1
|
Tsiasioti A, Tzanavaras PD. Determination of glutathione and glutathione disulfide using liquid chromatography: A review on recent applications. Microchem J 2023; 193:109157. [DOI: 10.1016/j.microc.2023.109157] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Yadav H, Singh R. Immunomodulatory role of non-ionizing electromagnetic radiation in human leukemiamonocytic cell line. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 331:121843. [PMID: 37207815 DOI: 10.1016/j.envpol.2023.121843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
In daily life, people are usually exposed to radiofrequency radiations (RFR). The effects of RFR on human physiology have been a major source of controversy since the WHO declared that these radiations are a type of environmental energy that interacts with the physiological functioning of the human body. The immune system provides internal protection and promotes long-term health and survival. However, the relevant research on the innate immune system and radiofrequency radiation is scant. In this connection, we hypothesized that innate immune responses would be influenced by exposure to non-ionizing electromagnetic radiation from mobile phones in a cell-specific and time-dependent manner. To analyze this hypothesis, human leukemia monocytic cell lines were exposed to 2318 MHz (MHz) RFR emitted by mobile phones at a power density of 0.224 W/m2 in a controlled manner for various time durations (15, 30, 45, 60, 90, and 120 min). Systematic studies on cell viability, nitric oxide (NO), superoxide (SO), pro-inflammatory cytokine production, and phagocytic assays were performed after the irradiation. The duration of exposure seems to have a substantial influence on the RFR-induced effects. It was noticed that after 30 min of exposure, the RFR dramatically enhanced the pro-inflammatory cytokine IL-1α level as well as reactive species such as NO and SO generation as compared to the control. In contrast, the RFR dramatically reduced the phagocytic activity of monocytes during 60 min of treatment when compared to the control. Interestingly, the irradiated cells restored their normal functioning until the final 120-min of exposure. Furthermore, mobile phone exposure had no influence on cell viability or TNF-α level. The results showed that RFR exhibits a time-dependent immune-modulatory role in the human leukemia monocytic cell line. Nevertheless, more research is needed to further determine the long-term effects and precise mechanism of action of RFR.
Collapse
Affiliation(s)
- Himanshi Yadav
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi-110054, India
| | - Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi-110054, India; Department of Environmental Science, Jamia Millia Islamia, Delhi- 110025, India.
| |
Collapse
|
3
|
Asadi‐Pooya AA, Mirzaei Damabi N, Rostaminejad M, Shahisavandi M, Asadi‐Pooya A. Smart devices/mobile phone in patients with epilepsy? A systematic review. Acta Neurol Scand 2021; 144:355-365. [PMID: 34180044 DOI: 10.1111/ane.13492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/08/2021] [Accepted: 06/16/2021] [Indexed: 11/28/2022]
Abstract
We systematically reviewed the existing literature on the safety of the use of smartphone, mobile phone/Internet, and Wi-Fi by people with epilepsy (PWE), according to the recommendations of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. Scopus, MEDLINE, and Google Scholar from the inception to April 9, 2021 were searched. These key words were used "epilepsy" OR "seizure" AND "Mobile Phone" OR "Cell Phone" OR "Smartphone" OR "Wi-Fi" OR "Electromagnetic" OR "Radiation." The primary search yielded 7766 studies; 33 studies were related. In total, 19 manuscripts were based on animal/computational studies and 14 articles reported human investigations. Among animal studies, 10 articles suggested detrimental effects by electromagnetic fields (EMFs) on brain function/seizure activity, while nine studies negated this hypothesis. Among human studies, seven studies suggested detrimental effects by EMFs on brain function/seizure activity, while seven studies negated this hypothesis. None of the studies provided a good level of evidence. In one human study, all seven patients with epilepsy and abnormal EEG during the sham exposure, had an increase in the number of epileptic events with exposure to mobile phone radiation. In another study of the detrimental effects of smart technology device overuse among school students, an association was found between reporting seizures and the hours of smart technology device use. While high-quality evidence on the safety of the use of smartphone, mobile phone/Internet, and Wi-Fi in PWE is lacking, prudent use of these technologies, including using wired hand-free sets or other exposure-reducing measures is recommended.
Collapse
Affiliation(s)
- Ali A. Asadi‐Pooya
- Epilepsy Research Center Shiraz University of Medical Sciences Shiraz Iran
- Jefferson Comprehensive Epilepsy Center Department of Neurology Thomas Jefferson University Philadelphia PA USA
| | | | | | - Mina Shahisavandi
- Epilepsy Research Center Shiraz University of Medical Sciences Shiraz Iran
| | | |
Collapse
|
4
|
Schuermann D, Mevissen M. Manmade Electromagnetic Fields and Oxidative Stress-Biological Effects and Consequences for Health. Int J Mol Sci 2021; 22:ijms22073772. [PMID: 33917298 PMCID: PMC8038719 DOI: 10.3390/ijms22073772] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/19/2021] [Accepted: 03/30/2021] [Indexed: 12/15/2022] Open
Abstract
Concomitant with the ever-expanding use of electrical appliances and mobile communication systems, public and occupational exposure to electromagnetic fields (EMF) in the extremely-low-frequency and radiofrequency range has become a widely debated environmental risk factor for health. Radiofrequency (RF) EMF and extremely-low-frequency (ELF) MF have been classified as possibly carcinogenic to humans (Group 2B) by the International Agency for Research on Cancer (IARC). The production of reactive oxygen species (ROS), potentially leading to cellular or systemic oxidative stress, was frequently found to be influenced by EMF exposure in animals and cells. In this review, we summarize key experimental findings on oxidative stress related to EMF exposure from animal and cell studies of the last decade. The observations are discussed in the context of molecular mechanisms and functionalities relevant to health such as neurological function, genome stability, immune response, and reproduction. Most animal and many cell studies showed increased oxidative stress caused by RF-EMF and ELF-MF. In order to estimate the risk for human health by manmade exposure, experimental studies in humans and epidemiological studies need to be considered as well.
Collapse
Affiliation(s)
- David Schuermann
- Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland
- Correspondence: (D.S.); (M.M.)
| | - Meike Mevissen
- Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Bern, Laenggassstrasse 124, CH-3012 Bern, Switzerland
- Correspondence: (D.S.); (M.M.)
| |
Collapse
|
5
|
Jeong JH, Lee SH, Kho AR, Hong DK, Kang DH, Kang BS, Park MK, Choi BY, Choi HC, Lim MS, Suh SW. The Transient Receptor Potential Melastatin 7 (TRPM7) Inhibitors Suppress Seizure-Induced Neuron Death by Inhibiting Zinc Neurotoxicity. Int J Mol Sci 2020; 21:ijms21217897. [PMID: 33114331 PMCID: PMC7663745 DOI: 10.3390/ijms21217897] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/25/2022] Open
Abstract
Transient receptor potential melastatin 7 (TRPM7) is an ion channel that mediates monovalent cations out of cells, as well as the entry of divalent cations, such as zinc, magnesium, and calcium, into the cell. It has been reported that inhibitors of TRPM7 are neuroprotective in various neurological diseases. Previous studies in our lab suggested that seizure-induced neuronal death may be caused by the excessive release of vesicular zinc and the subsequent accumulation of zinc in the neurons. However, no studies have evaluated the effects of carvacrol and 2-aminoethoxydiphenyl borate (2-APB), both inhibitors of TRPM7, on the accumulation of intracellular zinc in dying neurons following seizure. Here, we investigated the therapeutic efficacy of carvacrol and 2-APB against pilocarpine-induced seizure. Carvacrol (50 mg/kg) was injected once per day for 3 or 7 days after seizure. 2-APB (2 mg/kg) was also injected once per day for 3 days after seizure. We found that inhibitors of TRPM7 reduced seizure-induced TRPM7 overexpression, intracellular zinc accumulation, and reactive oxygen species production. Moreover, there was a suppression of oxidative stress, glial activation, and the blood–brain barrier breakdown. In addition, inhibitors of TRPM7 remarkably decreased apoptotic neuron death following seizure. Taken together, the present study demonstrates that TRPM7-mediated zinc translocation is involved in neuron death after seizure. The present study suggests that inhibitors of TRPM7 may have high therapeutic potential to reduce seizure-induced neuron death.
Collapse
Affiliation(s)
- Jeong Hyun Jeong
- Department of Physiology, Hallym University, College of Medicine, Chuncheon 24252, Korea; (J.H.J.); (S.H.L.); (A.R.K.); (D.K.H.); (D.H.K.); (B.S.K.); (M.K.P.)
| | - Song Hee Lee
- Department of Physiology, Hallym University, College of Medicine, Chuncheon 24252, Korea; (J.H.J.); (S.H.L.); (A.R.K.); (D.K.H.); (D.H.K.); (B.S.K.); (M.K.P.)
| | - A Ra Kho
- Department of Physiology, Hallym University, College of Medicine, Chuncheon 24252, Korea; (J.H.J.); (S.H.L.); (A.R.K.); (D.K.H.); (D.H.K.); (B.S.K.); (M.K.P.)
| | - Dae Ki Hong
- Department of Physiology, Hallym University, College of Medicine, Chuncheon 24252, Korea; (J.H.J.); (S.H.L.); (A.R.K.); (D.K.H.); (D.H.K.); (B.S.K.); (M.K.P.)
| | - Dong Hyeon Kang
- Department of Physiology, Hallym University, College of Medicine, Chuncheon 24252, Korea; (J.H.J.); (S.H.L.); (A.R.K.); (D.K.H.); (D.H.K.); (B.S.K.); (M.K.P.)
| | - Beom Seok Kang
- Department of Physiology, Hallym University, College of Medicine, Chuncheon 24252, Korea; (J.H.J.); (S.H.L.); (A.R.K.); (D.K.H.); (D.H.K.); (B.S.K.); (M.K.P.)
| | - Min Kyu Park
- Department of Physiology, Hallym University, College of Medicine, Chuncheon 24252, Korea; (J.H.J.); (S.H.L.); (A.R.K.); (D.K.H.); (D.H.K.); (B.S.K.); (M.K.P.)
| | - Bo Young Choi
- Department of Physiology, Hallym University, College of Medicine, Chuncheon 24252, Korea; (J.H.J.); (S.H.L.); (A.R.K.); (D.K.H.); (D.H.K.); (B.S.K.); (M.K.P.)
- Correspondence: (B.Y.C.); (H.C.C.); (M.-S.L.); (S.W.S.); Tel.: +82-10-8573-6364 (S.W.S.)
| | - Hui Chul Choi
- Department of Neurology, Hallym University, College of Medicine, Chuncheon 24252, Korea
- Correspondence: (B.Y.C.); (H.C.C.); (M.-S.L.); (S.W.S.); Tel.: +82-10-8573-6364 (S.W.S.)
| | - Man-Sup Lim
- Department of Medical Education, Hallym University, College of Medicine, Chuncheon 24252, Korea
- Correspondence: (B.Y.C.); (H.C.C.); (M.-S.L.); (S.W.S.); Tel.: +82-10-8573-6364 (S.W.S.)
| | - Sang Won Suh
- Department of Physiology, Hallym University, College of Medicine, Chuncheon 24252, Korea; (J.H.J.); (S.H.L.); (A.R.K.); (D.K.H.); (D.H.K.); (B.S.K.); (M.K.P.)
- Correspondence: (B.Y.C.); (H.C.C.); (M.-S.L.); (S.W.S.); Tel.: +82-10-8573-6364 (S.W.S.)
| |
Collapse
|
6
|
Er H, Basaranlar G, Ozen S, Demir N, Kantar D, Yargicoglu P, Derin N. The effects of acute and chronic exposure to 900 MHz radiofrequency radiation on auditory brainstem response in adult rats. Electromagn Biol Med 2020; 39:374-386. [PMID: 32865045 DOI: 10.1080/15368378.2020.1813159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The aim of this study was to determine the effects of short and long-term RFR exposure on ABR by evaluating lipid peroxidation and antioxidant status in adult rats. Sixty male albino Wistar rats were randomly divided into four groups. S1:1 week sham, S10:10 weeks sham, E1:1 week RFR, E10:10 weeks RFR. Experimental group rats were exposed to RFR 2 h/day, 5 days/week during the test period. Sham rats were kept in the same conditions without RFR. After the experiment, ABRs were recorded from the mastoids of rats using tone burst acoustic stimuli. Biochemical investigations in rat brain and ultrastructural analysis in temporal cortex were performed. ABR wave I latency prolonged in E1-group and shortened in E10-group compared to their shams. TBARS level increased in E1-group, decreased in E10-group, on the contrary, SOD and CAT activities and GSH level decreased in E1-group, increased in E10-group compared to their sham groups. Edema was present in the neuron and astrocyte cytoplasms and astrocyte end-feet in both E1 and E10 groups. Our results suggest that 900 MHz RFR may have negative effects on the auditory system in acute exposure and no adverse effects in chronic exposure without weekends.
Collapse
Affiliation(s)
- Hakan Er
- Department of Biophysics, Faculty of Medicine, Akdeniz University , Antalya, Turkey.,Electron Microscopy Image Analyzing Unit, Faculty of Medicine, Akdeniz University , Antalya, Turkey
| | - Goksun Basaranlar
- Department of Biophysics, Institute of Health Sciences, Akdeniz University , Antalya, Turkey
| | - Sukru Ozen
- Department of Electrical and Electronics Engineering, Faculty of Engineering, Akdeniz University , Antalya, Turkey
| | - Necdet Demir
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University , Antalya, Turkey
| | - Deniz Kantar
- Department of Biophysics, Faculty of Medicine, Akdeniz University , Antalya, Turkey
| | - Piraye Yargicoglu
- Department of Biophysics, Faculty of Medicine, Akdeniz University , Antalya, Turkey
| | - Narin Derin
- Department of Biophysics, Faculty of Medicine, Akdeniz University , Antalya, Turkey
| |
Collapse
|
7
|
Sharma S, Shukla S. Effect of electromagnetic radiation on redox status, acetylcholine esterase activity and cellular damage contributing to the diminution of the brain working memory in rats. J Chem Neuroanat 2020; 106:101784. [PMID: 32205214 DOI: 10.1016/j.jchemneu.2020.101784] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/15/2020] [Accepted: 03/17/2020] [Indexed: 01/18/2023]
Abstract
Behavioral impairments are the most pragmatic outcome of long-term mobile uses but the underlying causes are still poorly understood. Therefore, the Aim of the present study to determine the possible mechanism of mobile induced behavioral alterations by observing redox status, cholinesterase activity, cellular, genotoxic damage and cognitive alterations in rat hippocampus. This study was carried out on 24 male Wistar rats, randomly divided into four groups (n = 6 in each group): group I consisted of sham-exposed (control) rats, group II-IV consisted of rats exposed to microwave radiation (900 MHz) at different time duration 1 h, 2 h, and 4 h respectively for 90 days. After 90 days of exposure, rats were assessing learning ability by using T-Maze. A significantly increased level of malondialdehyde (MDA) with concomitantly depleted levels of superoxide dismutase (SOD), catalase (CAT) and redox enzymes (GSH, GPX, GR, GST, G-6PDH) indicated an exposure of mobile emitted EMR induced oxidative stress by the depleted redox status of brain cells. The depletion in the acetylcholinesterase (AChE) level reveals altered neurotransmission in brain cells. Resultant cellular degeneration was also observed in the radiation-exposed hippocampus. Conclusively, the present study revealed that microwave radiation induces oxidative stress, depleted redox status, and causes DNA damage with the subsequent reduction in working memory in a time-dependent manner. This study provides insight over the associative reciprocity between redox status, cellular degeneration and reduced cholinergic activity, which presumably leads to the behavioral alterations following mobile emitted electromagnetic radiation.
Collapse
Affiliation(s)
- Samta Sharma
- Reproductive Biology and Toxicology Laboratory, UNESCO Satellite center of Trace Element Research & School of Studies in Zoology, Jiwaji University, Gwalior, M.P., India.
| | - Sangeeta Shukla
- Reproductive Biology and Toxicology Laboratory, UNESCO Satellite center of Trace Element Research & School of Studies in Zoology, Jiwaji University, Gwalior, M.P., India
| |
Collapse
|
8
|
Wi-Fi decreases melatonin protective effect and increases hippocampal neuronal damage in pentylenetetrazole induced model seizures in rats. PATHOPHYSIOLOGY 2019; 26:375-379. [DOI: 10.1016/j.pathophys.2019.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 11/11/2019] [Accepted: 11/20/2019] [Indexed: 01/08/2023] Open
|
9
|
Alkis ME, Bilgin HM, Akpolat V, Dasdag S, Yegin K, Yavas MC, Akdag MZ. Effect of 900-, 1800-, and 2100-MHz radiofrequency radiation on DNA and oxidative stress in brain. Electromagn Biol Med 2019; 38:32-47. [PMID: 30669883 DOI: 10.1080/15368378.2019.1567526] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Ubiquitous and ever increasing use of mobile phones led to the growing concern about the effects of radiofrequency radiation (RFR) emitted by cell phones on biological systems. The aim of this study is to explore whether long-term RFR exposure at different frequencies affects DNA damage and oxidant-antioxidant parameters in the blood and brain tissue of rats. 28 male Sprague Dawley rats were randomly divided into four equal groups (n = 7). They were identified as Group 1: sham-control, Group 2: 900 MHz, Group 3: 1800 MHz, and Group 4: 2100 MHz. Experimental groups of rats were exposed to RFR 2 h/day for 6 months. The sham-control group of rats was subjected to the same experimental condition but generator was turned off. Specific absorption rates (SARs) at brain with 1 g average were calculated as 0.0845 W/kg, 0.04563 W/kg, and 0.03957, at 900 MHz, 1800 MHz, and 2100 MHz, respectively. Additionally, malondialdehyde (MDA), 8-hydroxydeoxyguanosine (8-OHdG), total antioxidant status (TAS), and total oxidant status (TOS) analyses were conducted in the brain tissue samples. Results of the study showed that DNA damage and oxidative stress indicators were found higher in the RFR exposure groups than in the sham-control group. In conclusion, 900-, 1800-, and 2100-MHz RFR emitted from mobile phones may cause oxidative damage, induce increase in lipid peroxidation, and increase oxidative DNA damage formation in the frontal lobe of the rat brain tissues. Furthermore, 2100-MHz RFR may cause formation of DNA single-strand breaks.
Collapse
Affiliation(s)
- Mehmet Esref Alkis
- a Department of Electronics , Engineering and Architecture Faculty of Mus Alparslan University , Mus , Turkey
| | - Hakki Murat Bilgin
- b Department of Physiology , Medical School of Dicle University , Diyarbakir , Turkey
| | - Veysi Akpolat
- c Department of Biophysics , Medical School of Dicle University , Diyarbakir , Turkey
| | - Suleyman Dasdag
- d Department of Biophysics , Medical School of Istanbul Medeniyet University , Istanbul , Turkey
| | - Korkut Yegin
- e Department of Electrical and Electronics Engineering , Ege University , Izmir , Turkey
| | - Mehmet Cihan Yavas
- f Department of Biophysics , Medical School of Ahi Evran University , Kirsehir , Turkey
| | - Mehmet Zulkuf Akdag
- c Department of Biophysics , Medical School of Dicle University , Diyarbakir , Turkey
| |
Collapse
|
10
|
Leon M, Sawmiller D, Shytle RD, Tan J. Therapeutic Cocktail Approach for Treatment of Hyperhomocysteinemia in Alzheimer's Disease. CELL MEDICINE 2018; 10:2155179017722280. [PMID: 32634177 PMCID: PMC6172991 DOI: 10.1177/2155179017722280] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In the United States, Alzheimer's disease (AD) is the most common cause of dementia, accompanied by substantial economic and emotional costs. During 2015, more than 15 million family members who provided care to AD patients had an estimated total cost of 221 billion dollars. Recent studies have shown that elevated total plasma levels of homocysteine (tHcy), a condition known as hyperhomocysteinemia (HHcy), is a risk factor for AD. HHcy is associated with cognitive decline, brain atrophy, and dementia; enhances the vulnerability of neurons to oxidative injury; and damages the blood-brain barrier. Many therapeutic supplements containing vitamin B12 and folate have been studied to help decrease tHcy to a certain degree. However, a therapeutic cocktail approach with 5-methyltetrahydrofolate, methyl B12, betaine, and N-acetylcysteine (NAC) have not been studied. This novel approach may help target multiple pathways simultaneously to decrease tHcy and its toxicity substantially.
Collapse
Affiliation(s)
- Michael Leon
- Department of Psychiatry and Behavioral Neurosciences, Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Darrell Sawmiller
- Department of Psychiatry and Behavioral Neurosciences, Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - R Douglas Shytle
- Department of Neurosurgery and Brain Repair, Center for Excellence in Aging and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Jun Tan
- Department of Psychiatry and Behavioral Neurosciences, Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
11
|
Oktay S, Bayrak G, Alev B, Ipekci H, Ustundag UV, Turkyilmaz IB, Pisiriciler R, Emekli-Alturfan E, Tunali-Akbay T, Yanardag R, Yarat A. The effect of vitamin U on the lung tissue of pentyleneterazole-induced seizures in rats. Naunyn Schmiedebergs Arch Pharmacol 2017; 391:177-184. [DOI: 10.1007/s00210-017-1447-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/28/2017] [Indexed: 12/22/2022]
|
12
|
Xu F, Bai Q, Zhou K, Ma L, Duan J, Zhuang F, Xie C, Li W, Zou P, Zhu C. Age-dependent acute interference with stem and progenitor cell proliferation in the hippocampus after exposure to 1800 MHz electromagnetic radiation. Electromagn Biol Med 2016; 36:158-166. [DOI: 10.1080/15368378.2016.1233886] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|