1
|
Roberta C, Vera S, Hans A H, Michael H H. Activation patterns of dopaminergic cell populations reflect different learning scenarios in a cichlid fish, Pseudotropheus zebra. J Chem Neuroanat 2023; 133:102342. [PMID: 37722435 DOI: 10.1016/j.jchemneu.2023.102342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Abstract
Dopamine is present in all vertebrates and the functional roles of the subsystems are assumed to be similar. Whereas the effect of dopaminergic modulation is well investigated in different target systems, less is known about the factors that are causing the modulation of dopaminergic cells. Using the zebra mbuna, Pseudotropheus zebra, a cichlid fish from Lake Malawi as a model system, we investigated the activation of specific dopaminergic cell populations detected by double-labeling with TH and pS6 antibodies while the animals were solving different learning tasks. Specifically, we compared an intense avoidance learning situation, an instrumental learning task, and a non-learning isolated group and found strong activation of different dopaminergic cell populations. Preoptic-hypothalamic cell populations respond to the stress component in the avoidance task, and the forced movement/locomotion may be responsible for activation in the posterior tubercle. The instrumental learning task had little stress component, but the activation of the raphe superior in this group may be correlated with attention or arousal during the training sessions. At the same time, the weaker activation of the nucleus of the posterior commissure may be related to positive reward acting onto tectal circuits. Finally, we examined the co-activation patterns across all dopaminergic cell populations and recovered robust differences across experimental groups, largely driven by hypothalamic, posterior tubercle, and brain stem regions possibly encoding the valence and salience associated with stressful stimuli. Taken together, our results offer some insights into the different functions of the dopaminergic cell populations in the brain of a non-mammalian vertebrate in correlation with different behavioral conditions, extending our knowledge for a more comprehensive view of the mechanisms of dopaminergic modulation in vertebrates.
Collapse
Affiliation(s)
- Calvo Roberta
- Institute of Zoology, Rheinische Friedrich-Wilhelms-Universität Bonn, Poppelsdorfer Schloss, Meckenheimer Allee 169, 53115 Bonn, Germany.
| | - Schluessel Vera
- Institute of Zoology, Rheinische Friedrich-Wilhelms-Universität Bonn, Poppelsdorfer Schloss, Meckenheimer Allee 169, 53115 Bonn, Germany
| | - Hofmann Hans A
- Department of Integrative Biology, Institute for Neuroscience, University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA
| | - Hofmann Michael H
- Institute of Zoology, Rheinische Friedrich-Wilhelms-Universität Bonn, Poppelsdorfer Schloss, Meckenheimer Allee 169, 53115 Bonn, Germany
| |
Collapse
|
2
|
Wullimann MF. The Neuromeric/Prosomeric Model in Teleost Fish Neurobiology. BRAIN, BEHAVIOR AND EVOLUTION 2022; 97:336-360. [PMID: 35728561 PMCID: PMC9808694 DOI: 10.1159/000525607] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 06/08/2022] [Indexed: 01/07/2023]
Abstract
The neuromeric/prosomeric model has been rejuvenated by Puelles and Rubenstein [Trends Neurosci. 1993;16(11):472-9]. Here, its application to the (teleostean) fish brain is detailed, beginning with a historical account. The second part addresses three main issues with particular interest for fish neuroanatomy and looks at the impact of the neuromeric model on their understanding. The first one is the occurrence of four early migrating forebrain areas (M1 through M4) in teleosts and their comparative interpretation. The second issue addresses the complex development and neuroanatomy of the teleostean alar and basal hypothalamus. The third topic is the vertebrate dopaminergic system, with the focus on some teleostean peculiarities. Most of the information will be coming from zebrafish studies, although the general ductus is a comparative one. Throughout the manuscript, comparative developmental and organizational aspects of the teleostean amygdala are discussed. One particular focus is cellular migration streams into the medial amygdala.
Collapse
Affiliation(s)
- Mario F. Wullimann
- Division of Neurobiology, Department Biologie II, Ludwig-Maximilians-Universität München (LMU Munich), Martinsried, Germany,Department Genes-Circuits-Behavior, Max-Planck-Institute for Biological Intelligence (i.F.), Martinsried, Germany,*Mario F. Wullimann,
| |
Collapse
|
3
|
Eugenin von Bernhardi J, Biechl D, Miek L, Herget U, Ryu S, Wullimann MF. A versatile transcription factor: Multiple roles of orthopedia a (otpa) beyond its restricted localization in dopaminergic systems of developing and adult zebrafish (Danio rerio) brains. J Comp Neurol 2022; 530:2537-2561. [PMID: 35708548 DOI: 10.1002/cne.25351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 11/06/2022]
Abstract
Many transcription factors boost neural development and differentiation in specific directions and serve for identifying similar or homologous structures across species. The expression of Orthopedia (Otp) is critical for the development of certain cell groups along the vertebrate neuraxis, for example, the medial amygdala or hypothalamic neurosecretory neurons. Therefore, the primary focus of the present study is the distribution of Orthopedia a (Otpa) in the larval and adult zebrafish (Danio rerio) brain. Since Otpa is also critical for the development of zebrafish basal diencephalic dopaminergic cells, colocalization of Otpa with the catecholamine synthesizing enzyme tyrosine hydroxylase (TH) is studied. Cellular colocalization of Otpa and dopamine is only seen in magnocellular neurons of the periventricular posterior tubercular nucleus and in the posterior tuberal nucleus. Otpa-positive cells occur in many additional structures along the zebrafish neuraxis, from the secondary prosencephalon down to the hindbrain. Furthermore, Otpa expression is studied in shh-GFP and islet1-GFP transgenic zebrafish. Otpa-positive cells only express shh in dopaminergic magnocellular periventricular posterior tubercular cells, and only colocalize with islet1-GFP in the ventral zone and prerecess caudal periventricular hypothalamic zone and the perilemniscal nucleus. The scarcity of cellular colocalization of Otpa in islet1-GFP cells indicates that the Shh-islet1 neurogenetic pathway is not active in most Otpa-expressing domains. Our analysis reveals detailed correspondences between mouse and zebrafish forebrain territories including the zebrafish intermediate nucleus of the ventral telencephalon and the mouse medial amygdala. The zebrafish preoptic Otpa-positive domain represents the neuropeptidergic supraopto-paraventricular region of all tetrapods. Otpa domains in the zebrafish basal plate hypothalamus suggest that the ventral periventricular hypothalamic zone corresponds to the otp-expressing basal hypothalamic tuberal field in the mouse. Furthermore, the mouse otp domain in the mammillary hypothalamus compares partly to our Otpa-positive domain in the prerecess caudal periventricular hypothalamic zone (Hc-a).
Collapse
Affiliation(s)
- Jaime Eugenin von Bernhardi
- Faculty of Biology, Division of Neurobiology, Ludwig-Maximilians-Universität Munich, München, Bavaria, Germany.,The Solomon Snyder Department of Neuroscience, Johns Hopkins Univeristy, Baltimore, Maryland, USA
| | - Daniela Biechl
- Faculty of Biology, Division of Neurobiology, Ludwig-Maximilians-Universität Munich, München, Bavaria, Germany
| | - Laura Miek
- Faculty of Biology, Division of Neurobiology, Ludwig-Maximilians-Universität Munich, München, Bavaria, Germany
| | - Ulrich Herget
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Soojin Ryu
- Living Systems Institute University of Exeter, Exeter, Devon, UK.,College of Medicine and Health, University of Exeter, Exeter, Devon, UK
| | - Mario F Wullimann
- Faculty of Biology, Division of Neurobiology, Ludwig-Maximilians-Universität Munich, München, Bavaria, Germany.,Max-Planck-Institute of Neurobiology, Planegg-Martinsried, Germany
| |
Collapse
|
4
|
Tallafuss A, Stednitz SJ, Voeun M, Levichev A, Larsch J, Eisen J, Washbourne P. Egr1 Is Necessary for Forebrain Dopaminergic Signaling during Social Behavior. eNeuro 2022; 9:ENEURO.0035-22.2022. [PMID: 35346959 PMCID: PMC8994534 DOI: 10.1523/eneuro.0035-22.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/08/2022] [Accepted: 03/12/2022] [Indexed: 12/25/2022] Open
Abstract
Finding the link between behaviors and their regulatory molecular pathways is a major obstacle in treating neuropsychiatric disorders. The immediate early gene (IEG) EGR1 is implicated in the etiology of neuropsychiatric disorders, and is linked to gene pathways associated with social behavior. Despite extensive knowledge of EGR1 gene regulation at the molecular level, it remains unclear how EGR1 deficits might affect the social component of these disorders. Here, we examined the social behavior of zebrafish with a mutation in the homologous gene egr1 Mutant fish exhibited reduced social approach and orienting, whereas other sensorimotor behaviors were unaffected. On a molecular level, expression of the dopaminergic biosynthetic enzyme, tyrosine hydroxylase (TH), was strongly decreased in TH-positive neurons of the anterior parvocellular preoptic nucleus. These neurons are connected with basal forebrain (BF) neurons associated with social behavior. Chemogenetic ablation of around 30% of TH-positive neurons in this preoptic region reduced social attraction to a similar extent as the egr1 mutation. These results demonstrate the requirement of Egr1 and dopamine signaling during social interactions, and identify novel circuitry underlying this behavior.
Collapse
Affiliation(s)
| | | | - Mae Voeun
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403
| | | | - Johannes Larsch
- Max Planck Institut für Neurobiologie, Martinsried, D-82152, Munich Germany
| | - Judith Eisen
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403
| | | |
Collapse
|
5
|
Rosner E, Chagnaud BP, Wullimann MF. Serotonin systems in three socially communicating teleost species, the grunting toadfish (Allenbatrachus grunniens), a South American marine catfish (Ariopsis seemanni), and the upside-down catfish (Synodontis nigriventris). J Chem Neuroanat 2019; 104:101708. [PMID: 31705955 DOI: 10.1016/j.jchemneu.2019.101708] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/25/2019] [Accepted: 10/26/2019] [Indexed: 11/20/2022]
Abstract
We investigated immunohistochemically the distribution of serotonergic cell populations in three teleost species (one toadfish, Allenbatrachus grunniens, and two catfishes, Synodontis nigriventris and Ariopsis seemanni). All three species exhibited large populations of 5-HT positive neurons in the paraventricular organ (PVO) and the dorsal (Hd) and caudal (Hc) periventricular hypothalamic zones, plus a smaller one in the periventricular pretectum, a few cells in the pineal stalk, and - only in catfishes - in the preoptic region. Furthermore, the rhombencephalic superior and inferior raphe always contained ample serotonergic cells. In each species, a neuronal mass extended into the hypothalamic lateral recess. Only in the toadfish, did this intraventricular structure contain serotonergic cells and arise from Hd, whereas in the catfishes it emerged from medially and represents the dorsal tuberal nucleus seen in other catfishes as well. Serotonergic cells in PVO, Hd and Hc were liquor-contacting. Those of the PVO extended into the midline area of the periventricular posterior tubercular nucleus in both catfishes. Dopaminergic, liquor-contacting neurons were additionally investigated using an antibody against tyrosine hydroxylase (TH) in S. nigriventris showing that TH was never co-localized with serotonin. Because TH antibodies are known to reveal mostly or only the TH1 enzyme, we hypothesize that th1-expressing dopamine cells (unlike th2-expressing ones) do not co-localize with serotonin. Since the three investigated species engage in social communication using swim bladder associated musculature, we investigated the serotonergic innervation of the hindbrain vocal or electromotor nuclei initiating the social signal. We found in all three species serotonergic fibers seemingly originating from close-by serotonergic neurons of inferior raphe or anterior spinal cord. Minor differences appear to be rather species-specific than dependent on the type of social communication.
Collapse
Affiliation(s)
- Elisabeth Rosner
- Department Biologie II, Ludwig-Maximilians-Universität München, Großhaderner Straße 2, 82152 Planegg-Martinsried, Germany; Graduate School of Systemic Neurosciences Munich, Großhaderner Straße 2, 82152 Planegg-Martinsried, Germany
| | - Boris P Chagnaud
- Institute for Biology, Karl-Franzens University Graz, Universitätsplatz 2, 8010 Graz, Austria.
| | - Mario F Wullimann
- Department Biologie II, Ludwig-Maximilians-Universität München, Großhaderner Straße 2, 82152 Planegg-Martinsried, Germany; Graduate School of Systemic Neurosciences Munich, Großhaderner Straße 2, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
6
|
Baeuml SW, Biechl D, Wullimann MF. Adult islet1 Expression Outlines Ventralized Derivatives Along Zebrafish Neuraxis. Front Neuroanat 2019; 13:19. [PMID: 30863287 PMCID: PMC6399416 DOI: 10.3389/fnana.2019.00019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/01/2019] [Indexed: 01/16/2023] Open
Abstract
Signals issued by dorsal roof and ventral floor plates, respectively, underlie the major patterning process of dorsalization and ventralization during vertebrate neural tube development. The ventrally produced morphogen Sonic hedgehog (SHH) is crucial for vertebrate hindbrain and spinal motor neuron development. One diagnostic gene for motor neurons is the LIM/homeodomain gene islet1, which has additional ventral expression domains extending into mid- and forebrain. In order to corroborate motor neuron development and, in particular, to improve on the identification of poorly documented zebrafish forebrain islet1 populations, we studied adult brains of transgenic islet1-GFP zebrafish (3 and 6 months). This molecular neuroanatomical analysis was supported by immunostaining these brains for tyrosine hydroxylase (TH) or choline acetyltransferase (ChAT), respectively, revealing zebrafish catecholaminergic and cholinergic neurons. The present analysis of ChAT and islet1-GFP label confirms ongoing adult expression of islet1 in zebrafish (basal plate) midbrain, hindbrain, and spinal motor neurons. In contrast, non-motor cholinergic systems lack islet1 expression. Additional presumed basal plate islet1 positive systems are described in detail, aided by TH staining which is particularly informative in the diencephalon. Finally, alar plate zebrafish forebrain systems with islet1 expression are described (i.e., thalamus, preoptic region, and subpallium). We conclude that adult zebrafish continue to express islet1 in the same brain systems as in the larva. Further, pending functional confirmation we hypothesize that the larval expression of sonic hedgehog (shh) might causally underlie much of adult islet1 expression because it explains findings beyond ventrally located systems, for example regarding shh expression in the zona limitans intrathalamica and correlated islet1-GFP expression in the thalamus.
Collapse
Affiliation(s)
- Stephan W Baeuml
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Daniela Biechl
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Mario F Wullimann
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
7
|
Kent M, Bell AM. Changes in behavior and brain immediate early gene expression in male threespined sticklebacks as they become fathers. Horm Behav 2018; 97:102-111. [PMID: 29117505 PMCID: PMC5771839 DOI: 10.1016/j.yhbeh.2017.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 10/21/2017] [Accepted: 11/03/2017] [Indexed: 02/04/2023]
Abstract
Motherhood is a period of intense behavioral and brain activity. However, we know less about the neural and molecular mechanisms associated with the demands of fatherhood. Here, we report the results of two experiments designed to track changes in behavior and brain activation associated with fatherhood in male threespined stickleback fish (Gasterosteus aculeatus), a species in which fathers are the sole providers of parental care. In experiment 1, we tested whether males' behavioral reactions to different social stimuli depends on parental status, i.e. whether they were providing parental care. Parental males visited their nest more in response to social stimuli compared to nonparental males. Rates of courtship behavior were high in non-parental males but low in parental males. In experiment 2, we used a quantitative in situ hybridization method to compare the expression of an immediate early gene (Egr-1) across the breeding cycle - from establishing a territory to caring for offspring. Egr-1 expression peaked when the activities associated with fatherhood were greatest (when they were providing care to fry), and then returned to baseline levels once offspring were independent. The medial dorsal telencephalon (basolateral amygdala), lateral part of dorsal telencephalon (hippocampus) and anterior tuberal nucleus (ventral medial hypothalamus) exhibited high levels of Egr-1 expression during the breeding cycle. These results help to define the neural circuitry associated with fatherhood in fishes, and are consistent with the hypothesis that fatherhood - like motherhood - is a period of intense behavioral and neural activity.
Collapse
Affiliation(s)
- Molly Kent
- Program in Neuroscience, University of Illinois, Urbana Champaign, United States
| | - Alison M Bell
- School of Integrative Biology, Program in Neuroscience, Program in Ecology, Evolution and Conservation, Institute for Genomic Biology, University of Illinois, Urbana Champaign, United States.
| |
Collapse
|
8
|
Magalhães Horn ÂC, Rasia-Filho AA. The Cytoarchitecture of the Telencephalon of Betta Splendens Regan 1910 (Perciformes: Anabantoidei) with a Stereological Approach to the Supracommissural and Postcommissural Nuclei. Anat Rec (Hoboken) 2017; 301:88-110. [PMID: 29024431 DOI: 10.1002/ar.23699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 05/22/2017] [Accepted: 07/13/2017] [Indexed: 11/06/2022]
Abstract
Teleostean fish brains are useful models to study cellular and functional specializations along the phylogenesis. The Betta splendens Regan 1910 (Siamese fighting fish; Perciformes:Anabantoidei) is known for its aggressive display, courtship behavior, nest building, and offspring care. Here, we present novel and detailed data about the cytoarchitecture of the olfactory bulb and the telencephalic hemispheres of this fish. The hematoxylin-eosin and Nissl techniques served to identify brain nuclei (n = 19 males and n = 21 females) and for the stereological evaluation of the numerical density of cells and the proportion of neurons and glial cells in the ventral telencephalon supracommissural (Vs) and postcommissural (Vp) nuclei of adult males and females. These nuclei are putative homologs of the sexually dimorphic medial amygdala in mammals. The olfactory bulb of Betta splendens consists of 5 concentrically arranged layers plus ganglion cells of the terminal nerves. The dorsal telencephalon consists of 16 different cell groups. The ventral telencephalon has 8 nuclei, plus the lateral septal organ and the nuclei of the preoptic area forming an anatomical continuum. The rostrocaudal extent of the Vs and Vp is not different between sexes. In both nuclei, the proportion of neurons to glial cells is approximately 2:1 and the density of neurons and glial cells is not different between sexes. These morphological findings can subserve future research on the brain function of the Betta splendens and the search for neural sex differences in other central areas of this same species, in other teleost species, or yet in other related vertebrate group. Anat Rec, 00:000-000, 2017. © 2017 Wiley Periodicals, Inc. Anat Rec, 301:88-110, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ângelo Cássio Magalhães Horn
- Laboratory of Histology, Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul - Campus Porto Alegre, Porto Alegre, RS 90030-041, Brazil.,ICBS/Neuroscience Program, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90050-170, Brazil
| | - Alberto A Rasia-Filho
- ICBS/Neuroscience Program, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90050-170, Brazil.,DCBS/Physiology, Universidade Federal de Ciência da Saúde de Porto Alegre, Porto Alegre, RS 90050-170, Brazil
| |
Collapse
|
9
|
Simões JM, Barata EN, Harris RM, O'Connell LA, Hofmann HA, Oliveira RF. Social odors conveying dominance and reproductive information induce rapid physiological and neuromolecular changes in a cichlid fish. BMC Genomics 2015; 16:114. [PMID: 25766511 PMCID: PMC4344806 DOI: 10.1186/s12864-015-1255-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 01/19/2015] [Indexed: 01/01/2023] Open
Abstract
Background Social plasticity is a pervasive feature of animal behavior. Animals adjust the expression of their social behavior to the daily changes in social life and to transitions between life-history stages, and this ability has an impact in their Darwinian fitness. This behavioral plasticity may be achieved either by rewiring or by biochemically switching nodes of the neural network underlying social behavior in response to perceived social information. Independent of the proximate mechanisms, at the neuromolecular level social plasticity relies on the regulation of gene expression, such that different neurogenomic states emerge in response to different social stimuli and the switches between states are orchestrated by signaling pathways that interface the social environment and the genotype. Here, we test this hypothesis by characterizing the changes in the brain profile of gene expression in response to social odors in the Mozambique Tilapia, Oreochromis mossambicus. This species has a rich repertoire of social behaviors during which both visual and chemical information are conveyed to conspecifics. Specifically, dominant males increase their urination frequency during agonist encounters and during courtship to convey chemical information reflecting their dominance status. Results We recorded electro-olfactograms to test the extent to which the olfactory epithelium can discriminate between olfactory information from dominant and subordinate males as well as from pre- and post-spawning females. We then performed a genome-scale gene expression analysis of the olfactory bulb and the olfactory cortex homolog in order to identify the neuromolecular systems involved in processing these social stimuli. Conclusions Our results show that different olfactory stimuli from conspecifics’ have a major impact in the brain transcriptome, with different chemical social cues eliciting specific patterns of gene expression in the brain. These results confirm the role of rapid changes in gene expression in the brain as a genomic mechanism underlying behavioral plasticity and reinforce the idea of an extensive transcriptional plasticity of cichlid genomes, especially in response to rapid changes in their social environment. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1255-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- José M Simões
- Unidade de Investigação em Eco-Etologia, ISPA - Instituto Universitário, Rua Jardim do Tabaco 34, 1149-041, Lisbon, Portugal. .,Integrative Behavioural Biology Lab, Instituto Gulbenkian de Ciência, Oeiras, Portugal. .,Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal.
| | - Eduardo N Barata
- CCMAR-CIMAR Laboratório Associado, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal. .,Departamento de Biologia, Universidade de Évora, Apartado 94, 7002-554, Évora, Portugal.
| | - Rayna M Harris
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA. .,Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA.
| | - Lauren A O'Connell
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA. .,Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA. .,Current address: FAS Center for Systems Biology, Harvard University, Cambridge, MA, USA.
| | - Hans A Hofmann
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA. .,Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA. .,Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA.
| | - Rui F Oliveira
- Unidade de Investigação em Eco-Etologia, ISPA - Instituto Universitário, Rua Jardim do Tabaco 34, 1149-041, Lisbon, Portugal. .,Integrative Behavioural Biology Lab, Instituto Gulbenkian de Ciência, Oeiras, Portugal. .,Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal.
| |
Collapse
|
10
|
Anxiety- and depressive-like behaviors in olfactory deficient Cnga2 knockout mice. Behav Brain Res 2014; 275:219-24. [DOI: 10.1016/j.bbr.2014.08.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 08/14/2014] [Accepted: 08/23/2014] [Indexed: 10/24/2022]
|
11
|
Combinatorial analysis of calcium-binding proteins in larval and adult zebrafish primary olfactory system identifies differential olfactory bulb glomerular projection fields. Brain Struct Funct 2014; 220:1951-70. [PMID: 24728871 DOI: 10.1007/s00429-014-0765-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 03/25/2014] [Indexed: 01/05/2023]
Abstract
In the zebrafish (Danio rerio) olfactory epithelium, the calcium-binding proteins (CBPs) calretinin and S100/S100-like protein are mainly expressed in ciliated or crypt olfactory sensory neurons (OSNs), respectively. In contrast parvalbumin and calbindin1 have not been investigated. We present a combinatorial immunohistological analysis of all four CBPs, including their expression in OSNs and their axonal projections to the olfactory bulb in larval and adult zebrafish. A major expression of calretinin and S100 in ciliated and crypt cells, respectively, with some expression of S100 in microvillous cells is confirmed. Parvalbumin and calbindin1 are strongly expressed in ciliated and microvillous cells, but not in crypt cells. Moreover, detailed combinatorial double-label experiments indicate that there are eight subpopulations of zebrafish OSNs: S100-positive crypt cells (negative for all other three CBPs), parvalbumin only, S100 and parvalbumin, parvalbumin and calbindin1, and parvalbumin and calbindin1 and calretinin-positive microvillous OSNs, as well as a major parvalbumin and calbindin1 and calretinin, and minor parvalbumin and calbindin1 and calretinin-only-positive ciliated OSN populations. CBP-positive projections to olfactory bulb are consistent with previous reports of ciliated OSNs projecting to dorsal and ventromedial glomerular fields and microvillous OSNs to ventrolateral glomerular fields. We newly describe parvalbumin-positive fibers to the mediodorsal field which is calretinin free, with its anterior part showing additionally calbindin1-positive fibers, but absence thereof in the posterior part, indicating an origin from microvillous OSNs in both parts. One singular glomerulus (mdG2) exhibits S100 and parvalbumin-positive fibers, apparently originating from all crypt cells plus some microvillous OSNs. Arguments for various olfactory labeled lines are discussed.
Collapse
|
12
|
Bovetti S, Bonzano S, Garzotto D, Giannelli SG, Iannielli A, Armentano M, Studer M, De Marchis S. COUP-TFI controls activity-dependent tyrosine hydroxylase expression in adult dopaminergic olfactory bulb interneurons. Development 2013; 140:4850-9. [DOI: 10.1242/dev.089961] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
COUP-TFI is an orphan nuclear receptor acting as a strong transcriptional regulator in different aspects of forebrain embryonic development. In this study, we investigated COUP-TFI expression and function in the mouse olfactory bulb (OB), a highly plastic telencephalic region in which continuous integration of newly generated inhibitory interneurons occurs throughout life. OB interneurons belong to different populations that originate from distinct progenitor lineages. Here, we show that COUP-TFI is highly expressed in tyrosine hydroxylase (TH)-positive dopaminergic interneurons in the adult OB glomerular layer (GL). We found that odour deprivation, which is known to downregulate TH expression in the OB, also downregulates COUP-TFI in dopaminergic cells, indicating a possible correlation between TH- and COUP-TFI-activity-dependent action. Moreover, we demonstrate that conditional inactivation of COUP-TFI in the EMX1 lineage results in a significant reduction of both TH and ZIF268 expression in the GL. Finally, lentiviral vector-mediated COUP-TFI deletion in adult-generated interneurons confirmed that COUP-TFI acts cell-autonomously in the control of TH and ZIF268 expression. These data indicate that COUP-TFI regulates TH expression in OB cells through an activity-dependent mechanism involving ZIF268 induction and strongly argue for a maintenance rather than establishment function of COUP-TFI in dopaminergic commitment. Our study reveals a previously unknown role for COUP-TFI in the adult brain as a key regulator in the control of sensory-dependent plasticity in olfactory dopaminergic neurons.
Collapse
Affiliation(s)
- Serena Bovetti
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Sara Bonzano
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Torino, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gerzole 10, 10043, Orbassano, Italy
| | - Donatella Garzotto
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Serena Gea Giannelli
- San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), Division of Regenerative Medicine, Stem Cells, and Gene Therapy, San Raffaele Scientific Institute, Via Olgettina28, 20132, Milano, Italy
| | - Angelo Iannielli
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Torino, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gerzole 10, 10043, Orbassano, Italy
| | - Maria Armentano
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gerzole 10, 10043, Orbassano, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Via P. Castellino 111, 80131, Napoli, Italy
| | - Michèle Studer
- Telethon Institute of Genetics and Medicine (TIGEM), Via P. Castellino 111, 80131, Napoli, Italy
- University of Nice Sophia-Antipolis, Parc Valrose, 28 Avenue Valrose, F-06108 Nice, France
- INSERM UMR 1091, Parc Valrose, 28 Avenue Valrose, F-06108 Nice, France
| | - Silvia De Marchis
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Torino, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gerzole 10, 10043, Orbassano, Italy
| |
Collapse
|