growth factor receptor (EGFR). EGFR can be activated by several ligands, and we provide evidence that amphiregulin (AREG) is important for activating this signaling axis in CF. The natural osmolyte ectoine stabilizes membrane macromolecules. We show that ectoine decreases ERK phosphorylation, increases the half-life of rescued CFTR, and increases CFTR-mediated chloride transport in combination with the CFTR corrector VX-661. Additionally, ectoine reduces production of AREG and interleukin-8 by CF primary bronchial epithelial cells. In conclusion, EGFR-ERK signaling negatively regulates CFTR and is hyperactive in CF, and targeting this axis with ectoine may prove beneficial for CF patients.
Collapse
Affiliation(s)
- Jack Wellmerling
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Rachael E Rayner
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Sheng-Wei Chang
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Elizabeth L Kairis
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Sun Hee Kim
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Amit Sharma
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Prosper N Boyaka
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Estelle Cormet-Boyaka
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
9
|
Bartman CM, Stelzig KE, Linden DR, Prakash YS, Chiarella SE. Passive siRNA transfection method for gene knockdown in air-liquid interface airway epithelial cell cultures. Am J Physiol Lung Cell Mol Physiol 2021; 321:L280-L286. [PMID: 34037474 DOI: 10.1152/ajplung.00122.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Differentiation of human bronchial epithelial cells (HBEs) in air-liquid interface (ALI) cultures recapitulates organotypic modeling of the in vivo environment. Although ALI cultures are invaluable for studying the respiratory epithelial barrier, loss-of-function studies are limited by potentially cytotoxic reagents in classical transfection methods, the length of the differentiation protocol, and the number of primary epithelial cell passages. Here, we present the efficacy and use of a simple method for small interfering RNA (siRNA) transfection of normal HBEs (NHBEs) in ALI cultures that does not require potentially cytotoxic transfection reagents and does not detrimentally alter the physiology or morphology of NHBEs during the differentiation process. This transfection protocol introduces a reproducible and efficient method for loss-of-function studies in HBE ALI cultures that can be leveraged for modeling the respiratory system and airway diseases.
Collapse
Affiliation(s)
- Colleen M Bartman
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Kimberly E Stelzig
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - David R Linden
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | | |
Collapse
|
10
|
Lopes-Pacheco M, Pedemonte N, Veit G. Discovery of CFTR modulators for the treatment of cystic fibrosis. Expert Opin Drug Discov 2021; 16:897-913. [PMID: 33823716 DOI: 10.1080/17460441.2021.1912732] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Cystic fibrosis (CF) is a life-threatening inherited disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein, an anion channel expressed at the apical membrane of secretory epithelia. CF leads to multiorgan dysfunction with progressive deterioration of lung function being the major cause of untimely death. Conventional CF therapies target only symptoms and consequences downstream of the primary genetic defect and the current life expectancy and quality of life of these individuals are still very limited. AREA COVERED CFTR modulator drugs are novel-specialized therapies that enhance or even restore functional expression of CFTR mutants and have been approved for clinical use for individuals with specific CF genotypes. This review summarizes classical approaches used for the pre-clinical development of CFTR correctors and potentiators as well as emerging strategies aiming to accelerate modulator development and expand theratyping efforts. EXPERT OPINION Highly effective CFTR modulator drugs are expected to deeply modify the disease course for the majority of individuals with CF. A multitude of experimental approaches have been established to accelerate the development of novel modulators. CF patient-derived specimens are valuable cell models to predict therapeutic effectiveness of existing (and novel) modulators in a precision medicine approach.
Collapse
Affiliation(s)
| | | | - Guido Veit
- Department of Physiology, McGill University, Montréal, Canada
| |
Collapse
|
11
|
Dougherty PG, Wellmerling JH, Koley A, Lukowski JK, Hummon AB, Cormet-Boyaka E, Pei D. Cyclic Peptidyl Inhibitors against CAL/CFTR Interaction for Treatment of Cystic Fibrosis. J Med Chem 2020; 63:15773-15784. [PMID: 33314931 PMCID: PMC8011814 DOI: 10.1021/acs.jmedchem.0c01528] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, encoding for a chloride ion channel. Membrane expression of CFTR is negatively regulated by CFTR-associated ligand (CAL). We previously showed that inhibition of the CFTR/CAL interaction with a cell-permeable peptide improves the function of rescued F508del-CFTR. In this study, optimization of the peptidyl inhibitor yielded PGD97, which exhibits a KD value of 6 nM for the CAL PDZ domain, ≥ 130-fold selectivity over closely related PDZ domains, and a serum t1/2 of >24 h. In patient-derived F508del homozygous cells, PGD97 (100 nM) increased short-circuit currents by ∼3-fold and further potentiated the therapeutic effects of small-molecule correctors (e.g., VX-661) by ∼2-fold (with an EC50 of ∼10 nM). Our results suggest that PGD97 may be used as a novel treatment for CF, either as a single agent or in combination with small-molecule correctors/potentiators.
Collapse
Affiliation(s)
- Patrick G. Dougherty
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States,Current address: Entrada Therapeutics, 50 Northern Avenue, Boston, MA 02210, United States
| | - Jack H. Wellmerling
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Amritendu Koley
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jessica K. Lukowski
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Amanda B. Hummon
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States,Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, United States
| | - Estelle Cormet-Boyaka
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA,Corresponding Author: To whom correspondence should be addressed. Estelle Cormet-Boyaka: . Dehua Pei: Phone: (614) 688-4068;
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States,Corresponding Author: To whom correspondence should be addressed. Estelle Cormet-Boyaka: . Dehua Pei: Phone: (614) 688-4068;
| |
Collapse
|
12
|
Park JK, Shrivastava A, Zhang C, Pollok BA, Finkbeiner WE, Gibb ER, Ly NP, Illek B. Functional Profiling of CFTR-Directed Therapeutics Using Pediatric Patient-Derived Nasal Epithelial Cell Models. Front Pediatr 2020; 8:536. [PMID: 33014932 PMCID: PMC7500161 DOI: 10.3389/fped.2020.00536] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022] Open
Abstract
Functional profiling of CFTR-directed therapeutics offers the potential to provide significant benefits to young people with cystic fibrosis (CF). However, the development of 2D airway epithelial cell models for individual response tests in CF children remains a central task. The objective of this study was to determine the utility of EpiXTM technology for expansion of nasal epithelial cells for use in electrophysiological CFTR function measurements. An initial harvest of as few as 20,000 cells was sufficient to expand up to 50 million cells that were used to generate air-liquid interface (ALI) cultures for ion transport studies with the Ussing assay. CFTR function was assessed by measuring responses to forskolin and the CFTR potentiator VX-770 (ivacaftor) in ALI cultures generated from passage 3 and 4 cells. Short-circuit current (Isc) measurements of blocked CFTR currents (ΔICFTRinh) discriminated CFTR function between healthy control (wild type, WT) and patients with intermediate (F508del/R117H-7T: 56% WT) and severe (F508del/F508del: 12% WT) CF disease. For the mixed genotypes, CFTR activity for F508del/c.850dupA was 12% WT, R334W/406-1G>A was 24% WT, and CFTRdele2,3(21 kb)/CFTRdele2,3(21 kb) was 9% WT. The CFTR correctors VX-809 (lumacaftor) and VX-661 (tezacaftor) significantly increased CFTR currents for F508del/R117H to 73 and 67% WT, respectively. Cultures with the large deletion mutation CFTRdele2,3(21 kb) unexpectedly responded to VX-661 treatment (20% WT). Amiloride-sensitive sodium currents were robust and ranged between 20-80 μA/cm2 depending on the subject. In addition to characterizing the electrophysiological profile of mutant CFTR activity in cultures for five genotypes, our study exemplifies the promising paradigm of bed-to-bench side cooperation and personalized medicine.
Collapse
Affiliation(s)
- Jeffrey KiHyun Park
- UCSF Benioff Children's Hospital Oakland, Children's Hospital Oakland Research Institute, Oakland, CA, United States
| | | | | | | | - Walter E Finkbeiner
- Department of Pathology, UCSF and Zuckerberg San Francisco General Hospital, San Francisco, CA, United States
| | - Elizabeth R Gibb
- Department of Pediatrics, UCSF Benioff Children's Hospital San Francisco, San Francisco, CA, United States
| | - Ngoc P Ly
- Department of Pediatrics, UCSF Benioff Children's Hospital San Francisco, San Francisco, CA, United States
| | - Beate Illek
- UCSF Benioff Children's Hospital Oakland, Children's Hospital Oakland Research Institute, Oakland, CA, United States.,Department of Pediatrics, UCSF Benioff Children's Hospital San Francisco, San Francisco, CA, United States
| |
Collapse
|