1
|
Ali NH, Al‐Kuraishy HM, Al‐Gareeb AI, Alexiou A, Papadakis M, AlAseeri AA, Alruwaili M, Saad HM, Batiha GE. BDNF/TrkB activators in Parkinson's disease: A new therapeutic strategy. J Cell Mol Med 2024; 28:e18368. [PMID: 38752280 PMCID: PMC11096816 DOI: 10.1111/jcmm.18368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/22/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder of the brain and is manifested by motor and non-motor symptoms because of degenerative changes in dopaminergic neurons of the substantia nigra. PD neuropathology is associated with mitochondrial dysfunction, oxidative damage and apoptosis. Thus, the modulation of mitochondrial dysfunction, oxidative damage and apoptosis by growth factors could be a novel boulevard in the management of PD. Brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin receptor kinase type B (TrkB) are chiefly involved in PD neuropathology. BDNF promotes the survival of dopaminergic neurons in the substantia nigra and enhances the functional activity of striatal neurons. Deficiency of the TrkB receptor triggers degeneration of dopaminergic neurons and accumulation of α-Syn in the substantia nigra. As well, BDNF/TrkB signalling is reduced in the early phase of PD neuropathology. Targeting of BDNF/TrkB signalling by specific activators may attenuate PD neuropathology. Thus, this review aimed to discuss the potential role of BDNF/TrkB activators against PD. In conclusion, BDNF/TrkB signalling is decreased in PD and linked with disease severity and long-term complications. Activation of BDNF/TrkB by specific activators may attenuate PD neuropathology.
Collapse
Affiliation(s)
- Naif H. Ali
- Department of Internal Medicine, Medical CollegeNajran UniversityNajranSaudi Arabia
| | - Hayder M. Al‐Kuraishy
- Department of Clinical Pharmacology and Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | | | - Athanasios Alexiou
- University Centre for Research and Development, Chandigarh UniversityMohaliPunjabIndia
- Department of Research and DevelopmentFunogenAthensGreece
- Department of Research and DevelopmentAFNP MedWienAustria
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
| | - Marios Papadakis
- Department of Surgery IIUniversity Hospital Witten‐Herdecke, University of Witten‐HerdeckeWuppertalGermany
| | - Ali Abdullah AlAseeri
- Department of Internal MedicineCollege of Medicine, Prince Sattam bin Abdulaziz UniversityAl‐KharjSaudi Arabia
| | - Mubarak Alruwaili
- Department of Internal Medicine, College of MedicineJouf UniversitySakakaSaudi Arabia
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary MedicineMatrouh UniversityMatrouhEgypt
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourEgypt
| |
Collapse
|
2
|
Albadawi E, El-Tokhy A, Albadrani M, Adel M, El-Gamal R, Zaarina W, El-Agawy MSED, Elsayed HRH. The role of stinging nettle (Urtica dioica L.) in the management of rotenone-induced Parkinson's disease in rats. Tissue Cell 2024; 87:102328. [PMID: 38387425 DOI: 10.1016/j.tice.2024.102328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/27/2024] [Accepted: 02/11/2024] [Indexed: 02/24/2024]
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative conditions. Alpha-synuclein deposition, Lewy bodies (LBs) formation, disruption of the autophagic machinery, apoptosis of substantia nigra dopaminergic neurons, oxidative stress, and neuroinflammation are all pathologic hallmarks of PD. The leaves of the stinging Nettle (Urtica dioica L.) have a long history as an herbal cure with antioxidant, anti-inflammatory, anti-cancer, immunomodulatory, and neuroprotective properties. The current study aims for the first time to investigate the role of Nettle supplementation on Rotenone-induced PD. Rats were divided into five groups; a Saline control, Nettle control (100 mg/kg/day), Rotenone control (2 mg/kg/day), Rotenone + Nettle (50 mg /kg/day), and Rotenone + Nettle (100 mg/kg). After four weeks, the rats were examined for behavioral tests. The midbrains were investigated for histopathological alteration and immunohistochemical reaction for Tyrosine hydroxylase in the dopaminergic neurons, α-synuclein for Lewy bodies, caspase 3 for apoptotic neurons, LC3 and P62 for autophagic activity. Midbrain homogenates were examined for oxidative stress markers. mRNA expression of TNFα and Il6; inflammatory markers, Bcl-2, BAX and Caspase 3; apoptosis markers, were detected in midbrains. The results showed that Nettle caused recovery of midbrain dopaminergic neurons, by inhibiting apoptosis, inflammation, and oxidative stress and by restoring the autophagic machinery with clearance of α-synuclein deposits. We can conclude that Nettle is a potentially effective adjuvant in the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Emad Albadawi
- Department of Anatomy, College of Medicine, Taibah University, Medina, Saudi Arabia
| | - Ahmed El-Tokhy
- Plant Protection Department, Faculty of Agriculture, New Valley University, El-Kharga, Egypt
| | - Muayad Albadrani
- Department of Family and Community Medicine, College of Medicine, Taibah University, Medina, Saudi Arabia
| | - Mohammed Adel
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Egypt
| | - Randa El-Gamal
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Egypt; Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, Mansoura, Egypt; Department of Medical Biochemistry, Horus University in Egypt (HUE), New Damietta, Damietta, Egypt
| | - Wael Zaarina
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Department of Anatomy, Faculty of Medicine, Mansoura National University, Gamasa, Egypt
| | - Mosaab Salah El-Din El-Agawy
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| | - Hassan Reda Hassan Elsayed
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Department of Anatomy and Neurobiology, College of Medicine and Health Sciences, National University of Science and Technology, Sohar, Oman.
| |
Collapse
|
3
|
Wang L, Lu K, Lou X, Zhang S, Song W, Li R, Geng L, Cheng B. Astaxanthin ameliorates dopaminergic neuron damage in paraquat-induced SH-SY5Y cells and mouse models of Parkinson's disease. Brain Res Bull 2023; 202:110762. [PMID: 37708917 DOI: 10.1016/j.brainresbull.2023.110762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Parkinson's disease (PD) is the second largest neurodegenerative disorder caused by the decreased number of dopaminergic (DAc) neurons in the substantia nigra pars compacta (SNpc). There is evidence that oxidative stress can contribute degeneration of DAc neurons in SNpc which is mainly caused by apoptotic cell death. Thus, suppressing oxidative stress and apoptosis of DAc neurons is an effective strategy to mitigate the progress of PD. Astaxanthin (AST) is a carotenoid, which mainly exists in marine organisms and is a powerful biological antioxidant. In this study, we aimed to determine the neuroprotective effect of AST on paraquat (PQ) -induced models of PD in vitro and in vivo. Here, we showed that AST significantly enhanced cell survival of SH-SY5Y cells against PQ toxicity by suppressing apoptotic cell death and oxidative stress. Moreover, we found that AST significantly ameliorated PQ-induced behavioral disorders associated with PD in C57BL/6 J mice and the damage to DAc neurons in the SNpc of mice. Lastly, we found that the neuroprotective effects of AST were conducted through inhibiting PQ-induced activation of MAPK signaling. In conclusion, our study indicates that AST had a strong protective effect on PQ-induced oxidative stress and antagonized apoptotic cell death in SH-SY5Y cells and PQ-induced mice PD model, which might provide new insights of AST for PD treatment.
Collapse
Affiliation(s)
- Lei Wang
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, China; Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Kunliang Lu
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Xingyue Lou
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Shenghui Zhang
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Wenxin Song
- Chongqing Sixth People's Hospital, 301 Nancheng Avenue, Nan'an District, 400060 Chongqing, China
| | - Ranran Li
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Lujing Geng
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Binfeng Cheng
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, China.
| |
Collapse
|
4
|
Fanarioti E, Tsarouchi M, Vasilakopoulou PB, Chiou A, Karvelas M, Karathanos VT, Dermon CR. Brain polar phenol content, behavioural and neurochemical effects of Corinthian currant in a rotenone rat model of Parkinson's disease. Nutr Neurosci 2022; 26:652-666. [PMID: 35656969 DOI: 10.1080/1028415x.2022.2080792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the loss of nigral dopaminergic neurons, leading to reduced motor control. A contributing factor for the nigrostriatal degeneration is known to be oxidative stress, while antioxidant/anti-inflammatory properties of natural polyphenols have been suggested to show beneficial effects. The present study questioned the potential neuroprotective effects of supplementary diet with Corinthian currant, using a rat rotenone PD model. METHODS The alterations in motor activity, brain Corinthian currant polar phenols' accumulation, expression patterns of tyrosine hydroxylase (TH), dopamine transporter (DAT) and brain-derived neurotrophic factor (BDNF) in the nigrostriatal dopaminergic system were determined in rotenone-treated, currant-diet rats and matching controls. RESULTS Rotenone treatment resulted in motor deficits and TH expression decreases in the nigrostriatal pathway, exhibiting PD-like behavioural motor and neurochemical phenotypes. Interestingly, 38 days Corinthian currant consumption resulted in differential accumulation of polar phenols in mesencephalon and striatum and had a significant effect on attenuating motor deficits and dopaminergic cell loss in substantia nigra pars compacta. In addition, it induced up-regulation of BDNF expression in the nigrostriatal dopaminergic system. DISCUSSION Taken all together, evidence is provided for the potential neuroprotective influences of Corinthian currant consumption, involving the neurotrophic factor BDNF, in rescuing aspects of PD-like phenotype.
Collapse
Affiliation(s)
- Eleni Fanarioti
- Department of Biology, University of Patras - Patras Campus Rion: Panepistemio Patron, Patras, Greece
| | - Martha Tsarouchi
- Department of Biology, University of Patras - Patras Campus Rion: Panepistemio Patron, Patras, Greece
| | | | - Antonia Chiou
- Department of Dietetics and Nutrition, Harokopio University, Athens, Greece
| | | | - Vaios T Karathanos
- Department of Dietetics and Nutrition, Harokopio University, Athens, Greece.,Agricultural Cooperatives' Union of Aeghion, Aigio, Greece
| | - Catherine R Dermon
- Department of Biology, University of Patras - Patras Campus Rion: Panepistemio Patron, Patras, Greece
| |
Collapse
|
5
|
van Rensburg D, Lindeque Z, Harvey BH, Steyn SF. Reviewing the mitochondrial dysfunction paradigm in rodent models as platforms for neuropsychiatric disease research. Mitochondrion 2022; 64:82-102. [DOI: 10.1016/j.mito.2022.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/22/2022] [Accepted: 03/15/2022] [Indexed: 12/19/2022]
|
6
|
Deng I, Corrigan F, Garg S, Zhou XF, Bobrovskaya L. Further Characterization of Intrastriatal Lipopolysaccharide Model of Parkinson's Disease in C57BL/6 Mice. Int J Mol Sci 2021; 22:7380. [PMID: 34299000 PMCID: PMC8304722 DOI: 10.3390/ijms22147380] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/28/2021] [Accepted: 07/02/2021] [Indexed: 12/26/2022] Open
Abstract
Parkinson's disease (PD) is the most common movement disorder, characterized by progressive degeneration of the nigrostriatal pathway, which consists of dopaminergic cell bodies in substantia nigra and their neuronal projections to the striatum. Moreover, PD is associated with an array of non-motor symptoms such as olfactory dysfunction, gastrointestinal dysfunction, impaired regulation of the sleep-wake cycle, anxiety, depression, and cognitive impairment. Inflammation and concomitant oxidative stress are crucial in the pathogenesis of PD. Thus, this study aimed to model PD via intrastriatal injection of the inflammagen lipopolysaccharide (LPS)to investigate if the lesion causes olfactory and motor impairments, inflammation, oxidative stress, and alteration in synaptic proteins in the olfactory bulb, striatum, and colon. Ten µg of LPS was injected unilaterally into the striatum of 27 male C57BL/6 mice, and behavioural assessment was conducted at 4 and 8 weeks post-treatment, followed by tissue collection. Intrastriatal LPS induced motor impairment in C57BL/6 mice at 8 weeks post-treatment evidenced by reduced latency time in the rotarod test. LPS also induced inflammation in the striatum characterized by increased expression of microglial marker Iba-1 and astrocytic marker GFAP, with degeneration of dopaminergic neuronal fibres (reduced tyrosine hydroxylase immunoreactivity), and reduction of synaptic proteins and DJ-1 protein. Additionally, intrastriatal LPS induced inflammation, oxidative stress and alterations in synaptic proteins within the olfactory bulb, although this did not induce a significant impairment in olfactory function. Intrastriatal LPS induced mild inflammatory changes in the distal colon, accompanied by increased protein expression of 3-nitrotyrosine-modified proteins. This model recapitulated the major features of PD such as motor impairment and degeneration of dopaminergic neuronal fibres in the striatum, as well as some pathological changes in the olfactory bulb and colon; thus, this model could be suitable for understanding clinical PD and testing neuroprotective strategies.
Collapse
Affiliation(s)
- Isaac Deng
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (I.D.); (S.G.); (X.-F.Z.)
| | - Frances Corrigan
- Medical Sciences, University of Adelaide, Adelaide 5000, Australia;
| | - Sanjay Garg
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (I.D.); (S.G.); (X.-F.Z.)
| | - Xin-Fu Zhou
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (I.D.); (S.G.); (X.-F.Z.)
| | - Larisa Bobrovskaya
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (I.D.); (S.G.); (X.-F.Z.)
| |
Collapse
|
7
|
Baghi M, Yadegari E, Rostamian Delavar M, Peymani M, Ganjalikhani‐Hakemi M, Salari M, Nasr‐Esfahani MH, Megraw TL, Ghaedi K. MiR-193b deregulation is associated with Parkinson's disease. J Cell Mol Med 2021; 25:6348-6360. [PMID: 34018309 PMCID: PMC8366452 DOI: 10.1111/jcmm.16612] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 02/12/2021] [Accepted: 04/28/2021] [Indexed: 02/05/2023] Open
Abstract
PGC-1α/FNDC5/BDNF has found to be a critical pathway in neurodegeneration. MicroRNAs (miR(NA)s) are non-coding regulatory RNAs whose dysregulation has been observed in multiple neurological disorders, and miRNA-mediated gene deregulation plays a decisive role in PD. Here, candidate miRNA was chosen based on the literature survey and in silico studies. Chronic and acute models of PD were created using MPP+-treated SH-SY5Y cells. Twenty PD patients and 20 healthy volunteers were recruited. RT-qPCR was performed to assess the expression of miRNA and genes. Severe mitochondrial dysfunction induced by acute MPP+ treatment instigated compensatory mechanisms through enhancing expression of PGC-1α/FNDC5/BDNF pathway genes, while chronic MPP+ toxicity led to down-regulated levels of the genes in SH-SY5Y cells. PD peripheral blood mononuclear cells (PBMCs) also showed decreased expression of target genes. There were significant changes in the level of miR-193b in both models, as well as PD PBMCs. Moreover, miR-193b overexpression significantly affected PGC-1α, FNDC5 and TFAM levels. Interestingly, down-regulations of PGC-1α, FNDC5, BDNF and TFAM were inversely correlated with miR-193b up-regulation in PD PBMCs. This study showed the deregulation of PGC-1α/FNDC5/BDNF pathway in PD models and PBMCs, verifying its importance in neurodegeneration. Our findings also revealed that miR-193b functions in PD development, possibly through regulating PGC-1α/FNDC5/BDNF pathway, suggesting miR-193b as a potential biomarker for PD diagnosis.
Collapse
Affiliation(s)
- Masoud Baghi
- Department of Cell and Molecular Biology and MicrobiologyFaculty of Biological Science and TechnologyUniversity of IsfahanIsfahanIran
- Department of Animal BiotechnologyCell Science Research CenterRoyan Institute for BiotechnologyACECRIsfahanIran
| | - Elaheh Yadegari
- Department of Cell and Molecular Biology and MicrobiologyFaculty of Biological Science and TechnologyUniversity of IsfahanIsfahanIran
| | - Mahsa Rostamian Delavar
- Department of Cell and Molecular Biology and MicrobiologyFaculty of Biological Science and TechnologyUniversity of IsfahanIsfahanIran
| | - Maryam Peymani
- Department of BiologyFaculty of Basic SciencesShahrekord BranchIslamic Azad UniversityShahrekordIran
| | | | - Mehri Salari
- Functional Neurosurgery Research CenterShohada Tajrish Neurosurgical Center of ExcellenceShahid Beheshti University of Medical SciencesTehranIran
| | | | - Timothy L. Megraw
- Department of Biomedical SciencesFlorida State UniversityCollege of MedicineTallahasseeFLUSA
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and MicrobiologyFaculty of Biological Science and TechnologyUniversity of IsfahanIsfahanIran
| |
Collapse
|
8
|
Fathy SM, El-Dash HA, Said NI. Neuroprotective effects of pomegranate (Punica granatum L.) juice and seed extract in paraquat-induced mouse model of Parkinson's disease. BMC Complement Med Ther 2021; 21:130. [PMID: 33902532 PMCID: PMC8074500 DOI: 10.1186/s12906-021-03298-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 04/06/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Paraquat, (PQ), an herbicide that can induce Parkinsonian-like symptoms in rodents and humans. The consumption of phytochemical-rich plants can reduce the risk of chronic illnesses such as inflammation and neurodegenerative diseases. The present study aimed to investigate the protective effects of pomegranate seed extract (PSE) and juice (PJ) against PQ-induced neurotoxicity in mice. METHODS Mice were assigned into 4 groups; three groups received PQ (10 mg/kg, i.p.) twice a week for 3 weeks. Two of the PQ-induced groups pretreated with either PSE or PJ. Detection of phytochemicals, total phenolics, and total flavonoids in PSE and PJ was performed. Tyrosine hydroxylase (TH) level was measured in the substantia nigra (SN) by Western blotting technique. Striatal dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) were detected using high-performance liquid chromatography (HPLC). The levels of adenosine triphosphate (ATP), malondialdehyde (MDA), and the activity of the antioxidant enzymes were estimated in the striatum by colorimetric analysis. Striatal pro-inflammatory and anti-inflammatory markers using enzyme-linked immunosorbent assay (ELISA) as well as DNA fragmentation degree by qualitative DNA fragmentation assay, were evaluated. Real-time polymerase chain reaction (qPCR) assay was performed for the detection of nuclear factor kappa B (NF-кB) gene expression. Moreover, Western blotting analysis was used for the estimation of the cluster of differentiation 11b (CD11b), transforming growth factor β (TGF-β), and glial cell-derived neurotrophic factor (GDNF) levels in the striatum. RESULTS Pretreatment with PSE or PJ increased the levels of TH in the SN as well as DA and its metabolite in the striatum that were reduced by PQ injection. PSE and PJ preadministration improved the PQ-induced oxidative stress via a significant reduction of the MDA level and the augmentation of antioxidant enzyme activities. PSE and PJ also significantly downregulated the striatal NF-кB gene expression, reduced the PQ-enhanced apoptosis, decreased the levels of; pro-inflammatory cytokines, CD11b, and TGF-β coupled with a significant increase of; interleukin-10 (IL-10), GDNF, and ATP levels as compared with PQ-treated mice. CONCLUSIONS The current study indicated that PSE and PJ consumption may exhibit protective effects against PQ-induced neurotoxicity in mice.
Collapse
Affiliation(s)
- Samah M Fathy
- Zoology Department, Faculty of Science, Fayoum University, Fayoum, Egypt.
| | - Heba A El-Dash
- Zoology Department, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Noha I Said
- Zoology Department, Faculty of Science, Fayoum University, Fayoum, Egypt
| |
Collapse
|
9
|
Yang YL, Liu M, Cheng X, Li WH, Zhang SS, Wang YH, Du GH. Myricitrin blocks activation of NF-κB and MAPK signaling pathways to protect nigrostriatum neuron in LPS-stimulated mice. J Neuroimmunol 2019; 337:577049. [PMID: 31526918 DOI: 10.1016/j.jneuroim.2019.577049] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 09/02/2019] [Accepted: 09/02/2019] [Indexed: 01/02/2023]
Abstract
Myricitrin, a bioactive and natural flavonoids, is well known for its anti-inflammatory and antioxidant properties. However, the anti-neuroinflammation and possible mechanism has not been fully elucidated. Therefore, the present study was to investigate the possible mechanism of its neuroprotection and anti-neuroinflammation in the nigrostriatum of LPS-stimulated mice. The results showed that myricitrin improved neuron injury and raised the expressions of PSD-95 protein and TH protein in the nigrostriatum of LPS-stimulated mice. In addition, myricitrin decreased the production of pro-inflammatory factors including IL-1β, IL-6 and TNFα, decreased the level of chemokine MCP-1, and suppressed the expressions of COX-2 and iNOS. Meanwhile, myricitrin suppressed HMGB1, TLR4, and MyD88 expression in the nigrostriatum of LPS-stimulated mice. Furthermore, myricitrin inhibited NF-κB and MAPK signaling pathways activated by LPS. In conclusion, our studies suggest that myricitrin blocks activation of protects NF-κB and MAPK signaling pathways to nigrostiatum neuron from injury in LPS-stimulated mice and is beneficial to treatment nigrostriatum inflammation of PD.
Collapse
Affiliation(s)
- Ying-Lin Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Man Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiao Cheng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Wei-Han Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Shan-Shan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yue-Hua Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Guan-Hua Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|