1
|
Age and Environment Influences on Mouse Prion Disease Progression: Behavioral Changes and Morphometry and Stereology of Hippocampal Astrocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4504925. [PMID: 28243355 PMCID: PMC5294381 DOI: 10.1155/2017/4504925] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/21/2016] [Accepted: 11/24/2016] [Indexed: 01/05/2023]
Abstract
Because enriched environment (EE) and exercise increase and aging decreases immune response, we hypothesized that environmental enrichment and aging will, respectively, delay and increase prion disease progression. Mice dorsal striatum received bilateral stereotaxic intracerebral injections of normal or ME7 prion infected mouse brain homogenates. After behavior analysis, animals were euthanized and their brains processed for astrocyte GFAP immunolabeling. Our analysis related to the environmental influence are limited to young adult mice, whereas age influence refers to aged mice raised on standard cages. Burrowing activity began to reduce in ME7-SE two weeks before ME7-EE, while no changes were apparent in ME7 aged mice (ME7-A). Object placement recognition was impaired in ME7-SE, NBH-A, and ME7-A but normal in all other groups. Object identity recognition was impaired in ME7-A. Cluster analysis revealed two morphological families of astrocytes in NBH-SE animals, three in NBH-A and ME7-A, and four in NBH-EE, ME7-SE, and ME7-EE. As compared with control groups, astrocytes from DG and CA3 prion-diseased animals show significant numerical and morphological differences and environmental enrichment did not reverse these changes but induced different morphological changes in GFAP+ hippocampal astroglia. We suggest that environmental enrichment and aging delayed hippocampal-dependent behavioral and neuropathological signs of disease progression.
Collapse
|
2
|
Tang J, Ardila Jimenez SC, Chakraborty S, Schultz SR. Visual Receptive Field Properties of Neurons in the Mouse Lateral Geniculate Nucleus. PLoS One 2016; 11:e0146017. [PMID: 26741374 PMCID: PMC4712148 DOI: 10.1371/journal.pone.0146017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 12/12/2015] [Indexed: 11/18/2022] Open
Abstract
The lateral geniculate nucleus (LGN) is increasingly regarded as a "smart-gating" operator for processing visual information. Therefore, characterizing the response properties of LGN neurons will enable us to better understand how neurons encode and transfer visual signals. Efforts have been devoted to study its anatomical and functional features, and recent advances have highlighted the existence in rodents of complex features such as direction/orientation selectivity. However, unlike well-researched higher-order mammals such as primates, the full array of response characteristics vis-à-vis its morphological features have remained relatively unexplored in the mouse LGN. To address the issue, we recorded from mouse LGN neurons using multisite-electrode-arrays (MEAs) and analysed their discharge patterns in relation to their location under a series of visual stimulation paradigms. Several response properties paralleled results from earlier studies in the field and these include centre-surround organization, size of receptive field, spontaneous firing rate and linearity of spatial summation. However, our results also revealed "high-pass" and "low-pass" features in the temporal frequency tuning of some cells, and greater average contrast gain than reported by earlier studies. In addition, a small proportion of cells had direction/orientation selectivity. Both "high-pass" and "low-pass" cells, as well as direction and orientation selective cells, were found only in small numbers, supporting the notion that these properties emerge in the cortex. ON- and OFF-cells showed distinct contrast sensitivity and temporal frequency tuning properties, suggesting parallel projections from the retina. Incorporating a novel histological technique, we created a 3-D LGN volume model explicitly capturing the morphological features of mouse LGN and localising individual cells into anterior/middle/posterior LGN. Based on this categorization, we show that the ON/OFF, DS/OS and linear response properties are not regionally restricted. Our study confirms earlier findings of spatial pattern selectivity in the LGN, and builds on it to demonstrate that relatively elaborate features are computed early in the visual pathway.
Collapse
Affiliation(s)
- Jiaying Tang
- Centre for Neurotechnology and Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom
| | - Silvia C. Ardila Jimenez
- Centre for Neurotechnology and Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom
| | - Subhojit Chakraborty
- Centre for Neurotechnology and Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom
| | - Simon R. Schultz
- Centre for Neurotechnology and Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom
- * E-mail:
| |
Collapse
|
3
|
Petrelli A, Marconi E, Salerno M, De Pietri Tonelli D, Berdondini L, Dante S. Nano-volume drop patterning for rapid on-chip neuronal connect-ability assays. LAB ON A CHIP 2013; 13:4419-4429. [PMID: 24064674 DOI: 10.1039/c3lc50564b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The ability of neurons to extend projections and to form physical connections among them (i.e., "connect-ability") is altered in several neuropathologies. The quantification of these alterations is an important read-out to investigate pathogenic mechanisms and for research and development of neuropharmacological therapies, however current morphological analysis methods are very time-intensive. Here, we present and characterize a novel on-chip approach that we propose as a rapid assay. Our approach is based on the definition on a neuronal cell culture substrate of discrete patterns of adhesion protein spots (poly-d-lysine, 23 ± 5 μm in diameter) characterized by controlled inter-spot separations of increasing distance (from 40 μm to 100 μm), locally adsorbed in an adhesion-repulsive agarose layer. Under these conditions, the connect-ability of wild type primary neurons from rodents is shown to be strictly dependent on the inter-spot distance, and can be rapidly documented by simple optical read-outs. Moreover, we applied our approach to identify connect-ability defects in neurons from a mouse model of 22q11.2 deletion syndrome/DiGeorge syndrome, by comparative trials with wild type preparations. The presented results demonstrate the sensitivity and reliability of this novel on-chip-based connect-ability approach and validate the use of this method for the rapid assessment of neuronal connect-ability defects in neuropathologies.
Collapse
Affiliation(s)
- Alessia Petrelli
- Nanophysics, Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy.
| | | | | | | | | | | |
Collapse
|
4
|
Parekh R, Ascoli GA. Neuronal morphology goes digital: a research hub for cellular and system neuroscience. Neuron 2013; 77:1017-38. [PMID: 23522039 PMCID: PMC3653619 DOI: 10.1016/j.neuron.2013.03.008] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2013] [Indexed: 02/07/2023]
Abstract
The importance of neuronal morphology in brain function has been recognized for over a century. The broad applicability of "digital reconstructions" of neuron morphology across neuroscience subdisciplines has stimulated the rapid development of numerous synergistic tools for data acquisition, anatomical analysis, three-dimensional rendering, electrophysiological simulation, growth models, and data sharing. Here we discuss the processes of histological labeling, microscopic imaging, and semiautomated tracing. Moreover, we provide an annotated compilation of currently available resources in this rich research "ecosystem" as a central reference for experimental and computational neuroscience.
Collapse
Affiliation(s)
- Ruchi Parekh
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, 22030, USA
| | - Giorgio A. Ascoli
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, 22030, USA
| |
Collapse
|
5
|
Yadav A, Gao YZ, Rodriguez A, Dickstein DL, Wearne SL, Luebke JI, Hof PR, Weaver CM. Morphologic evidence for spatially clustered spines in apical dendrites of monkey neocortical pyramidal cells. J Comp Neurol 2012; 520:2888-902. [PMID: 22315181 DOI: 10.1002/cne.23070] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The general organization of neocortical connectivity in rhesus monkey is relatively well understood. However, mounting evidence points to an organizing principle that involves clustered synapses at the level of individual dendrites. Several synaptic plasticity studies have reported cooperative interaction between neighboring synapses on a given dendritic branch, which may potentially induce synapse clusters. Additionally, theoretical models have predicted that such cooperativity is advantageous, in that it greatly enhances a neuron's computational repertoire. However, largely because of the lack of sufficient morphologic data, the existence of clustered synapses in neurons on a global scale has never been established. The majority of excitatory synapses are found within dendritic spines. In this study, we demonstrate that spine clusters do exist on pyramidal neurons by analyzing the three-dimensional locations of ∼40,000 spines on 280 apical dendritic branches in layer III of the rhesus monkey prefrontal cortex. By using clustering algorithms and Monte Carlo simulations, we quantify the probability that the observed extent of clustering does not occur randomly. This provides a measure that tests for spine clustering on a global scale, whenever high-resolution morphologic data are available. Here we demonstrate that spine clusters occur significantly more frequently than expected by pure chance and that spine clustering is concentrated in apical terminal branches. These findings indicate that spine clustering is driven by systematic biological processes. We also found that mushroom-shaped and stubby spines are predominant in clusters on dendritic segments that display prolific clustering, independently supporting a causal link between spine morphology and synaptic clustering.
Collapse
Affiliation(s)
- Aniruddha Yadav
- Fishberg Department of Neuroscience and Friedman Brain Institute, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Hutsler JJ, Avino TA. Sigmoid fits to locate and characterize cortical boundaries in human cerebral cortex. J Neurosci Methods 2012; 212:242-6. [PMID: 23137653 DOI: 10.1016/j.jneumeth.2012.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 10/11/2012] [Accepted: 10/16/2012] [Indexed: 10/27/2022]
Abstract
Quantitative evaluation of neuropathology within the cortex often requires a significant investigator time commitment. Here we elaborate on a method of quantifying the distinctiveness of the gray-white matter boundary using function fitting methods (Avino and Hutsler, 2010) and demonstrate that it can also be adapted to reliably identify the location of the gray matter/white matter (GM-WM) boundary in microscopic images, even when that boundary is indistinct. Multiple images of the gray-white matter boundary were acquired from sixteen subjects. Density profiles across the cortical layers were acquired and sigmoid functions were iteratively fit to the density profiles until a best fit was found. The slope of the resulting sigmoid was used to describe both the position and distinctiveness of the GM-WM boundary. Subsequently, two raters laid cortical boundaries on the same set of images and agreement between the raters, as well as agreement between each rater and the transverse-based boundaries, was assessed. Computer-generated boundaries showed reliably higher agreement with each individual rater, relative to the agreement between individual raters. Error between the raters and the transverse-based boundaries was associated with those images where the boundary was less distinct as assessed by the sigmoid slopes. These findings suggest that transverse-based boundaries are superior to user-generated boundaries. Furthermore, these findings suggest that rater-based boundary definitions in both neurotypical and pathological cases may become unreliable as the number of cell profiles found in the subplate region increases, as is the case in both autism and schizophrenia.
Collapse
Affiliation(s)
- Jeffrey J Hutsler
- Psychology Department, Program in Neuroscience, University of Nevada, Reno, NV 89557, USA.
| | | |
Collapse
|
7
|
Gleave JA, Wong MD, Dazai J, Altaf M, Henkelman RM, Lerch JP, Nieman BJ. Neuroanatomical phenotyping of the mouse brain with three-dimensional autofluorescence imaging. Physiol Genomics 2012; 44:778-85. [PMID: 22718750 DOI: 10.1152/physiolgenomics.00055.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The structural organization of the brain is important for normal brain function and is critical to understand in order to evaluate changes that occur during disease processes. Three-dimensional (3D) imaging of the mouse brain is necessary to appreciate the spatial context of structures within the brain. In addition, the small scale of many brain structures necessitates resolution at the ∼10 μm scale. 3D optical imaging techniques, such as optical projection tomography (OPT), have the ability to image intact large specimens (1 cm(3)) with ∼5 μm resolution. In this work we assessed the potential of autofluorescence optical imaging methods, and specifically OPT, for phenotyping the mouse brain. We found that both specimen size and fixation methods affected the quality of the OPT image. Based on these findings we developed a specimen preparation method to improve the images. Using this method we assessed the potential of optical imaging for phenotyping. Phenotypic differences between wild-type male and female mice were quantified using computer-automated methods. We found that optical imaging of the endogenous autofluorescence in the mouse brain allows for 3D characterization of neuroanatomy and detailed analysis of brain phenotypes. This will be a powerful tool for understanding mouse models of disease and development and is a technology that fits easily within the workflow of biology and neuroscience labs.
Collapse
|
8
|
Marcos R, Monteiro RAF, Rocha E. The use of design-based stereology to evaluate volumes and numbers in the liver: a review with practical guidelines. J Anat 2012; 220:303-17. [PMID: 22296163 DOI: 10.1111/j.1469-7580.2012.01475.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Stereology offers a number of tools for the analysis of sections in microscopy (which usually provide only two-dimensional information) for the purpose of estimating geometric quantities, such as volume, surface area, length or number of particles (cells or other structures). The use of these tools enables recovery of the three-dimensional information that is inherent in biological tissues. This review uses the liver as a paradigm for summarizing the most commonly used state-of-the-art methods for quantitation in design-based stereology. Because it is often relevant to distinguish hyperplasia and hypertrophy in liver responses, we also focus on potential pitfalls in the sampling and processing of liver specimens for stereological purposes, and assess the existing methods for volume and number estimation. With respect to volume, we considered whole liver volume (V), volume density (V(V)) and so-called local volumes, including the number-weighted volume (V(N)) and the volume-weighted volume (V(V)). For number, we considered the total number (N) and the numerical density (N(V)). If correctly applied, current stereological methods guarantee that no bias is introduced in the estimates, which will be therefore accurate; additionally, methods can be tuned for obtaining precise quantitative estimates that can reveal subtle changes in the volume or number of selected hepatic cells. These methods have already detailed the effects of some substances and specific diets on the liver, and should be routinely included in the toolbox of liver research.
Collapse
Affiliation(s)
- Ricardo Marcos
- Laboratory of Histology and Embryology, Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal
| | | | | |
Collapse
|
9
|
Sierra A, Encinas JM, Maletic-Savatic M. Adult human neurogenesis: from microscopy to magnetic resonance imaging. Front Neurosci 2011; 5:47. [PMID: 21519376 PMCID: PMC3075882 DOI: 10.3389/fnins.2011.00047] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 03/23/2011] [Indexed: 01/18/2023] Open
Abstract
Neural stem cells reside in well-defined areas of the adult human brain and are capable of generating new neurons throughout the life span. In rodents, it is well established that the new born neurons are involved in olfaction as well as in certain forms of memory and learning. In humans, the functional relevance of adult human neurogenesis is being investigated, in particular its implication in the etiopathology of a variety of brain disorders. Adult neurogenesis in the human brain was discovered by utilizing methodologies directly imported from the rodent research, such as immunohistological detection of proliferation and cell-type specific biomarkers in postmortem or biopsy tissue. However, in the vast majority of cases, these methods do not support longitudinal studies; thus, the capacity of the putative stem cells to form new neurons under different disease conditions cannot be tested. More recently, new technologies have been specifically developed for the detection and quantification of neural stem cells in the living human brain. These technologies rely on the use of magnetic resonance imaging, available in hospitals worldwide. Although they require further validation in rodents and primates, these new methods hold the potential to test the contribution of adult human neurogenesis to brain function in both health and disease. This review reports on the current knowledge on adult human neurogenesis. We first review the different methods available to assess human neurogenesis, both ex vivo and in vivo and then appraise the changes of adult neurogenesis in human diseases.
Collapse
Affiliation(s)
- Amanda Sierra
- Department of Pediatrics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute at Texas Children's HospitalHouston, TX, USA
| | - Juan M. Encinas
- Department of Pediatrics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute at Texas Children's HospitalHouston, TX, USA
| | - Mirjana Maletic-Savatic
- Department of Pediatrics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute at Texas Children's HospitalHouston, TX, USA
| |
Collapse
|