1
|
Nurcombe ZW, Hehr CL, McFarlane S. Plexina4 and cell survival in the developing zebrafish hindbrain. Dev Dyn 2023; 252:1323-1337. [PMID: 37283310 DOI: 10.1002/dvdy.633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Growth factors are important in the developing and mature nervous system to support the survival of neurons. Developmental signaling molecules are known for their roles in controlling neurogenesis and neural circuit formation. Whether or not these molecules also have roles in cell survival in the developing nervous system is poorly understood. Plexins are a family of transmembrane receptors that bind Semaphorin ligands and are known to function in the guidance of developing axons and blood vessels. RESULTS In embryonic zebrafish, plexina4 is expressed widely in the brain, becoming largely restricted to the hindbrain as neurogenesis and differentiation proceed. Apoptosis is increased in the embryonic hindbrain of a plexina4ca307/ca307 CRISPR mutant. Based on the literature, we tested the secreted heat shock protein, Clusterin, as a candidate ligand to mediate cell survival through Plexina4. clusterin is expressed by the floor plate of the embryonic zebrafish hindbrain, in proximity to plexina4-expressing hindbrain cells. Morpholino-mediated knockdown of Clusterin increases cell apoptosis in the hindbrain, with additional cell death observed in epistasis experiments where Clusterin is knocked down in a plexina4 mutant background. CONCLUSIONS Our data suggest that Plexina4 promotes cell survival in the developing zebrafish hindbrain, likely through a pathway independent of Clusterin.
Collapse
Affiliation(s)
- Zachary W Nurcombe
- Department Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Graduate Program in Neuroscience, University of Calgary, Calgary, Alberta, Canada
| | - Carrie Lynn Hehr
- Department Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Sarah McFarlane
- Department Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
2
|
Fernandez AM, Gutekunst CA, Grogan DP, Pedersen NP, Gross RE. Loss of efferent projections of the hippocampal formation in the mouse intrahippocampal kainic acid model. Epilepsy Res 2022; 180:106863. [PMID: 35114430 DOI: 10.1016/j.eplepsyres.2022.106863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/15/2021] [Accepted: 01/17/2022] [Indexed: 11/16/2022]
Abstract
Unilateral intrahippocampal injection of kainic acid is used as a model of medial temporal lobe epilepsy and provides a platform to study the mechanisms of epilepsy. Here, we used an AAV-9 EYFP-tagged viral vector as an anterograde tracer, injected into the dorsal and ventral hippocampus after kainic acid injection, to map out the efferent hippocampal projections after the development of spontaneous seizures in this model. The purpose of the study was to identify the extent of changes in hippocampal efferent system in several brain regions that receive significant inputs from the hippocampus. Loss of efferent hippocampal fibers was greatest in the retrosplenial cortex where neuronal loss was also observed. Loss of fibers was also observed in the fornix without any specific effect in the lateral mammillary nuclei. Although expected, these observations provide further evidence of the broader network effects as a result of hippocampal cell loss.
Collapse
Affiliation(s)
- Alejandra M Fernandez
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Claire-Anne Gutekunst
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Dayton P Grogan
- Department of Neurosurgery, Augusta University Hospital, Augusta, GA, 30912, USA
| | - Nigel P Pedersen
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA; Department of Neurology, Emory University, Atlanta, GA, 30322, USA
| | - Robert E Gross
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, 30322, USA; Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA; Department of Neurology, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
3
|
Bordbar F, Jensen J, Zhu B, Wang Z, Xu L, Chang T, Xu L, Du M, Zhang L, Gao H, Xu L, Li J. Identification of muscle-specific candidate genes in Simmental beef cattle using imputed next generation sequencing. PLoS One 2019; 14:e0223671. [PMID: 31600309 PMCID: PMC6786524 DOI: 10.1371/journal.pone.0223671] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/25/2019] [Indexed: 01/01/2023] Open
Abstract
Genome-wide association studies (GWAS) have commonly been used to identify candidate genes that control economically important traits in livestock. Our objective was to detect potential candidate genes associated mainly with muscle development traits related to dimension of hindquarter in cattle. A next generation sequencing (NGS) dataset to imputed to 12 million single nucleotide polymorphisms (SNPs) (from 1252 Simmental beef cattle) were used to search for genes affecting hindquarter traits using a linear, mixed model approach. We also used haplotype and linkage disequilibrium blocks to further support our identifications. We identified 202 significant SNPs in the bovine BTA4 chromosome region associated with width of hind leg, based on a stringent statistical threshold (p = 0.05/ effective number of SNPs identified). After exploring the region around these SNPs, we found candidate genes that were potentially related to the associated markers. More importantly, we identified a region of approximately 280 Kb on the BTA4 chromosome that harbored several muscle specific candidate genes, genes to be in a potential region for muscle development. However, we also found candidate gene SLC13A1 on BTA4, which seems to be associated with bone disorders (such as chondrodysplasia) in Simmental beef cattle.
Collapse
Affiliation(s)
- Farhad Bordbar
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Just Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Bo Zhu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zezhao Wang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Xu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tianpeng Chang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ling Xu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Min Du
- Department of Animal Sciences, Washington Center for Muscle Biology, Washington State University, Pullman, Washington, United States of America
| | - Lupei Zhang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huijiang Gao
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lingyang Xu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail: (JYL); (LYX)
| | - Junya Li
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail: (JYL); (LYX)
| |
Collapse
|
4
|
Jaiswal PB, Mistretta OC, Ward PJ, English AW. Chemogenetic Enhancement of Axon Regeneration Following Peripheral Nerve Injury in the SLICK-A Mouse. Brain Sci 2018; 8:brainsci8050093. [PMID: 29786639 PMCID: PMC5977084 DOI: 10.3390/brainsci8050093] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 11/16/2022] Open
Abstract
The effects of chemogenetics on axon regeneration following peripheral nerve transection and repair were studied in mice expressing a Cre-dependent excitatory designer receptor exclusively activated by designer drugs (DREADD) and Cre-recombinase/yellow fluorescent protein (YFP) in a subset of motor and sensory neurons and cortical motoneurons (SLICK-A). Sciatic nerves were cut and repaired and mice were treated either once, at the time of injury, or five days per week for two weeks with clozapine N-oxide (CNO) (1 mg/kg, i.p.), or were untreated controls. Two weeks after injury, the lengths of YFP+ axon profiles were measured in nerves harvested from euthanized animals. Compared to untreated controls, regenerating axon lengths were not significantly longer in mice treated only once with CNO, but they were more than three times longer in mice receiving CNO repeatedly. Based on results of retrograde labeling experiments, axons of more sensory and motor neurons had regenerated successfully in mice receiving multiple CNO treatments than animals receiving only one treatment or no treatments. The increase in numbers of labeled sensory, but not motor neurons could be accounted for by increases in the proportion of retrogradely labeled neurons also expressing the DREADD. Chemogenetic increases in neuronal excitability represent a potent and innovative treatment to promote peripheral nerve regeneration.
Collapse
Affiliation(s)
- Poonam B Jaiswal
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Olivia C Mistretta
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Patricia J Ward
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Arthur W English
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
5
|
Pasquini JM, Barrantes FJ, Quintá HR. Normal development of spinal axons in early embryo stages and posterior locomotor function is independent of GAL-1. J Comp Neurol 2017; 525:2861-2875. [DOI: 10.1002/cne.24243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 05/11/2017] [Accepted: 05/11/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Juana M. Pasquini
- Departamento de Química Biológica; Instituto de Química y Físico Química Biológica, Universidad de Buenos Aires; Buenos Aires Argentina
| | | | - Héctor R. Quintá
- Departamento de Química Biológica; Instituto de Química y Físico Química Biológica, Universidad de Buenos Aires; Buenos Aires Argentina
| |
Collapse
|
6
|
Gutekunst CA, Tung JK, McDougal ME, Gross RE. C3 transferase gene therapy for continuous conditional RhoA inhibition. Neuroscience 2016; 339:308-318. [PMID: 27746349 DOI: 10.1016/j.neuroscience.2016.10.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/03/2016] [Accepted: 10/05/2016] [Indexed: 01/21/2023]
Abstract
Regrowth inhibitory molecules prevent axon regeneration in the adult mammalian central nervous system (CNS). RhoA, a small GTPase in the Rho family, is a key intracellular switch that mediates the effects of these extracellular regrowth inhibitors. The bacterial enzyme C3-ADP ribosyltransferase (C3) selectively and irreversibly inhibits the activation of RhoA and stimulates axon outgrowth and regeneration. However, effective intracellular delivery of the C3 protein in vivo is limited by poor cell permeability and a short duration of action. To address this, we have developed a gene therapy approach using viral vectors to introduce the C3 gene into neurons or neuronal progenitors. Our vectors deliver C3 in a cell-autonomous (endogenous) or a cell-nonautonomous (secretable/permeable) fashion and promote in vitro process outgrowth on inhibitory chondroitin sulfate proteoglycan substrate. Further conditional control of our vectors was achieved via the addition of a Tet-On system, which allows for transcriptional control with doxycycline administration. These vectors will be crucial tools for promoting continued axonal regeneration after CNS injuries or neurodegenerative diseases.
Collapse
Affiliation(s)
- Claire-Anne Gutekunst
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States.
| | - Jack K Tung
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States; Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology College of Engineering, Atlanta, GA, United States.
| | - Margaret E McDougal
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States.
| | - Robert E Gross
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States; Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States; Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology College of Engineering, Atlanta, GA, United States.
| |
Collapse
|
7
|
Gutekunst CA, Gross RE. Plexin a4 expression in adult rat cranial nerves. J Chem Neuroanat 2014; 61-62:13-9. [PMID: 24970554 PMCID: PMC4267999 DOI: 10.1016/j.jchemneu.2014.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 05/21/2014] [Accepted: 06/16/2014] [Indexed: 12/16/2022]
Abstract
PlexinsA1-A4 participate in class 3 semaphorin signaling as co-receptors to neuropilin 1 and 2. PlexinA4 is the latest member of the PlexinA subfamily to be identified. In previous studies, we described the expression of PlexinA4 in the brain and spinal cord of the adult rat. Here, antibodies to PlexinA4 were used to reveal immunolabeling in most of the cranial nerve surveyed. Labeling was found in the olfactory, optic, oculomotor, trochlear, trigeminal, abducens, facial, vestibulocochlear, glossopharyngeal, vagus, and hypoglossal nerves. This is the first detailed description of the cellular and subcellular distribution of PlexinA4 in the adult cranial nerves. The findings will set the basis for future studies on the potential role of PlexinA4 in regeneration and repair of the adult central and peripheral nervous system.
Collapse
Affiliation(s)
| | - Robert E Gross
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA; Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| |
Collapse
|
8
|
Curley JL, Catig GC, Horn-Ranney EL, Moore MJ. Sensory axon guidance with semaphorin 6A and nerve growth factor in a biomimetic choice point model. Biofabrication 2014; 6:035026. [PMID: 25189126 PMCID: PMC4170667 DOI: 10.1088/1758-5082/6/3/035026] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The direct effect of guidance cues on developing and regenerating axons in vivo is not fully understood, as the process involves a multiplicity of attractive and repulsive signals, presented both as soluble and membrane-bound ligands. A better understanding of axon guidance is critical to functional recovery following injury to the nervous system through improved outgrowth and mapping of damaged nerves. Due to their implications as inhibitors to central nervous system regeneration, we investigated the repulsive properties of semaphorin 6A and ephrin-B3 on E15 rat dorsal root ganglion explants, as well as possible interactions with soluble gradients of chemoattractive nerve growth factor (NGF). We employed a 3D biomimetic in vitro choice point model, which enabled the simple and rapid preparation of patterned gel growth matrices with quantifiable presentation of guidance cues in a specifiable manner that resembles the in vivo presentation of soluble and/or immobilized ligands. Neurites demonstrated an inhibitory response to immobilized Sema6A by lumbosacral dorsal root ganglion explants, while no such repulsion was observed for immobilized ephrin-B3 by explants at any spinal level. Interestingly, Sema6A inhibition could be partially attenuated in a concentration-dependent manner through the simultaneous presentation of soluble NGF gradients. The in vitro model described herein represents a versatile and valuable investigative tool in the quest for understanding developmental processes and improving regeneration following nervous system injury.
Collapse
Affiliation(s)
- J. Lowry Curley
- Lindy Boggs Bldg., Suite 500, Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118, USA
| | - Gary C. Catig
- Lindy Boggs Bldg., Suite 500, Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118, USA
| | - Elaine L. Horn-Ranney
- Lindy Boggs Bldg., Suite 500, Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118, USA
| | - Michael J. Moore
- Lindy Boggs Bldg., Suite 500, Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|