1
|
He Z, Hu Y, Zhang Y, Xie J, Niu Z, Yang G, Zhang J, Zhao Z, Wei S, Wu H, Hu W. Asiaticoside exerts neuroprotection through targeting NLRP3 inflammasome activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 127:155494. [PMID: 38471370 DOI: 10.1016/j.phymed.2024.155494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND Parkinson's disease (PD), a neurodegenerative disorder, is characterized by motor symptoms due to the progressive loss of dopaminergic neurons in the substantia nigra (SN) and striatum (STR), alongside neuroinflammation. Asiaticoside (AS), a primary active component with anti-inflammatory and neuroprotective properties, is derived from Centella asiatica. However, the precise mechanisms through which AS influences PD associated with inflammation are not yet fully understood. PURPOSE This study aimed to explore the protective mechanism of AS in PD. METHODS Targets associated with AS and PD were identified from the Swiss Target Prediction, Similarity Ensemble Approach, PharmMapper, and GeneCards database. A protein-protein interaction (PPI) network was constructed to identify potential therapeutic targets. Concurrently, GO and KEGG analyses were performed to predict potential signaling pathways. To validate these mechanisms, the effects of AS on 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD in mice were investigated. Furthermore, neuroinflammation and the activation of the NLRP3 inflammasome were assessed to confirm the anti-inflammatory properties of AS. In vitro experiments in BV2 cells were then performed to investigate the mechanisms of AS in PD. Moreover, CETSA, molecular docking, and molecular dynamics simulations (MDs) were performed for further validation. RESULTS Network pharmacology analysis identified 17 potential targets affected by AS in PD. GO and KEGG analyses suggested the biological roles of these targets, demonstrating that AS interacts with 149 pathways in PD. Notably, the NOD-like receptor signaling pathway was identified as a key pathway mediating AS's effect on PD. In vivo studies demonstrated that AS alleviated motor dysfunction and reduced the loss of dopaminergic neurons in MPTP-induced PD mice. In vitro experiments demonstrated that AS substantially decreased IL-1β release in BV2 cells, attributing this to the modulation of the NLRP3 signaling pathway. CETSA and molecular docking studies indicated that AS forms a stable complex with NLRP3. MDs suggested that ARG578 played an important role in the formation of the complex. CONCLUSION In this study, we first predicted that the potential target and pathway of AS's effect on PD could be NLRP3 protein and NOD-like receptor signaling pathway by network pharmacology analysis. Further, we demonstrated that AS could alleviate symptoms of PD induced by MPTP through its interaction with the NLRP3 protein for the first time by in vivo and in vitro experiments. By binding to NLRP3, AS effectively inhibits the assembly and activation of the inflammasome. These findings suggest that AS is a promising inhibitor for PD driven by NLRP3 overactivation.
Collapse
Affiliation(s)
- Ziliang He
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yeye Hu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China
| | - Ying Zhang
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China
| | - Jing Xie
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China
| | - Zhiqiang Niu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China
| | - Guigui Yang
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China
| | - Ji Zhang
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China
| | - Zixuan Zhao
- Beijing Key Laboratory of New Drug Discovery based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Shuai Wei
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China.
| | - Haifeng Wu
- Beijing Key Laboratory of New Drug Discovery based on Classic Chinese Medicine Prescription, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Weicheng Hu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
2
|
Alazemi MJ, Badawi MF, Elbeltagy MG, Badr AE. Examining the Effects of Asiaticoside on Dental Pulp Stem Cell Viability and Proliferation: A Promising Approach to Root Canal Treatment. J Contemp Dent Pract 2024; 25:118-127. [PMID: 38514408 DOI: 10.5005/jp-journals-10024-3636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
AIM This study aims to evaluate the impact of asiaticoside (AC) on the viability and proliferation of dental pulp stem cells (DPSCs), considering the known negative effects of routinely used intracanal medicaments. This evaluation will be compared with the outcomes from using traditional intracanal medicaments, specifically triple antibiotic paste (TAP) and calcium hydroxide [Ca(OH)2]. MATERIALS AND METHODS The DPSCs were obtained from the third molars of an adult donor. The application of flow cytometry was employed to do a phenotypic analysis on DPSCs using CD90, CD73, CD105, CD34, CD14, and CD45 antibodies. The methylthiazol tetrazolium (MTT) assay was employed to assess cellular viability. The cells were treated with different concentrations of TAP and Ca(OH)2 (5, 2.5, 1, 0.5, and 0.25 mg/mL), along with AC (100, 50, 25, 12.5, and 6.25 µM). A cell proliferation rate was performed at 3, 5, and 7 days. RESULTS The characterization of DPSCs was conducted by flow cytometry analysis, which verified the presence of mesenchymal cell surface antigen molecules (CD105, CD73, and CD90) and demonstrated the absence of hematopoietic markers (CD34, CD45, and CD14). Cells treated with concentrations over 0.5 mg/mL of TAP and Ca(OH)2 showed a notable reduction in cell viability in comparison to the untreated cells (p < 0.05). Additionally, the cells treated with different concentrations of AC 12.5, 6.25, 25, and 50 µM did not differ significantly from the untreated cells (p > 0.05). Nevertheless, cells treated with concentrations of 100 µM showed a significant reduction in viability compared to the untreated cells (p < 0.05). After a period of 7 days, it was noted that cells exposed to three different concentrations of AC (50, 25, and 12.5 µM) had a notable rise in cell density in comparison to TAP and Ca(OH)2 (p < 0.05). Furthermore, cells that were exposed to a concentration of 12.5 µM exhibited the highest cell density. CONCLUSION The cellular viability of the AC-treated cells was superior to that of the TAP and Ca(OH)2-treated cells. Moreover, the AC with a concentration of 12.5 µM had the highest degree of proliferation. CLINICAL SIGNIFICANCE This study underscores the importance of evaluating alternative root canal medicaments and their effects on DPSCs' growth and vitality. The findings on AC, particularly its influence on the survival and proliferation of DPSCs, offer valuable insights for its probable use as an intracanal medication. This research contributes to the ongoing efforts to identify safer and more effective intracanal treatments, which are crucial for enhancing patient outcomes in endodontic procedures. How to cite this article: Alazemi MJ, Badawi MF, Elbeltagy MG, et al. Examining the Effects of Asiaticoside on Dental Pulp Stem Cell Viability and Proliferation: A Promising Approach to Root Canal Treatment. J Contemp Dent Pract 2024;25(2):118-127.
Collapse
Affiliation(s)
- Mohammad J Alazemi
- Department of Endodontics, Faculty of Dentistry, Mansoura University, Mansoura, Egypt, Orcid: https://orcid.org/0009-0005-5245-6514
| | - Manal F Badawi
- Department of Dental Biomaterials, Faculty of Dentistry, Mansoura University, Mansoura, Egypt, Orcid: https://orcid.org/0000-0001-9979-4354
| | - Mohamed G Elbeltagy
- Department of Stem Cells Research, Urology and Nephrology Center, Mansoura University, Mansoura, Egypt., Orcid: https://orcid.org/0000-0003-3309-4480
| | - Amany E Badr
- Department of Endodontics, Faculty of Dentistry, Mansoura University, Mansoura, Egypt, Phone: +201200211211, e-mail: , Orcid: https://orcid.org/0000-0002-3811-149X
| |
Collapse
|
3
|
He Z, Hu Y, Niu Z, Zhong K, Liu T, Yang M, Ji L, Hu W. A review of pharmacokinetic and pharmacological properties of asiaticoside, a major active constituent of Centella asiatica (L.) Urb. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115865. [PMID: 36306932 DOI: 10.1016/j.jep.2022.115865] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/10/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Centella asiatica (L.) Urb., a potential medicinal plant, is widely used in orient traditional medicine. Its major active constituents include asiaticoside (AS), madecassoside (MS), asiatic acid and madecassic acid. Thereinto, AS is a pentacyclic triterpenoid saponin with a variety of pharmacological effects including antitumor, neuroprotective and wound healing effects. AIM OF THE STUDY In this review, we summarize the pharmacokinetics, safety and pharmacological properties of AS. MATERIALS AND METHODS We gathered information about AS from articles published up to 2022 and listed in Google scholar, PubMed, Web of Science, Elsevier, and similar databases. The keywords used in our search included "asiaticoside", "Centella asiatica", "pharmacokinetics", "nerve", "cancer", "skin", etc. RESULTS: AS appeared to degrade through a first-order reaction and had low biotoxicity. However, the pharmacokinetic properties of AS differed according to species. AS is highly blood-brain-barrier permeable without any harmful side effect. It has a variety of pharmacological effects including anti-neural inflammation and anti-cancer properties, as well as protective properties for the skin, cardiovascular system, and pulmonary system. CONCLUSION This review comprehensively summarized current information regarding the pharmacokinetic and pharmacological properties of AS, and supported the pharmaceutical value of this compound. Future research should focus on improving bioavailability of AS and conducting clinical assessment.
Collapse
Affiliation(s)
- Ziliang He
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China; School of Life Sciences, Huaiyin Normal University, Huaian, 223300, China.
| | - Yeye Hu
- School of Life Sciences, Huaiyin Normal University, Huaian, 223300, China.
| | - Zhiqiang Niu
- School of Life Sciences, Huaiyin Normal University, Huaian, 223300, China.
| | - Kang Zhong
- School of Life Sciences, Huaiyin Normal University, Huaian, 223300, China.
| | - Tingwu Liu
- School of Life Sciences, Huaiyin Normal University, Huaian, 223300, China.
| | - Meng Yang
- Jiangsu Food and Pharmaceutical Science College, Huaian, 223300, China.
| | - Lilian Ji
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China.
| | - Weicheng Hu
- School of Life Sciences, Huaiyin Normal University, Huaian, 223300, China.
| |
Collapse
|
4
|
Witucki Ł, Kurpik M, Jakubowski H, Szulc M, Łukasz Mikołajczak P, Jodynis-Liebert J, Kujawska M. Neuroprotective Effects of Cranberry Juice Treatment in a Rat Model of Parkinson's Disease. Nutrients 2022; 14:nu14102014. [PMID: 35631155 PMCID: PMC9144186 DOI: 10.3390/nu14102014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 12/17/2022] Open
Abstract
Rich in polyphenols, cranberry juice (CJ) with high antioxidant activity is believed to contribute to various health benefits. However, our knowledge of the neuroprotective potential of cranberries is limited. Previously, we have demonstrated that CJ treatment controls oxidative stress in several organs, with the most evident effect in the brain. In this study, we examined the capability of CJ for protection against Parkinson's disease (PD) in a rotenone (ROT) rat model. Wistar rats were administered with CJ in a dose of 500 mg/kg b.w./day (i.g.) and subcutaneously injected with ROT (1.3 mg/kg b.w./day). The experiment lasted 45 days, including 10 days pre-treatment with CJ and 35 days combined treatment with CJ and ROT. We quantified the expression of α-synuclein and apoptosis markers in the midbrain, performed microscopic examination, and assessed postural instability to evaluate the CJ neuroprotective effect. Our results indicate that the juice treatment provided neuroprotection, as evidenced by declined α-synuclein accumulation, Bax and cleaved/active caspase-9 expression, and normalized cytochrome c level that was accompanied by the enhancement of neuronal activity survival and improved postural instability. Importantly, we also found that long-term administration of CJ alone in a relatively high dose may exert a deleterious effect on cell survival in the midbrain.
Collapse
Affiliation(s)
- Łukasz Witucki
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (Ł.W.); (H.J.)
| | - Monika Kurpik
- Department of Toxicology, Poznań University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (M.K.); (J.J.-L.)
| | - Hieronim Jakubowski
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (Ł.W.); (H.J.)
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, International Center for Public Health, 225 Warren Street, Newark, NJ 07103, USA
| | - Michał Szulc
- Department of Pharmacology, Poznań University of Medical Sciences, Rokietnicka 3, 60-806 Poznań, Poland; (M.S.); (P.Ł.M.)
| | - Przemysław Łukasz Mikołajczak
- Department of Pharmacology, Poznań University of Medical Sciences, Rokietnicka 3, 60-806 Poznań, Poland; (M.S.); (P.Ł.M.)
| | - Jadwiga Jodynis-Liebert
- Department of Toxicology, Poznań University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (M.K.); (J.J.-L.)
| | - Małgorzata Kujawska
- Department of Toxicology, Poznań University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (M.K.); (J.J.-L.)
- Correspondence: ; Tel.: +48-61-847-2081 (ext. 156)
| |
Collapse
|
5
|
Prasuhn J, Brüggemann N. Gene Therapeutic Approaches for the Treatment of Mitochondrial Dysfunction in Parkinson's Disease. Genes (Basel) 2021; 12:genes12111840. [PMID: 34828446 PMCID: PMC8623067 DOI: 10.3390/genes12111840] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/21/2022] Open
Abstract
Background: Mitochondrial dysfunction has been identified as a pathophysiological hallmark of disease onset and progression in patients with Parkinsonian disorders. Besides the overall emergence of gene therapies in treating these patients, this highly relevant molecular concept has not yet been defined as a target for gene therapeutic approaches. Methods: This narrative review will discuss the experimental evidence suggesting mitochondrial dysfunction as a viable treatment target in patients with monogenic and idiopathic Parkinson’s disease. In addition, we will focus on general treatment strategies and crucial challenges which need to be overcome. Results: Our current understanding of mitochondrial biology in parkinsonian disorders opens up the avenue for viable treatment strategies in Parkinsonian disorders. Insights can be obtained from primary mitochondrial diseases. However, substantial knowledge gaps and unique challenges of mitochondria-targeted gene therapies need to be addressed to provide innovative treatments in the future. Conclusions: Mitochondria-targeted gene therapies are a potential strategy to improve an important primary disease mechanism in Parkinsonian disorders. However, further studies are needed to address the unique design challenges for mitochondria-targeted gene therapies.
Collapse
Affiliation(s)
- Jannik Prasuhn
- Institute of Neurogenetics, University of Lübeck, 23562 Lübeck, Germany;
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23562 Lübeck, Germany
- Center for Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Norbert Brüggemann
- Institute of Neurogenetics, University of Lübeck, 23562 Lübeck, Germany;
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23562 Lübeck, Germany
- Center for Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
- Correspondence:
| |
Collapse
|
6
|
Kumar S, Kumar P. The Beneficial Effect of Rice Bran Extract Against Rotenone-Induced Experimental Parkinson's Disease in Rats. Curr Mol Pharmacol 2021; 14:428-438. [PMID: 33573588 DOI: 10.2174/1874467214666210126113324] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/15/2020] [Accepted: 11/02/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND Neurodegenerative diseases have become an increasing cause of various disabilities worldwide, followed by aging, including Parkinson's disease (PD). Parkinson's disease is a degenerative brain disorder distinguished by growing motor & non-motor failure due to the degeneration of medium-sized spiked neurons in the striatum region. Rotenone is often employed to originate the animal model of PD. It is a powerful blocker of mitochondrial complex-I, mitochondrial electron transport chain that reliably produces Parkinsonism-like symptoms in rats. Rice bran (RB) is very rich in polyunsaturated fatty acids (PUFA) and nutritionally beneficial compounds, such as γ-oryzanol, tocopherols, and tocotrienols and sterols are believed to have favorable outcomes on oxidative stress & mitochondrial function. OBJECTIVE The present study has been designed to explore RB extract's effect against rotenone-induced neurotoxicity in rats. METHODS In the present study, Rotenone (2 mg/kg, s.c) was administered systemically for 28 days. The hexane extract of RB was prepared using Soxhlation. Hexane extract (250 & 500 mg/kg) was administered per oral for 28 days in rotenone-treated groups. Behavioral parameters (grip strength, motor coordination, locomotion, and catalepsy) were conducted on the 7th, 14th, 21st, and 28th day. Animals were sacrificed on the 29th day for biochemical estimation in the striatum and cortex. RESULTS This study demonstrates significant alteration in behavioral parameters, oxidative burden (increased lipid peroxidation, nitrite concentration, and decreased glutathione, catalase, SOD) in rotenone-treated animals. Administration of hexane extract of RB prevented the behavioral, biochemical alterations induced by rotenone. The current research has been sketched to inspect RB extract's effect against rotenone-developed neurotoxicity in rats. CONCLUSION The findings support that PD is associated with impairments in motor activity. The results also suggest that the nutraceutical rice bran that contains γ-oryzanol, Vitamin-E, ferulic acid etc., may underlie the adjuvant susceptibility towards rotenone-induced PD in experimental rats.
Collapse
Affiliation(s)
- Sachin Kumar
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, India
| | - Puneet Kumar
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, India
| |
Collapse
|