1
|
Esposito D, Cruciani G, Zaccaro L, Di Carlo E, Spitoni GF, Manti F, Carducci C, Fiori E, Leuzzi V, Pascucci T. A Systematic Review on Autism and Hyperserotonemia: State-of-the-Art, Limitations, and Future Directions. Brain Sci 2024; 14:481. [PMID: 38790459 PMCID: PMC11119126 DOI: 10.3390/brainsci14050481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Hyperserotonemia is one of the most studied endophenotypes in autism spectrum disorder (ASD), but there are still no unequivocal results about its causes or biological and behavioral outcomes. This systematic review summarizes the studies investigating the relationship between blood serotonin (5-HT) levels and ASD, comparing diagnostic tools, analytical methods, and clinical outcomes. A literature search on peripheral 5-HT levels and ASD was conducted. In total, 1104 publications were screened, of which 113 entered the present systematic review. Of these, 59 articles reported hyperserotonemia in subjects with ASD, and 26 presented correlations between 5-HT levels and ASD-core clinical outcomes. The 5-HT levels are increased in about half, and correlations between hyperserotonemia and clinical outcomes are detected in a quarter of the studies. The present research highlights a large amount of heterogeneity in this field, ranging from the characterization of ASD and control groups to diagnostic and clinical assessments, from blood sampling procedures to analytical methods, allowing us to delineate critical topics for future studies.
Collapse
Affiliation(s)
- Dario Esposito
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Sapienza University of Rome, Via dei Sabelli 108, 00185 Rome, Italy; (D.E.); (F.M.)
| | - Gianluca Cruciani
- Department of Dynamic and Clinical Psychology, and Health Studies, Sapienza University of Rome, Via degli Apuli 1, 00185 Rome, Italy; (G.C.); (G.F.S.)
| | - Laura Zaccaro
- Department of Psychology, Sapienza University, Via dei Marsi 78, 00185 Rome, Italy; (L.Z.); (T.P.)
| | - Emanuele Di Carlo
- Department of Experimental Medicine, Sapienza University, Viale del Policlinico 155, 00161 Rome, Italy; (E.D.C.); (C.C.)
| | - Grazia Fernanda Spitoni
- Department of Dynamic and Clinical Psychology, and Health Studies, Sapienza University of Rome, Via degli Apuli 1, 00185 Rome, Italy; (G.C.); (G.F.S.)
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Via Ardeatina 306-354, 00179 Rome, Italy
| | - Filippo Manti
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Sapienza University of Rome, Via dei Sabelli 108, 00185 Rome, Italy; (D.E.); (F.M.)
| | - Claudia Carducci
- Department of Experimental Medicine, Sapienza University, Viale del Policlinico 155, 00161 Rome, Italy; (E.D.C.); (C.C.)
| | - Elena Fiori
- Rome Technopole Foundation, P.le Aldo Moro, 5, 00185 Rome, Italy;
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Sapienza University of Rome, Via dei Sabelli 108, 00185 Rome, Italy; (D.E.); (F.M.)
| | - Tiziana Pascucci
- Department of Psychology, Sapienza University, Via dei Marsi 78, 00185 Rome, Italy; (L.Z.); (T.P.)
- Centro “Daniel Bovet”, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy
- Fondazione Santa Lucia Istituto di Ricovero e Cura a Carattere Scientifico, Via Ardeatina 306, 00179 Rome, Italy
| |
Collapse
|
2
|
Akram N, Faisal Z, Irfan R, Shah YA, Batool SA, Zahid T, Zulfiqar A, Fatima A, Jahan Q, Tariq H, Saeed F, Ahmed A, Asghar A, Ateeq H, Afzaal M, Khan MR. Exploring the serotonin-probiotics-gut health axis: A review of current evidence and potential mechanisms. Food Sci Nutr 2024; 12:694-706. [PMID: 38370053 PMCID: PMC10867509 DOI: 10.1002/fsn3.3826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 02/20/2024] Open
Abstract
Modulatory effects of serotonin (5-Hydroxytryptamine [5-HT]) have been seen in hepatic, neurological/psychiatric, and gastrointestinal (GI) disorders. Probiotics are live microorganisms that confer health benefits to their host. Recent research has suggested that probiotics can promote serotonin signaling, a crucial pathway in the regulation of mood, cognition, and other physiological processes. Reviewing the literature, we find that peripheral serotonin increases nutrient uptake and storage, regulates the composition of the gut microbiota, and is involved in mediating neuronal disorders. This review explores the mechanisms underlying the probiotic-mediated increase in serotonin signaling, highlighting the role of gut microbiota in the regulation of serotonin production and the modulation of neurotransmitter receptors. Additionally, this review discusses the potential clinical implications of probiotics as a therapeutic strategy for disorders associated with altered serotonin signaling, such as GI and neurological disorders. Overall, this review demonstrates the potential of probiotics as a promising avenue for the treatment of serotonin-related disorders and signaling of serotonin.
Collapse
Affiliation(s)
- Noor Akram
- Department of Food and NutritionGovernment College University FaisalabadFaisalabadPakistan
| | - Zargham Faisal
- Department of Human NutritionBahauddin Zakariya University MultanMultanPakistan
| | - Rushba Irfan
- Faculty of Food Nutrition & Home SciencesUniversity of AgricultureFaisalabadPakistan
| | - Yasir Abbas Shah
- Natural & Medical Science Research CenterUniversity of NizwaNizwaOman
| | - Syeda Ayesha Batool
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Toobaa Zahid
- Department of Food and NutritionGovernment College University FaisalabadFaisalabadPakistan
| | - Aqsa Zulfiqar
- Department of Food and NutritionGovernment College University FaisalabadFaisalabadPakistan
| | - Areeja Fatima
- National Institute of Food Science & TechnologyUniversity of AgricultureFaisalabadPakistan
| | - Qudsia Jahan
- Department of Food and NutritionGovernment College University FaisalabadFaisalabadPakistan
| | - Hira Tariq
- Department of Food and NutritionGovernment College University FaisalabadFaisalabadPakistan
| | - Farhan Saeed
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Aftab Ahmed
- Department of Nutritional SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Aasma Asghar
- Department of Nutritional SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Huda Ateeq
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Muhammad Afzaal
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Mahbubur Rahman Khan
- Department of Food Processing and PreservationHajee Mohammad Danesh Science & Technology UniversityDinajpurBangladesh
| |
Collapse
|
3
|
Shao J, Zhang F, Chen C, Wang Y, Wang Q, Zhou J. Brain Network for Exploring the Change of Brain Neurotransmitter 5-Hydroxytryptamine of Autism Children by Resting-State EEG. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:5451277. [PMID: 35502411 PMCID: PMC9056263 DOI: 10.1155/2022/5451277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/10/2022] [Accepted: 03/30/2022] [Indexed: 11/18/2022]
Abstract
The study was aimed at understanding the brain network and the change rule of brain neurotransmitter 5-hydroxytryptamine (5-HT) in autism children through resting-state electroencephalogram (EEG). 20 autistic children in hospital were selected and defined as the observation group. Meanwhile, 20 healthy children were defined as the control group. EEG signals were collected for the two groups. Fuzzy C-means (FCM) algorithm was used to extract features of EEG signals, and DTF was applied for the causal association between multichannel EEG signals. The two groups were compared for the average function value and regional efficiency of the brain neurotransmitter 5-HT. The results showed that the classification accuracy of frontal F7 channel, left frontal FP1 channel, and temporal T6 channel was 95.2%, 95.3%, and 91.2%, respectively. The average of high beta frequency band, low beta frequency band, theta frequency band, and alpha frequency band in the control group was significantly higher than that in the observation group under the optimal threshold (P < 0.05). Compared with normal subjects (34.27), the average function of 5-HT in the brain was 20.13 in patients with low function and 45.74 in patients with hyperfunction. In conclusion, FCM algorithm can feature extraction of EEG signals, especially in the frontal F7 channel, the left frontal FP1 channel, and the TEMPORAL T6 channel, which has high classification accuracy and can well express the EEG signals of autistic children. The level of 5-HT in autistic children is lower than that in healthy people, and it is closely related to loneliness and depression.
Collapse
Affiliation(s)
- Jun Shao
- Department of Physical Diagnostics, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, 157000 Heilongjiang, China
| | - Fan Zhang
- Department of Heilongjiang Key Laboratory of Antifibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157000 Heilongjiang, China
| | - Chuanzhi Chen
- Department of Nuclear Medicine, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, 157000 Heilongjiang, China
| | - Ye Wang
- Department of Physical Diagnostics, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, 157000 Heilongjiang, China
| | - Qiang Wang
- Department of Cardiology, Mudanjiang Medical University, Second Affiliated Hospital, Mudanjiang, 157000 Heilongjiang, China
| | - Jie Zhou
- Department of Fever Clinics, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, 157000 Heilongjiang, China
| |
Collapse
|
4
|
Gershon MD, Margolis KG. The gut, its microbiome, and the brain: connections and communications. J Clin Invest 2021; 131:143768. [PMID: 34523615 PMCID: PMC8439601 DOI: 10.1172/jci143768] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Modern research on gastrointestinal behavior has revealed it to be a highly complex bidirectional process in which the gut sends signals to the brain, via spinal and vagal visceral afferent pathways, and receives sympathetic and parasympathetic inputs. Concomitantly, the enteric nervous system within the bowel, which contains intrinsic primary afferent neurons, interneurons, and motor neurons, also senses the enteric environment and controls the detailed patterns of intestinal motility and secretion. The vast microbiome that is resident within the enteric lumen is yet another contributor, not only to gut behavior, but to the bidirectional signaling process, so that the existence of a microbiota-gut-brain "connectome" has become apparent. The interaction between the microbiota, the bowel, and the brain now appears to be neither a top-down nor a bottom-up process. Instead, it is an ongoing, tripartite conversation, the outline of which is beginning to emerge and is the subject of this Review. We emphasize aspects of the exponentially increasing knowledge of the microbiota-gut-brain "connectome" and focus attention on the roles that serotonin, Toll-like receptors, and macrophages play in signaling as exemplars of potentially generalizable mechanisms.
Collapse
Affiliation(s)
| | - Kara Gross Margolis
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
5
|
Haq S, Grondin JA, Khan WI. Tryptophan-derived serotonin-kynurenine balance in immune activation and intestinal inflammation. FASEB J 2021; 35:e21888. [PMID: 34473368 PMCID: PMC9292703 DOI: 10.1096/fj.202100702r] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/29/2021] [Accepted: 08/16/2021] [Indexed: 02/06/2023]
Abstract
Endogenous tryptophan metabolism pathways lead to the production of serotonin (5‐hydroxytryptamine; 5‐HT), kynurenine, and several downstream metabolites which are involved in a multitude of immunological functions in both health and disease states. Ingested tryptophan is largely shunted to the kynurenine pathway (95%) while only minor portions (1%–2%) are sequestered for 5‐HT production. Though often associated with the functioning of the central nervous system, significant production of 5‐HT, kynurenine and their downstream metabolites takes place within the gut. Accumulating evidence suggests that these metabolites have essential roles in regulating immune cell function, intestinal inflammation, as well as in altering the production and suppression of inflammatory cytokines. In addition, both 5‐HT and kynurenine have a considerable influence on gut microbiota suggesting that these metabolites impact host physiology both directly and indirectly via compositional changes. It is also now evident that complex interactions exist between the two pathways to maintain gut homeostasis. Alterations in 5‐HT and kynurenine are implicated in the pathogenesis of many gastrointestinal dysfunctions, including inflammatory bowel disease. Thus, these pathways present numerous potential therapeutic targets, manipulation of which may aid those suffering from gastrointestinal disorders. This review aims to update both the role of 5‐HT and kynurenine in immune regulation and intestinal inflammation, and analyze the current knowledge of the relationship and interactions between 5‐HT and kynurenine pathways.
Collapse
Affiliation(s)
- Sabah Haq
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jensine A Grondin
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Waliul I Khan
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.,Laboratory Medicine, Hamilton Health Sciences, Hamilton, Ontario, Canada
| |
Collapse
|
6
|
Margolis KG, Cryan JF, Mayer EA. The Microbiota-Gut-Brain Axis: From Motility to Mood. Gastroenterology 2021; 160:1486-1501. [PMID: 33493503 PMCID: PMC8634751 DOI: 10.1053/j.gastro.2020.10.066] [Citation(s) in RCA: 417] [Impact Index Per Article: 104.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/07/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023]
Abstract
The gut-brain axis plays an important role in maintaining homeostasis. Many intrinsic and extrinsic factors influence signaling along this axis, modulating the function of both the enteric and central nervous systems. More recently the role of the microbiome as an important factor in modulating gut-brain signaling has emerged and the concept of a microbiota-gut-brain axis has been established. In this review, we highlight the role of this axis in modulating enteric and central nervous system function and how this may impact disorders such as irritable bowel syndrome and disorders of mood and affect. We examine the overlapping biological constructs that underpin these disorders with a special emphasis on the neurotransmitter serotonin, which plays a key role in both the gastrointestinal tract and in the brain. Overall, it is clear that although animal studies have shown much promise, more progress is necessary before these findings can be translated for diagnostic and therapeutic benefit in patient populations.
Collapse
Affiliation(s)
- Kara G. Margolis
- Department of Pediatrics, Morgan Stanley Children’s Hospital, Columbia University Irving Medical Center, New York, NY,Corresponding author:
| | - John F. Cryan
- Department of Anatomy & Neuroscience, University College Cork, Ireland, APC Microbiome Ireland, University College Cork, Ireland
| | - Emeran A. Mayer
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vachte and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
7
|
Stasi C, Sadalla S, Milani S. The Relationship Between the Serotonin Metabolism, Gut-Microbiota and the Gut-Brain Axis. Curr Drug Metab 2020; 20:646-655. [PMID: 31345143 DOI: 10.2174/1389200220666190725115503] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/05/2019] [Accepted: 07/16/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Serotonin (5-HT) has a pleiotropic function in gastrointestinal, neurological/psychiatric and liver diseases. The aim of this review was to elucidate whether the gut-microbiota played a critical role in regulating peripheral serotonin levels. METHODS We searched for relevant studies published in English using the PubMed database from 1993 to the present. RESULTS Several studies suggested that alterations in the gut-microbiota may contribute to a modulation of serotonin signalling. The first indication regarded the changes in the composition of the commensal bacteria and the intestinal transit time caused by antibiotic treatment. The second indication regarded the changes in serotonin levels correlated to specific bacteria. The third indication regarded the fact that decreased serotonin transporter expression was associated with a shift in gut-microbiota from homeostasis to inflammatory type microbiota. Serotonin plays a key role in the regulation of visceral pain, secretion, and initiation of the peristaltic reflex; however, its altered levels are also detected in many different psychiatric disorders. Symptoms of some gastrointestinal functional disorders may be due to deregulation in central nervous system activity, dysregulation at the peripheral level (intestine), or a combination of both (brain-gut axis) by means of neuro-endocrine-immune stimuli. Moreover, several studies have demonstrated the profibrogenic role of 5-HT in the liver, showing that it works synergistically with platelet-derived growth factor in stimulating hepatic stellate cell proliferation. CONCLUSION Although the specific interaction mechanisms are still unclear, some studies have suggested that there is a correlation between the gut-microbiota, some gastrointestinal and liver diseases and the serotonin metabolism.
Collapse
Affiliation(s)
- Cristina Stasi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Sinan Sadalla
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Stefano Milani
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, 50134 Florence, Italy
| |
Collapse
|
8
|
Del Colle A, Israelyan N, Gross Margolis K. Novel aspects of enteric serotonergic signaling in health and brain-gut disease. Am J Physiol Gastrointest Liver Physiol 2020; 318:G130-G143. [PMID: 31682158 PMCID: PMC6985840 DOI: 10.1152/ajpgi.00173.2019] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 02/08/2023]
Abstract
Gastrointestinal (GI) comorbidities are common in individuals with mood and behavioral dysfunction. Similarly, patients with GI problems more commonly suffer from co-morbid psychiatric diagnoses. Although the central and enteric nervous systems (CNS and ENS, respectively) have largely been studied separately, there is emerging interest in factors that may contribute to disease states involving both systems. There is strong evidence to suggest that serotonin may be an important contributor to these brain-gut conditions. Serotonin has long been recognized for its critical functions in CNS development and function. The majority of the body's serotonin, however, is produced in the GI tract, where it plays key roles in ENS development and function. Further understanding of the specific impact that enteric serotonin has on brain-gut disease may lay the foundation for the creation of novel therapeutic targets. This review summarizes the current data focusing on the important roles that serotonin plays in ENS development and motility, with a focus on novel aspects of serotonergic signaling in medical conditions in which CNS and ENS co-morbidities are common, including autism spectrum disorders and depression.
Collapse
Affiliation(s)
- Andrew Del Colle
- Morgan Stanley Children's Hospital, Department of Pediatrics, Columbia University Medical Center, New York, New York
| | - Narek Israelyan
- Morgan Stanley Children's Hospital, Department of Pediatrics, Columbia University Medical Center, New York, New York
- Vagelos College of Physicians and Surgeons, Columbia University Medical Center, New York, New York
| | - Kara Gross Margolis
- Morgan Stanley Children's Hospital, Department of Pediatrics, Columbia University Medical Center, New York, New York
| |
Collapse
|
9
|
da Cruz Moreira-Junior E. Hyper-serotonergic state determines onset and progression of idiopathic Parkinson's disease. Med Hypotheses 2019; 133:109399. [PMID: 31542611 DOI: 10.1016/j.mehy.2019.109399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/10/2019] [Accepted: 09/13/2019] [Indexed: 02/07/2023]
Abstract
Despite decades of research on Parkinson's disease (PD), the etiology of this disease remains unclear. The present manuscript introduces a new hypothesis proposing a hyper-serotonergic state as the main mechanism leading to axonal impairment both in dopaminergic and serotonergic neurons in PD. The strong serotonergic connection between the raphe nuclei and the dorsal raphe nuclei with the basal ganglia, all important brain structures associated with the pathophysiology of PD, emphasize a potential role for this neurotransmitter in PD. Importantly, a hyper-serotonergic state can lead to axonal growth impairment, an effect that seems to be selective to axons that can respond to this neurotransmitter. Serotonin seems to be a promising candidate to explain several of the poorly understood early symptoms of PD, including sleep impairment, anxiety, altered gastrointestinal motility and hallucinations. The hypothesis proposed here emphasizes that a hyper-serotonergic state would initially cause disruption of axonal transportation, an acute state in which axonal changes are reversible and the neurodegenerative process can be halted. As the hyper-serotonergic state persists, the accumulation of neurotoxic products and a sustained impairment in axonal transportation would lead to axonal death and culminate in an irreversible neurodegenerative process. The potential implications of this hypothesis are discussed, as well as how future research can be employed to further elucidate the role of serotonin on PD progression.
Collapse
Affiliation(s)
- Eliseu da Cruz Moreira-Junior
- Medical School Department of Health Sciences, Universidade Estadual de Santa Cruz, Campus Soane Nazaré de Andrade, Rodovia Jorge Amado, Km 16, Bairro Salobrinho, Ilhéus-Bahia, Brazil.
| |
Collapse
|
10
|
Impact of Auditory Integration Therapy (AIT) on the Plasma Levels of Human Glial Cell Line-Derived Neurotrophic Factor (GDNF) in Autism Spectrum Disorder. J Mol Neurosci 2019; 68:688-695. [PMID: 31073917 DOI: 10.1007/s12031-019-01332-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 04/25/2019] [Indexed: 01/14/2023]
Abstract
Neurotrophic factors, including the glial cell line-derived neurotrophic factor (GDNF), are of importance for synaptic plasticity regulation, intended as the synapses' ability to strengthen or weaken their responses to differences in neuronal activity. Such plasticity is essential for sensory processing, which has been shown to be impaired in autism spectrum disorder (ASD). This study is the first to investigate the impact of auditory integration therapy (AIT) of sensory processing abnormalities in autism on plasma GDNF levels. Fifteen ASD children, aged between 5 and 12 years, were enrolled and underwent the present research study. AIT was performed throughout 10 days with a 30-min session twice a day. Before and after AIT, Childhood Autism Rating Scale (CARS), Social Responsiveness Scale (SRS), and Short Sensory Profile (SSP) scores were calculated, and plasma GDNF levels were assayed by an EIA test. A substantial decline in autistic behavior was observed after AIT in the scaling parameters used. Median plasma GDNF level was 52.142 pg/ml before AIT. This level greatly increased immediately after AIT to 242.05 pg/ml (P < 0.001). The levels were depressed to 154.00 pg/ml and 125.594 pg/ml 1 month and 3 months later, respectively, but they were still significantly higher compared with the levels before the treatment (P = 0.001, P = 0.01, respectively). There was an improvement in the measures of autism severity as an effect of AIT which induced the up-regulation of GDNF in plasma. Further research, on a large scale, is needed to evaluate if the cognitive improvement of ASD children after AIT is related or not connected to the up-regulation of GDNF.
Collapse
|
11
|
Margolis KG, Buie TM, Turner JB, Silberman AE, Feldman JF, Murray KF, McSwiggan-Hardin M, Levy J, Bauman ML, Veenstra-VanderWeele J, Whitaker AH, Winter HS. Development of a Brief Parent-Report Screen for Common Gastrointestinal Disorders in Autism Spectrum Disorder. J Autism Dev Disord 2019; 49:349-362. [PMID: 30350113 DOI: 10.1007/s10803-018-3767-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gastrointestinal dysfunction in children with autism spectrum disorder (ASD) is common and associated with problem behaviors. This study describes the development of a brief, parent-report screen that relies minimally upon the child's ability to report or localize pain for identifying children with ASD at risk for one of three common gastrointestinal disorders (functional constipation, functional diarrhea, and gastroesophageal reflux disease). In a clinical sample of children with ASD, this 17-item screen identified children having one or more of these disorders with a sensitivity of 84%, specificity of 43%, and a positive predictive value of 67%. If found to be valid in an independent sample of children with ASD, the screen will be useful in both clinical practice and research.
Collapse
Affiliation(s)
- Kara G Margolis
- Department of Pediatrics, Division of Gastroenterology, Columbia University Medical Center, New York Presbyterian Hospital, Morgan Stanley Children's Hospital, 622 West 168th Street, 17th Floor, New York, NY, 10032, USA.
| | - Timothy M Buie
- Department of Pediatrics, Division of Gastroenterology, Mass-General Hospital for Children, Boston, MA, USA
| | - J Blake Turner
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Columbia University Medical Center, New York Presbyterian Hospital and New York State Psychiatric Institute, New York, NY, USA
| | - Anna E Silberman
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Columbia University Medical Center, New York Presbyterian Hospital and New York State Psychiatric Institute, New York, NY, USA
| | - Judith F Feldman
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Columbia University Medical Center, New York Presbyterian Hospital and New York State Psychiatric Institute, New York, NY, USA
| | - Katherine F Murray
- Department of Pediatrics, Division of Gastroenterology, Mass-General Hospital for Children, Boston, MA, USA
| | - Maureen McSwiggan-Hardin
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Columbia University Medical Center, New York Presbyterian Hospital and New York State Psychiatric Institute, New York, NY, USA
| | - Joseph Levy
- Department of Pediatrics, Division of Gastroenterology, Columbia University Medical Center, New York Presbyterian Hospital, Morgan Stanley Children's Hospital, 622 West 168th Street, 17th Floor, New York, NY, 10032, USA
| | - Margaret L Bauman
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Jeremy Veenstra-VanderWeele
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Columbia University Medical Center, New York Presbyterian Hospital and New York State Psychiatric Institute, New York, NY, USA
| | - Agnes H Whitaker
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Columbia University Medical Center, New York Presbyterian Hospital and New York State Psychiatric Institute, New York, NY, USA
| | - Harland S Winter
- Department of Pediatrics, Division of Gastroenterology, Mass-General Hospital for Children, Boston, MA, USA
| |
Collapse
|
12
|
Beversdorf DQ, Stevens HE, Margolis KG, Van de Water J. Prenatal Stress and Maternal Immune Dysregulation in Autism Spectrum Disorders: Potential Points for Intervention. Curr Pharm Des 2019; 25:4331-4343. [PMID: 31742491 PMCID: PMC7100710 DOI: 10.2174/1381612825666191119093335] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 11/15/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Genetics is a major etiological contributor to autism spectrum disorder (ASD). Environmental factors, however, also appear to contribute. ASD pathophysiology due to gene x environment is also beginning to be explored. One reason to focus on environmental factors is that they may allow opportunities for intervention or prevention. METHODS AND RESULTS Herein, we review two such factors that have been associated with a significant proportion of ASD risk, prenatal stress exposure and maternal immune dysregulation. Maternal stress susceptibility appears to interact with prenatal stress exposure to affect offspring neurodevelopment. We also explore how maternal stress may interact with the microbiome in the neurodevelopmental setting. Additionally, understanding of the impact of maternal immune dysfunction on ASD has recently been advanced by recognition of specific fetal brain proteins targeted by maternal autoantibodies, and identification of unique mid-gestational maternal immune profiles. This might also be interrelated with maternal stress exposure. Animal models have been developed to explore pathophysiology targeting each of these factors. CONCLUSION We are beginning to understand the behavioral, pharmacopathological, and epigenetic effects related to these interactions, and we are beginning to explore potential mitigating factors. Continued growth in understanding of these mechanisms may ultimately allow for the identification of multiple potential targets for prevention or intervention for this subset of environmental-associated ASD cases.
Collapse
Affiliation(s)
- David Q. Beversdorf
- Departments of Radiology, Neurology, and Psychological Sciences, and The Thompson Center for Neurodevelopmental Disorders, University of Missouri, William and Nancy Thompson Endowed Chair in Radiology
| | - Hanna E. Stevens
- Departments of Psychiatry and Pediatrics, Iowa Neuroscience Institute, University of Iowa
| | - Kara Gross Margolis
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Morgan Stanley Children’s Hospital, Columbia University Medical Center
| | - Judy Van de Water
- Department of Internal Medicine, Division of Rheumatology, Allergy, and Clinical Immunology, And the MIND Institute, University of California, Davis
| |
Collapse
|
13
|
p38α MAPK signaling drives pharmacologically reversible brain and gastrointestinal phenotypes in the SERT Ala56 mouse. Proc Natl Acad Sci U S A 2018; 115:E10245-E10254. [PMID: 30297392 PMCID: PMC6205438 DOI: 10.1073/pnas.1809137115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Autism spectrum disorder (ASD) is a common neurobehavioral disorder with limited treatment options. Activation of p38 MAPK signaling networks has been identified in ASD, and p38 MAPK signaling elevates serotonin (5-HT) transporter (SERT) activity, effects mimicked by multiple, hyperfunctional SERT coding variants identified in ASD subjects. Mice expressing the most common of these variants (SERT Ala56) exhibit hyperserotonemia, a biomarker observed in ASD subjects, as well as p38 MAPK-dependent SERT hyperphosphorylation, elevated hippocampal 5-HT clearance, hypersensitivity of CNS 5-HT1A and 5-HT2A/2C receptors, and behavioral and gastrointestinal perturbations reminiscent of ASD. As the α-isoform of p38 MAPK drives SERT activation, we tested the hypothesis that CNS-penetrant, α-isoform-specific p38 MAPK inhibitors might normalize SERT Ala56 phenotypes. Strikingly, 1-week treatment of adult SERT Ala56 mice with MW150, a selective p38α MAPK inhibitor, normalized hippocampal 5-HT clearance, CNS 5-HT1A and 5-HT2A/2C receptor sensitivities, social interactions, and colonic motility. Conditional elimination of p38α MAPK in 5-HT neurons of SERT Ala56 mice restored 5-HT1A and 5-HT2A/2C receptor sensitivities as well as social interactions, mirroring effects of MW150. Our findings support ongoing p38α MAPK activity as an important determinant of the physiological and behavioral perturbations of SERT Ala56 mice and, more broadly, supports consideration of p38α MAPK inhibition as a potential treatment for core and comorbid phenotypes present in ASD subjects.
Collapse
|