1
|
Roman-Liu D, Kamińska J, Tokarski TM. Population-specific equations of age-related maximum handgrip force: a comprehensive review. PeerJ 2024; 12:e17703. [PMID: 39056055 PMCID: PMC11271657 DOI: 10.7717/peerj.17703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Background The measurement of handgrip force responses is important in many aspects, for example: to complement neurological assessments, to investigate the contribution of muscle mass in predicting functional outcomes, in setting realistic treatment goals, evaluating rehabilitation strategies. Normative data about handgrip force can assist the therapist in interpreting a patient's results compared with healthy individuals of the same age and gender and can serve as key decision criteria. In this context, establishing normative values of handgrip strength is crucial. Hence, the aim of the this study is to develop a tool that could be used both in rehabilitation and in the prevention of work-related musculoskeletal disorders. This tool takes the form of population-specific predictive equations, which express maximum handgrip force as a function of age. Methodology In order to collect data from studies measuring maximum handgrip force, three databases were searched. The search yielded 5,058 articles. Upon the removal of duplicates, the screening of abstracts and the full-text review of potentially relevant articles, 143 publications which focussed on experimental studies on various age groups were considered as fulfilling the eligibility criteria. A comprehensive literature review produced 1,276 mean values of maximum handgrip force. Results A meta-analysis resulted in gender- and world region-specific (general population, USA, Europe and Asia) equations expressing maximum force as a function of age. The equations showed quantitative differences and trends in maximum handgrip force among age, gender and national groups. They also showed that values of maximum handgrip force are about 40% higher for males than for females and that age-induced decrease in force differs between males and females, with a proved 35% difference between the ages of 35 and 75. The difference was lowest for the 60-64 year olds and highest for the 18-25 year-olds. The equations also showed that differences due to region are smaller than those due to age or gender. Conclusions The equations that were developed for this study can be beneficial in setting population-specific thresholds for rehabilitation programmes and workstation exposure. They can also contribute to the modification of commonly used methods for assessing musculoskeletal load and work-related risk of developing musculoskeletal disorders by scaling their limit values.
Collapse
Affiliation(s)
- Danuta Roman-Liu
- Ergonomics, Central Institute for Labour Protection–National Research Institute, Warsaw, Poland
| | - Joanna Kamińska
- Ergonomics, Central Institute for Labour Protection–National Research Institute, Warsaw, Poland
| | - Tomasz Macjej Tokarski
- Ergonomics, Central Institute for Labour Protection–National Research Institute, Warsaw, Poland
| |
Collapse
|
2
|
Kopiczko A, Czapla M, Juárez-Vela R, Ross C, Uchmanowicz B. Dairy product consumption, eating habits, sedentary behaviour and physical activity association with bone mineral density among adolescent boys: a cross-sectional observational study. BMC Pediatr 2024; 24:53. [PMID: 38233826 PMCID: PMC10792931 DOI: 10.1186/s12887-024-04539-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND During childhood and adolescence, skeletal microarchitecture and bone mineral density (BMD) undergo significant changes. Peak bone mass is built and its level significantly affects the condition of bones in later years of life. Understanding the modifiable factors that improve bone parameters at an early age is necessary to early prevent osteoporosis. To identify these modifiable factors we analysed the relationship between dairy product consumption, eating habits, sedentary behaviour, and level of physical activity with BMD in 115 young boys (14-17 years). METHODS Bone parameters were measured by dual energy x-ray absorptiometry using paediatric specific software to compile the data. Dairy product consumption and eating habits were assessed by means of a dietary interview. Sedentary behaviour and physical activity was assessed in a face-to-face interview conducted using the International Physical Activity Questionnaire. Data collection on total physical activity level was performed by collecting information on the number of days and the duration of vigorous and moderate intensity (MVPA) and average daily time spent in sitting (SIT time). RESULTS The strongest relationships with BMD in distal part of forearm were found for moderate plus vigorous activity, sit time, and intake of dairy products, intake of calcium, protein, vitamin D, phosphorus from diet. Relationships between BMD, bone mineral content (BMC) in the distal and proximal part of the forearm and PA, sit time and eating parameters were evaluated using the multiple forward stepwise regression. The presented model explained 48-67% (adjusted R2 = 0.48-0.67; p < 0.001) of the variance in bone parameters. The predictor of interactions of three variables: protein intake (g/person/day), vitamin D intake (µg/day) and phosphorus intake (mg/day) was significant for BMD dis (adjusted R2 = 0.59; p < 0.001). The predictor of interactions of two variables: SIT time (h/day) and dairy products (n/day) was significant for BMD prox (adjusted R2 = 0.48; p < 0.001). Furthermore, the predictor of interactions dairy products (n/day), protein intake (g/person/day) and phosphorus intake (mg/day) was significant for BMC prox and dis (adjusted R2 = 0.63-0.67; p < 0.001). CONCLUSIONS High physical activity and optimal eating habits especially adequate intake of important dietary components for bone health such as calcium, protein, vitamin D and phosphorus affect the mineralization of forearm bones.
Collapse
Affiliation(s)
- Anna Kopiczko
- Department of Human Biology, Józef Piłsudski University of Physical Education in Warsaw, Warsaw, Poland
| | - Michał Czapla
- Department of Emergency Medical Service, Wrocław Medical University, Wrocław, Poland.
- Institute of Heart Diseases, University Hospital, Wroclaw, 50-566, Poland.
- Group of Research in Care (GRUPAC), Faculty of Health Science, University of La Rioja, Logrono, 26006, Spain.
| | - Raúl Juárez-Vela
- Group of Research in Care (GRUPAC), Faculty of Health Science, University of La Rioja, Logrono, 26006, Spain
| | - Catherine Ross
- Centre for Cardiovascular Health, School of Health and Social Care, Edinburgh Napier University, Edinburgh, EH11 4BN, UK
| | - Bartosz Uchmanowicz
- Department of Nursing and Obstetrics, Faculty of Health Sciences, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
3
|
A Predictive Model for Abnormal Bone Density in Male Underground Coal Mine Workers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159165. [PMID: 35954527 PMCID: PMC9368504 DOI: 10.3390/ijerph19159165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/16/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023]
Abstract
The dark and humid environment of underground coal mines had a detrimental effect on workers’ skeletal health. Optimal risk prediction models can protect the skeletal health of coal miners by identifying those at risk of abnormal bone density as early as possible. A total of 3695 male underground workers who attended occupational health physical examination in a coal mine in Hebei, China, from July to August 2018 were included in this study. The predictor variables were identified through single-factor analysis and literature review. Three prediction models, Logistic Regression, CNN and XG Boost, were developed to evaluate the prediction performance. The training set results showed that the sensitivity of Logistic Regression, XG Boost and CNN models was 74.687, 82.058, 70.620, the specificity was 80.986, 89.448, 91.866, the F1 scores was 0.618, 0.919, 0.740, the Brier scores was 0.153, 0.040, 0.156, and the Calibration-in-the-large was 0.104, 0.020, 0.076, respectively, XG Boost outperformed the other two models. Similar results were obtained for the test set and validation set. A two-by-two comparison of the area under the ROC curve (AUC) of the three models showed that the XG Boost model had the best prediction performance. The XG Boost model had a high application value and outperformed the CNN and Logistic regression models in prediction.
Collapse
|
4
|
Kopiczko A, Cieplińska J. Forearm bone mineral density in adult men after spinal cord injuries: impact of physical activity level, smoking status, body composition, and muscle strength. BMC Musculoskelet Disord 2022; 23:81. [PMID: 35073879 PMCID: PMC8785458 DOI: 10.1186/s12891-022-05022-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 01/05/2022] [Indexed: 11/21/2022] Open
Abstract
Background In the present cross-sectional study, we analyzed the relationships of physical activity level, muscle strength, body composition, injury parameters, and smoking status with bone health in the non-paralyzed upper limb in adult men after spinal cord injuries (SCI). Methods The study covered 50 men after spinal cord injuries aged 35.6 ± 4.9 years (25 wheelchair rugby players and 25 non-athletes). Forearm bone mineral density (BMD), bone mineral content (BMC) in distal (dis) and proximal (prox) part was measured by densitometry. Body mass index (BMI) and body fat percentage (BF) were calculated. Fat mass (FM) and fat-free mass (FFM) were estimated from somatic data. An interview was conducted based on the Global Adult Tobacco Survey questionnaire. Muscle strength (maximal hand grip strength) was measured using a Jamar dynamometer. Results Active male smokers after SCI had significantly lower BMD dis, BMC dis and prox, T-score dis, and prox (large effect > 0.8) than male non-smokers after SCI. Physical activity was a significant predictor (positive direction) for BMC prox (adjusted R2 = 0.56; p < 0.001). The predictor of interactions of physical activity and fat mass was significant for BMC dis (positive direction, adjusted R2 = 0.58; p < 0.001). It was also found that the predictor of interactions of four variables: physical activity, fat mass, hand grip strength (positive direction), and years of active smoking (negative direction) was significant for BMD dis (adjusted R2 = 0.58; p < 0.001). The predictor of interactions of age at injury (additive direction) and the number of cigarettes smoked per day (negative direction) was significant for T-score prox (adjusted R2 = 0.43; p < 0.001). Non-smoking physically active men after SCI had the most advantageous values of mean forearm BMD. Conclusion Rugby can be considered a sport that has a beneficial effect on forearm BMD. The physically active men after SCI had significantly higher bone parameters. Physical activity itself and in interactions with fat mass, hand grip strength (positive direction), and years of active smoking (negative direction) had a significant effect on bone health in non-paralyzed upper limbs. Active smoking may reduce the protective role of physical activity for bone health.
Collapse
|
5
|
Wu N, Li X, Mu S, Fu Q, Ba G. Handgrip strength is positively associated with bone mineral density in middle and aged adults: results from NHANES 2013-2014. Arch Osteoporos 2021; 16:121. [PMID: 34409488 DOI: 10.1007/s11657-021-00938-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 04/26/2021] [Indexed: 02/03/2023]
Abstract
UNLABELLED Few studies have examined the association between handgrip strength and BMD in specific subgroups. Therefore, we examined the associations of handgrip strength with BMD aged ≥ 40 years and found that handgrip strength is associated with BMD which is independent of BMI, physical activity, and other potential confounders. PURPOSE Previous studies have revealed that handgrip strength is a measure of muscular fitness and is associated with fracture and bone mineral density (BMD) in adolescents and adults, with conflicting results. In addition, few studies have examined the association between handgrip strength in predefined subgroups such as sex, age, and physical activity in a whole population. METHODS We examined the associations of handgrip strength with BMD in 2720 adults (1359 men and 1361 women) aged ≥ 40 years (mean age, 58.6 ± 11.8 years) from the National Health and Nutrition Examination Survey (NHANES) 2013-2014. NHANES collects data via household interviews and direct standardized physical examinations conducted in specially equipped mobile examination centers. The date of final data collection was 2014 and the present data analysis was conducted in January to February 2020. RESULTS Handgrip strength was significantly associated with total femur (r = 0.482, P < 0.001) and femoral neck BMD (r = 0.427, P < 0.001) among all participants, respectively. After adjustment for age, sex, race, body mass index (BMI), physical activity, smoking, history of diabetes, history of hypertension, and history of high cholesterol, each unit (1 SD) of BMI-adjusted handgrip strength was positively associated with 0.026 g/cm2 increase in total femur BMD (P < 0.001) and 0.027 g/cm2 increase in femoral neck BMD (P < 0.001). There was a significant increasing trend in total femur and femoral BMD as handgrip strength increased from the lowest quartile to the highest quartile (P for trend < 0.001). For subgroup analysis, there were no significant interaction effects of handgrip strength with BMD between predefined subgroups (all P > 0.05). CONCLUSIONS High level of handgrip strength is associated with increased BMD. The association is independent of BMI, physical activity, and other potential confounders.
Collapse
Affiliation(s)
- Na Wu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xiaofan Li
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, 110042, China
| | - Shuai Mu
- Department of Orthopedics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Liaoning Province, 110004, China
| | - Qin Fu
- Department of Orthopedics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Liaoning Province, 110004, China
| | - Gen Ba
- Department of Orthopedics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Liaoning Province, 110004, China.
| |
Collapse
|
6
|
Li G, Li B, Li B, Zhao J, Wang X, Luo R, Li Y, Liu J, Hu R. The role of biomechanical forces and MALAT1/miR-329-5p/PRIP signalling on glucocorticoid-induced osteonecrosis of the femoral head. J Cell Mol Med 2021; 25:5164-5176. [PMID: 33939272 PMCID: PMC8178276 DOI: 10.1111/jcmm.16510] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 02/25/2021] [Accepted: 03/12/2021] [Indexed: 12/19/2022] Open
Abstract
Glucocorticoid‐induced osteonecrosis of the femoral head (GIONFH) is a common orthopaedic disease. GIONFH primarily manifests clinically as hip pain in the early stages, followed by the collapse of the femoral head, narrowing of the hip joint space and damage to the acetabulum, resulting in severely impaired mobility. However, the pathogenesis of GIONFH is not clearly understood. Recently, biomechanical forces and non‐coding RNAs have been suggested to play important roles in the pathogenesis of GIONFH. This study aimed to evaluate the role of biomechanical forced and non‐coding RNAs in GIONFH. We utilized an in vivo, rat model of GIONFH and used MRI, μCT, GIONFH‐TST (tail suspension test), GIONFH‐treadmill, haematoxylin and eosin staining, qRT‐PCR and Western blot analysis to analyse the roles of biomechanical forces and non‐coding RNAs in GIONFH. We used RAW264.7 cells and MC3T3E1 cells to verify the role of MALAT1/miR‐329‐5p/PRIP signalling using a dual luciferase reporter assay, qRT‐PCR and Western blot analysis. The results demonstrated that MALAT1 and PRIP were up‐regulated in the femoral head tissues of GIONFH rats, RAW264.7 cells, and MC3T3E1 cells exposed to dexamethasone (Dex). Knockdown of MALAT1 decreased PRIP expression in rats and cultured cells and rescued glucocorticoid‐induced osteonecrosis of femoral head in rats. The dual luciferase reporter gene assay revealed a targeting relationship for MALAT1/miR‐329‐5p and miR‐329‐5p/PRIP in MC3T3E1 and RAW264.7 cells. In conclusion, MALAT1 played a vital role in the pathogenesis of GIONFH by binding to (‘sponging’) miR‐329‐5p to up‐regulate PRIP. Also, biomechanical forces aggravated the pathogenesis of GIONFH through MALAT1/miR‐329‐5p/PRIP signalling.
Collapse
Affiliation(s)
- Guomin Li
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, China
| | - Bing Li
- Department of Joint, Tianjin Hospital, Tianjin, China
| | - Bo Li
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jie Zhao
- Department of Joint, Tianjin Hospital, Tianjin, China
| | - Xiaoquan Wang
- Department of Joint, Tianjin Hospital, Tianjin, China
| | - Rui Luo
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yankun Li
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jun Liu
- Department of Joint, Tianjin Hospital, Tianjin, China
| | - Ruyin Hu
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, China
| |
Collapse
|
7
|
Ratajczak AE, Szymczak-Tomczak A, Rychter AM, Zawada A, Dobrowolska A, Krela-Kaźmierczak I. Impact of Cigarette Smoking on the Risk of Osteoporosis in Inflammatory Bowel Diseases. J Clin Med 2021; 10:1515. [PMID: 33916465 PMCID: PMC8038608 DOI: 10.3390/jcm10071515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
Cigarette smoking constitutes one of the most important modifiable factors of osteoporosis, as well as contributes to an early death, tumors, and numerous chronic diseases. The group with an increased risk of a lower bone mineral density are patients suffering from inflammatory bowel diseases. In fact, tobacco smoke, which contains more than 7000 chemical compounds, affects bone mineral density (BMD) both directly and indirectly, as it has an impact on the RANK-RANKL-OPG pathway, intestinal microbiota composition, and calcium-phosphate balance. Constant cigarette use interferes with the production of protective mucus and inhibits the repair processes in the intestinal mucus. Nicotine as well as the other compounds of the cigarette smoke are important risk factors of the inflammatory bowel disease and osteoporosis. Additionally, cigarette smoking may decrease BMD in the IBD patients. Interestingly, it affects patients with Crohn's disease and ulcerative colitis in different ways-on the one hand it protects against ulcerative colitis, whereas on the other it increases the risk of Crohn's disease development. Nevertheless, all patients should be encouraged to cease smoking in order to decrease the risk of developing other disorders.
Collapse
Affiliation(s)
- Alicja Ewa Ratajczak
- Correspondence: (A.E.R.); (I.K.-K.); Tel.: +48-667-385-996 (A.E.R.); +48-8691-343 (I.K.-K.); Fax: +48-8691-686 (A.E.R.)
| | | | | | | | | | - Iwona Krela-Kaźmierczak
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznań University of Medical Sciences, 61-701 Poznań, Poland; (A.S.-T.); (A.M.R.); (A.Z.); (A.D.)
| |
Collapse
|
8
|
Bone Mineral Density in Adolescent Boys: Cross-Sectional Observational Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 18:ijerph18010245. [PMID: 33396391 PMCID: PMC7795160 DOI: 10.3390/ijerph18010245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 01/10/2023]
Abstract
Physical inactivity of children can be a precursor of reduced bone mineral density, considered to be a typical problem only in old age. The aim of this study was to evaluate bone mineral density in 96 Polish boys aged 14–17 years with varied physical activity (swimmers, track and field athletes, non-athletes) and the effect of bone composition, birth weight and breastfeeding during infancy on bone parameters. Anthropometric and body composition measurements were performed according to the kinanthropometric standards. Bone parameters of the forearm were measured by means of dual-energy X-ray absorptiometry. Data on the infant’s birth weight and the length of breastfeeding were collected during direct interviews with mothers. The strongest links with bone parameters were found for the type of physical activity and birth weight. Regardless of birth weight, track and field athletes had the most advantageous bone parameters (mainly sT-score prox values). Swimmers with normal or low birth weight had less favourable sT-score prox values than non-athletes. The type of physical activity proved to be an important determinant of bone parameters. Childhood and adolescence are important periods of bone development and increasing the content of bone mineral components, and the bone status in later years of life depends to a large extent on this period. The perinatal period, especially the correct birth weight of the child, not only has a significant effect on general health, but also on bone status.
Collapse
|
9
|
Kopiczko A. Determinants of bone health in adults Polish women: The influence of physical activity, nutrition, sun exposure and biological factors. PLoS One 2020; 15:e0238127. [PMID: 32960898 PMCID: PMC7508391 DOI: 10.1371/journal.pone.0238127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/10/2020] [Indexed: 01/06/2023] Open
Abstract
Purpose The aim of this study was to assess the determinants of bone health in the group of women over 40 years old. Lifestyle factors such as past and present physical activity, past and present sun exposure, current dietary intake of calcium and vitamin D, nutritional status as measured by BMI, family history of osteoporosis and current hormonal status were analysed. Methods The study involved 500 women over 40 years old. All examined women was the same ethnicity- European origin. Methods used: densitometry method (DXA), bioelectrical impedance analysis, International Physical Activity Questionnaire, nutrition questionnaire, past and present sun exposure questionnaire. Past and present physical activity, past and present sun exposure and sufficient level of calcium in the diet proved to be the most important factors determining mineralization of bone tissue of women. In order to indicate an independent association of the correct bone tissue mineralization with individual factors, multivariate analysis was used—logistic regression. Results The norm BMD in the distal part of the forearm was strongly influenced: recommended dietary calcium intake (OR = 5.95; p = 0.003), moderately (OR = 1.88; p = 0.053) and high (OR = 14.0; p<0.001) past physical activity, sufficient (OR = 4.97; p<0.001) and high (OR = 18.9; p = 0.004) level of present physical activity, sufficient past (OR = 5.15; p<0.001) and sufficient present sun exposure (OR = 10.0; p<0.001). The chance for the BMD prox norm was also increased several times: high past physical activity (OR = 68.4; p<0.0001) and sufficient past sun exposure (OR = 10.6; p<0.001), moderate past activity (OR = 4.20; p<0.001), sufficient (OR = 6.13; p<0.001) and high (OR = 10.0; p<0.001) present physical activity, sufficient present sun exposure (OR = 9.09; p<0.0001), recommended intake of calcium (OR = 9.57; p<0.001) and vitamin D (OR = 2.68; p = 0.052). Whereas e significantly lower likelihood for the BMD prox norm was found in women with the oldest hormonal status (postmenopausal period) (OR = 0.18; p<0.001), with osteoporosis in the family (OR = 0.37; p<0.001) and living in an agglomeration (OR = 0.68; p = 0.03). Conclusion Interventions to increase physical activity, especially outdoors, may help reduce risk of osteoporosis, fractures and subsequent healthcare costs.
Collapse
Affiliation(s)
- Anna Kopiczko
- Department of Biomedical Sciences, Józef Piłsudski University of Physical Education in Warsaw, Warsaw, Poland
- * E-mail:
| |
Collapse
|
10
|
Shah FA, Sayardoust S, Omar O, Thomsen P, Palmquist A. Does Smoking Impair Bone Regeneration in the Dental Alveolar Socket? Calcif Tissue Int 2019; 105:619-629. [PMID: 31535164 DOI: 10.1007/s00223-019-00610-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/27/2019] [Indexed: 12/24/2022]
Abstract
Smoking is a major risk factor for dental implant failure. In addition to higher marginal bone loss around implants, the cellular and molecular responses to injury and implant physicochemical properties are also differentially affected in smokers. The purpose of this work is to determine if smoking impairs bone microstructure and extracellular matrix composition within the dental alveolar socket after tooth extraction. Alveolar bone biopsies obtained from Smokers (> 10 cigarettes per day for at least 10 years) and Ctrl (never-smokers), 7-146 months after tooth extraction, were investigated using X-ray micro-computed tomography, backscattered electron scanning electron microscopy, and Raman spectroscopy. Both Smokers and Ctrl exhibited high inter- and intra-individual heterogeneity in bone microstructure, which varied between dense cortical and porous trabecular architecture. Regions of disorganised/woven bone were more prevalent during early healing. Remodelled lamellar bone was predominant at longer healing periods. Bone mineral density, bone surface-to-volume ratio, mineral crystallinity, the carbonate-to-phosphate ratio, the mineral-to-matrix ratio, the collagen crosslink ratio, and the amounts of amino acids phenylalanine and proline/hydroxyproline were also comparable between Smokers and Ctrl. Bone microstructure and composition within the healing dental alveolar socket are not significantly affected by moderate-to-heavy smoking.
Collapse
Affiliation(s)
- Furqan A Shah
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Shariel Sayardoust
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Periodontology, Institute for Postgraduate Dental Education, Jönköping, Sweden
| | - Omar Omar
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Peter Thomsen
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Palmquist
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|