1
|
Kasper VL, Assis DN. Pathophysiology of Cystic Fibrosis Liver Disease. Pediatr Pulmonol 2024; 59 Suppl 1:S98-S106. [PMID: 39105342 DOI: 10.1002/ppul.26869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/14/2023] [Accepted: 01/10/2024] [Indexed: 08/07/2024]
Abstract
Hepatobiliary complications of Cystic Fibrosis (CF) constitute a significant burden for persons with CF of all ages, with advanced CF liver disease in particular representing a leading cause of mortality. The causes of the heterogeneity of clinical manifestations, ranging from steatosis to focal biliary cholestasis and biliary strictures, are poorly understood and likely reflect a variety of environmental and disease-modifying factors in the setting of underlying CFTR mutations. This review summarizes the current understanding of the pathophysiology of hepatobiliary manifestations of CF, and discusses emerging disease models and therapeutic approaches that hold promise to impact this important yet incompletely addressed aspect of CF care.
Collapse
Affiliation(s)
- Vania L Kasper
- The Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Hasbro Children's Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - David N Assis
- Section of Digestive Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
2
|
Banerjee P, Senapati S. Translational Utility of Organoid Models for Biomedical Research on Gastrointestinal Diseases. Stem Cell Rev Rep 2024; 20:1441-1458. [PMID: 38758462 DOI: 10.1007/s12015-024-10733-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 05/18/2024]
Abstract
Organoid models have recently been utilized to study 3D human-derived tissue systems to uncover tissue architecture and adult stem cell biology. Patient-derived organoids unambiguously provide the most suitable in vitro system to study disease biology with the actual genetic background. With the advent of much improved and innovative approaches, patient-derived organoids can potentially be used in regenerative medicine. Various human tissues were explored to develop organoids due to their multifold advantage over the conventional in vitro cell line culture approach and in vivo models. Gastrointestinal (GI) tissues have been widely studied to establish organoids and organ-on-chip for screening drugs, nutraceuticals, and other small molecules having therapeutic potential. The function of channel proteins, transporters, and transmembrane proteins was also explained. The successful application of genome editing in organoids using the CRISPR-Cas approach has been reported recently. GI diseases such as Celiac disease (CeD), Inflammatory bowel disease (IBD), and common GI cancers have been investigated using several patient-derived organoid models. Recent advancements on organoid bio-banking and 3D bio-printing contributed significantly in personalized disease management and therapeutics. This article reviews the available literature on investigations and translational applications of patient-derived GI organoid models, notably on elucidating gut-microbial interaction and epigenetic modifications.
Collapse
Affiliation(s)
- Pratibha Banerjee
- Immunogenomics Laboratory, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Sabyasachi Senapati
- Immunogenomics Laboratory, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
3
|
Sarthi JB, Trumbull AM, Abazari SM, van Unen V, Chan JE, Jiang Y, Gammons J, Anderson MO, Cil O, Kuo CJ, Sellers ZM. DRA involvement in linaclotide-stimulated bicarbonate secretion during loss of CFTR function. JCI Insight 2024; 9:e172364. [PMID: 38869953 PMCID: PMC11383163 DOI: 10.1172/jci.insight.172364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/11/2024] [Indexed: 06/15/2024] Open
Abstract
Duodenal bicarbonate secretion is critical to epithelial protection, as well as nutrient digestion and absorption, and is impaired in cystic fibrosis (CF). We examined if linaclotide, typically used to treat constipation, may also stimulate duodenal bicarbonate secretion. Bicarbonate secretion was measured in vivo and in vitro using mouse and human duodenum (biopsies and enteroids). Ion transporter localization was identified with confocal microscopy, and de novo analysis of human duodenal single-cell RNA sequencing (scRNA-Seq) data sets was performed. Linaclotide increased bicarbonate secretion in mouse and human duodenum in the absence of cystic fibrosis transmembrane conductance regulator (CFTR) expression (Cftr-knockout mice) or function (CFTRinh-172). Na+/H+ exchanger 3 inhibition contributed to a portion of this response. Linaclotide-stimulated bicarbonate secretion was eliminated by down-regulated in adenoma (DRA, SLC26A3) inhibition during loss of CFTR activity. ScRNA-Seq identified that 70% of villus cells expressed SLC26A3, but not CFTR, mRNA. Loss of CFTR activity and linaclotide increased apical brush border expression of DRA in non-CF and CF differentiated enteroids. These data provide further insights into the action of linaclotide and how DRA may compensate for loss of CFTR in regulating luminal pH. Linaclotide may be a useful therapy for CF individuals with impaired bicarbonate secretion.
Collapse
Affiliation(s)
- Jessica B Sarthi
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition; and
| | - Annie M Trumbull
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition; and
| | - Shayda M Abazari
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition; and
| | - Vincent van Unen
- Department of Medicine, Division of Hematology, Stanford University, Palo Alto, California, USA
| | - Joshua E Chan
- Department of Medicine, Division of Hematology, Stanford University, Palo Alto, California, USA
| | - Yanfen Jiang
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition; and
| | - Jesse Gammons
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition; and
| | - Marc O Anderson
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California, USA
| | - Onur Cil
- Department of Pediatrics, University of California, San Francisco, San Francisco, California, USA
| | - Calvin J Kuo
- Department of Medicine, Division of Hematology, Stanford University, Palo Alto, California, USA
| | - Zachary M Sellers
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition; and
- Sellers Research and Clinical Development, LLC, Newark, California, USA
| |
Collapse
|
4
|
Sarthi JB, Trumbull AM, Abazari SM, van Unen V, Chan JE, Jiang Y, Gammons J, Anderson MO, Cil O, Kuo CJ, Sellers ZM. Key role of down-regulated in adenoma ( SLC26A3) chloride/bicarbonate exchanger in linaclotide-stimulated intestinal bicarbonate secretion upon loss of CFTR function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.05.539132. [PMID: 37205513 PMCID: PMC10187319 DOI: 10.1101/2023.05.05.539132] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Duodenal bicarbonate secretion is critical to epithelial protection, nutrient digestion/absorption and is impaired in cystic fibrosis (CF). We examined if linaclotide, typically used to treat constipation, may also stimulate duodenal bicarbonate secretion. Bicarbonate secretion was measured in vivo and in vitro using mouse and human duodenum (biopsies and enteroids). Ion transporter localization was identified with confocal microscopy and de novo analysis of human duodenal single cell RNA sequencing (sc-RNAseq) datasets was performed. Linaclotide increased bicarbonate secretion in mouse and human duodenum in the absence of CFTR expression (Cftr knockout mice) or function (CFTRinh-172). NHE3 inhibition contributed to a portion of this response. Linaclotide-stimulated bicarbonate secretion was eliminated by down-regulated in adenoma (DRA, SLC26A3) inhibition during loss of CFTR activity. Sc-RNAseq identified that 70% of villus cells expressed SLC26A3, but not CFTR, mRNA. Loss of CFTR activity and linaclotide increased apical brush border expression of DRA in non-CF and CF differentiated enteroids. These data provide further insights into the action of linaclotide and how DRA may compensate for loss of CFTR in regulating luminal pH. Linaclotide may be a useful therapy for CF individuals with impaired bicarbonate secretion.
Collapse
Affiliation(s)
- Jessica B. Sarthi
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Stanford University, Palo Alto, CA, USA
| | - Annie M. Trumbull
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Stanford University, Palo Alto, CA, USA
| | - Shayda M. Abazari
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Stanford University, Palo Alto, CA, USA
| | - Vincent van Unen
- Department of Medicine, Division of Hematology, Stanford University, Palo Alto, CA, USA
| | - Joshua E. Chan
- Department of Medicine, Division of Hematology, Stanford University, Palo Alto, CA, USA
| | - Yanfen Jiang
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Stanford University, Palo Alto, CA, USA
| | - Jesse Gammons
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Stanford University, Palo Alto, CA, USA
| | - Marc O. Anderson
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA, USA
| | - Onur Cil
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Calvin J. Kuo
- Department of Medicine, Division of Hematology, Stanford University, Palo Alto, CA, USA
| | - Zachary M. Sellers
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Stanford University, Palo Alto, CA, USA
- Sellers Research and Clinical Development, LLC, Newark, CA, USA
| |
Collapse
|
5
|
Zajac M, Lepissier A, Dréano E, Chevalier B, Hatton A, Kelly-Aubert M, Guidone D, Planelles G, Edelman A, Girodon E, Hinzpeter A, Crambert G, Pranke I, Galietta LJV, Sermet-Gaudelus I. Putting bicarbonate on the spot: pharmacological insights for CFTR correction in the airway epithelium. Front Pharmacol 2023; 14:1293578. [PMID: 38149052 PMCID: PMC10750368 DOI: 10.3389/fphar.2023.1293578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/17/2023] [Indexed: 12/28/2023] Open
Abstract
Introduction: Cystic fibrosis (CF) is caused by defective Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) proteins. CFTR controls chloride (Cl-) and bicarbonate (HCO3 -) transport into the Airway Surface Liquid (ASL). We investigated the impact of F508del-CFTR correction on HCO3 - secretion by studying transepithelial HCO3 - fluxes. Methods: HCO3 - secretion was measured by pH-stat technique in primary human respiratory epithelial cells from healthy subjects (WT) and people with CF (pwCF) carrying at least one F508del variant. Its changes after CFTR modulation by the triple combination VX445/661/770 and in the context of TNF-α+IL-17 induced inflammation were correlated to ASL pH and transcriptional levels of CFTR and other HCO3 - transporters of airway epithelia such as SLC26A4 (Pendrin), SLC26A9 and NBCe1. Results: CFTR-mediated HCO3 - secretion was not detected in F508del primary human respiratory epithelial cells. It was rescued up to ∼ 80% of the WT level by VX-445/661/770. In contrast, TNF-α+IL-17 normalized transepithelial HCO3 - transport and increased ASL pH. This was related to an increase in SLC26A4 and CFTR transcript levels. VX-445/661/770 induced an increase in pH only in the context of inflammation. Effects on HCO3 - transport were not different between F508del homozygous and F508del compound heterozygous CF airway epithelia. Conclusion: Our studies show that correction of F508del-CFTR HCO3 - is not sufficient to buffer acidic ASL and inflammation is a key regulator of HCO3 - secretion in CF airways. Prediction of the response to CFTR modulators by theratyping should take into account airway inflammation.
Collapse
Affiliation(s)
- Miroslaw Zajac
- INSERM U1151, Institut Necker Enfants Malades, Paris, France
- Université de Paris-Cité, Paris, France
- Centre de Référence Maladie Rare Pour La Mucoviscidose et Maladies de CFTR, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Agathe Lepissier
- INSERM U1151, Institut Necker Enfants Malades, Paris, France
- Université de Paris-Cité, Paris, France
- Centre de Référence Maladie Rare Pour La Mucoviscidose et Maladies de CFTR, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Elise Dréano
- INSERM U1151, Institut Necker Enfants Malades, Paris, France
- Université de Paris-Cité, Paris, France
- Centre de Référence Maladie Rare Pour La Mucoviscidose et Maladies de CFTR, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Benoit Chevalier
- INSERM U1151, Institut Necker Enfants Malades, Paris, France
- Université de Paris-Cité, Paris, France
- Centre de Référence Maladie Rare Pour La Mucoviscidose et Maladies de CFTR, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Aurélie Hatton
- INSERM U1151, Institut Necker Enfants Malades, Paris, France
- Université de Paris-Cité, Paris, France
- Centre de Référence Maladie Rare Pour La Mucoviscidose et Maladies de CFTR, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Mairead Kelly-Aubert
- INSERM U1151, Institut Necker Enfants Malades, Paris, France
- Université de Paris-Cité, Paris, France
- Centre de Référence Maladie Rare Pour La Mucoviscidose et Maladies de CFTR, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Daniela Guidone
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | | | - Aleksander Edelman
- INSERM U1151, Institut Necker Enfants Malades, Paris, France
- Université de Paris-Cité, Paris, France
- Centre de Référence Maladie Rare Pour La Mucoviscidose et Maladies de CFTR, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Emmanuelle Girodon
- Université de Paris-Cité, Paris, France
- Service de Médecine Génomique des Maladies de Système et d’Organe, Hôpital Cochin, Paris, France
| | - Alexandre Hinzpeter
- INSERM U1151, Institut Necker Enfants Malades, Paris, France
- Université de Paris-Cité, Paris, France
- Centre de Référence Maladie Rare Pour La Mucoviscidose et Maladies de CFTR, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Gilles Crambert
- U1138/CNRS ERL 8228, Centre de Recherche des Cordeliers, Paris, France
| | - Iwona Pranke
- INSERM U1151, Institut Necker Enfants Malades, Paris, France
- Université de Paris-Cité, Paris, France
- Centre de Référence Maladie Rare Pour La Mucoviscidose et Maladies de CFTR, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | | | - Isabelle Sermet-Gaudelus
- INSERM U1151, Institut Necker Enfants Malades, Paris, France
- Université de Paris-Cité, Paris, France
- Centre de Référence Maladie Rare Pour La Mucoviscidose et Maladies de CFTR, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
- European Reference Network for Rare Diseases, Frankfurt, Belgium
| |
Collapse
|
6
|
Tümmler B. Post-approval studies with the CFTR modulators Elexacaftor-Tezacaftor-Ivacaftor. Front Pharmacol 2023; 14:1158207. [PMID: 37025483 PMCID: PMC10072268 DOI: 10.3389/fphar.2023.1158207] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/07/2023] [Indexed: 03/31/2023] Open
Abstract
Triple combination therapy with the CFTR modulators elexacaftor (ELX), tezacaftor (TEZ) and ivacaftor (IVA) has been qualified as a game changer in cystic fibrosis (CF). We provide an overview of the body of literature on ELX/TEZ/IVA published between November 2019 and February 2023 after approval by the regulators. Recombinant ELX/TEZ/IVA-bound Phe508del CFTR exhibits a wild type conformation in vitro, but in patient's tissue a CFTR glyoisoform is synthesized that is distinct from the wild type and Phe508del isoforms. ELX/TEZ/IVA therapy improved the quality of life of people with CF in the real-life setting irrespective of their anthropometry and lung function at baseline. ELX/TEZ/IVA improved sinonasal and abdominal disease, lung function and morphology, airway microbiology and the basic defect of impaired epithelial chloride and bicarbonate transport. Pregnancy rates were increasing in women with CF. Side effects of mental status changes deserve particular attention in the future.
Collapse
Affiliation(s)
- Burkhard Tümmler
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| |
Collapse
|
7
|
Shin W, Kim HJ. In Vitro Morphogenesis and Differentiation of Human Intestinal Epithelium in a Gut-on-a-Chip. Methods Mol Biol 2023; 2650:197-206. [PMID: 37310633 DOI: 10.1007/978-1-0716-3076-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The establishment of a three-dimensional (3D) epithelial structure and cytodifferentiation in vitro is necessary to recapitulate in vivo-relevant structure and function of the human intestine. Here, we describe an experimental protocol to build an organomimetic gut-on-a-chip microdevice that allows inducing 3D morphogenesis of human intestinal epithelium using Caco-2 cells or intestinal organoid cells. Under physiological flow and physical motions, intestinal epithelium spontaneously recreates 3D epithelial morphology in a gut-on-a-chip that offers enhanced mucus production, epithelial barrier, and longitudinal host-microbe co-culture. This protocol may provide implementable strategies to advance traditional in vitro static cultures, human microbiome studies, and pharmacological testing.
Collapse
Affiliation(s)
- Woojung Shin
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
| | - Hyun Jung Kim
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
8
|
Cholon DM, Gentzsch M. Established and novel human translational models to advance cystic fibrosis research, drug discovery, and optimize CFTR-targeting therapeutics. Curr Opin Pharmacol 2022; 64:102210. [DOI: 10.1016/j.coph.2022.102210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/24/2022] [Accepted: 03/07/2022] [Indexed: 12/16/2022]
|
9
|
Theratyping of the Rare CFTR Variants E193K and R334W in Rectal Organoid-Derived Epithelial Monolayers. J Pers Med 2022; 12:jpm12040632. [PMID: 35455747 PMCID: PMC9027586 DOI: 10.3390/jpm12040632] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 12/17/2022] Open
Abstract
Background: The effect of presently available CFTR modulator combinations, such as elexacaftor (ELX), tezacaftor (TEZ), and ivacaftor (IVA), on rare CFTR alleles is often unknown. Several assays have been developed, such as forskolin-induced swelling (FIS), to evaluate the rescue of such uncommon CFTR alleles both by established and novel modulators in patient-derived primary cell cultures (organoids). Presently, we assessed the CFTR-mediated electrical current across rectal organoid-derived epithelial monolayers. This technique, which allows separate measurement of CFTR-dependent chloride or bicarbonate transport, was used to assess the effect of ELX/TEZ/IVA on two rare CFTR variants. Methods: Intestinal organoid cultures were established from rectal biopsies of CF patients carrying the rare missense mutations E193K or R334W paired with F508del. The effect of the CFTR modulator combination ELX/TEZ/IVA on CFTR-mediated Cl− and HCO3− secretion was assessed in organoid-derived intestinal epithelial monolayers. Non-CF organoids were used for comparison. Clinical biomarkers (sweat chloride, FEV1) were monitored in patients receiving modulator therapy. Results: ELX/TEZ/IVA markedly enhanced CFTR-mediated bicarbonate and chloride transport across intestinal epithelium of both patients. Consistent with the rescue of CFTR function in cultured intestinal cells, ELX/TEZ/IVA therapy improved biomarkers of CFTR function in the R334W/F508del patient. Conclusions: Current measurements in organoid-derived intestinal monolayers can readily be used to monitor CFTR-dependent epithelial Cl− and HCO3− transport. This technique can be explored to assess the functional consequences of rare CFTR mutations and the efficacy of CFTR modulators. We propose that this functional CFTR assay may guide personalized medicine in patients with CF-like clinical manifestations as well as in those carrying rare CFTR mutations.
Collapse
|
10
|
Barr HL, Bihouee T, Zwitserloot AM. A year in review: Real world evidence, functional monitoring and emerging therapeutics in 2021. J Cyst Fibros 2022; 21:191-196. [PMID: 35272931 PMCID: PMC8900606 DOI: 10.1016/j.jcf.2022.02.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 02/23/2022] [Indexed: 12/20/2022]
Affiliation(s)
- H L Barr
- Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom; Nottingham Respiratory Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom.
| | - T Bihouee
- Chronic Childhood Diseases unit, Pediatric Department, Nantes University Hospital, Nantes, France
| | - A M Zwitserloot
- University of Groningen, Department of Pediatric Pulmonology and Pediatric Allergy, University Medical Center Groningen, Beatrix Children's Hospital, Groningen, The Netherlands; University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| |
Collapse
|